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Abstract: A major application of optics is imaging all types of structural,
physical, chemical and biological features of matter. Techniques based
on most known properties of light have been developed over the years to
remotely acquire information about such features. They include the spin
angular momentum, encoded in the polarization, but not yet the orbital
angular momentum encoded in its spiral spectrum. Here we put forward
the potential of such spiral spectra. In particular, we use several canonical
examples to show how the orbital angular momentum spectra of a light
beam can be used to image a variety of intrinsic and extrinsic properties
encoded, e.g., in phase and amplitude gradients, dislocations or delays.
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1. Introduction

A major application of optics is imaging and probing structural, physical, chemical and bio-
logical properties of matter. Therefore, a rich variety of techniques for remote imaging based
on most known classical and quantum properties of light have been elucidated and developed
over the years. Available techniques rely in the exploitation of all types of spatial, temporal,
vectorial, and nonlinear interactions of light with matter. Traced back to the fundamental prop-
erties of light, the known techniques rely on a particular use of the energy, the energy spectra
and the energy density of light signals, their longitudinal and transverse linear momenta, their
temporal and spatial coherence, and their angular momentum associated to the polarization of
the electromagnetic fields.

However, the angular momentum can contain not only aspin contribution associated to the
polarization, but also anorbital contribution associated to the spatial profile of the light beam
amplitude and phase-front [1, 2]. Within the paraxial regime, both contributions can be meas-
ured and manipulated separately [3]-[5], and the orbital contribution is finding important ap-
plications in fields that range from optical tweezing in biosciences, to microfluidics, microme-
chanics, and quantum information (see, e.g., [6]-[19], and references therein) . Nevertheless,
while the spin angular momentum is a workhorse in imaging across the electromagnetic spec-
trum, the orbital angular momentum spectrum has not yet been added to the toolkit. Our aim
in this paper is to illustrate the potential of the spiral spectra of light beams for remotely image
suitable features of matter.

The concept we put forward comprises illuminating the target with a light beam with a con-
venient spatial shape, expanding the reflected or transmitted signal into the spiral eigenstates
of orbital angular momentum, and acquiring information of the target by analyzing the corre-
sponding spiral spectrum [18]. The shape of the spiral spectrum, its bandwidth, or the weights
of prescribed eigenstates carry the sought after information. A principal difference between
the spin angular momentum and the orbital angular momentum is that the former forms two-
dimensional light states (e.g., vertical o horizontal polarization) while the latter encodes infor-
mation in infinite-dimensional states, hence providing multi-dimensional acquisition alphabets.
Also, while the spin angular momentum manifests itself in the vectorial nature of the light fields
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and is thus particularly sensitive to material anisotropies, the orbital angular momentum can be
associated to the topological properties of the light wavefront and hence is specially sensitive
to phase gradients and discontinuities. Both features open a wealth of new opportunities to gain
information from suitable targets.

2. Concept

Light carrying orbital angular momentum can be described in terms of Laguerre-Gaussian (LG)
modes which contain an exp(imϕ ) term describing an on-axis phase singularity of strengthm.
In addition to the indexm, which can take any integer number and determines the azimuthal
phase dependence of the mode, the LG modes are also characterized by an indexp, which
can take any non-negative value and determines the radial shape, or node number, of the light
distribution. The normalized LGm,p mode at its beam waist is given in cylindrical coordinates
by

LGm,p(ρ,ϕ ) =
(

2p!
π(|m|+ p)!

)1/2 1
η

(√
2ρ
η

)|m|
L|m|

p

(
2ρ2

η 2

)
exp

(
−ρ2

η 2

)
exp(imϕ ) , (1)

whereLm
p are the associated Laguerre polynomials,ρ is the radial cylindrical coordinate,ϕ is

the azimuthal angle, andη is the beam waist.
The LG modes form a complete, infinite-dimensional basis for the solutions of the paraxial

wave equation; thus any field distribution can be represented as a vector state in that basis.
Whenm �= 0, the LG modes contain screw wave-front dislocations, or optical vortices [20], with
topological charge or winding numberm. Their intensity cross-sections consist of a radially
symmetric shape with no on-axis intensity (Fig. 1). The width of the LG mode increases with
the value of the indexm. Thus, the maximum value ofm that may be used is only restricted by
the finite apertures of the actual optical system.

Fig. 1. Intensity distribution of two different LG modes: (a)LG00 (m = 0, p = 0), and (b)
LG20 (m = 2, p = 0).

Consider the slowly varying electric field envelopeu(x,y;z) of a continues wave paraxial
beam propagating in thez direction, wherex andy are the transverse coordinates. The time
averaged energy per unit length carried by the beam isU = 2ε0

∫ ∫ |u|2 dxdy, whereε0 is the
permittivity of vacuum. The time averagedz component of the orbital angular momentum per
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unit of length carried by the light beam is given by:Lz =
∫ ∫

[�r⊥ × �p]dxdy, where�r⊥ is the vec-
tor position in theX-Y plane,�p = (iε0/ω) [u ∇ ⊥u∗ −u∗ ∇ ⊥u], andω is the angular frequency.

To elucidate the orbital angular momentum content, or spiral spectrum, of a field distribution
u(x,y;z) one has to compute its projection into the spiral harmonics exp(inϕ ), since, for a
given winding numbern, we have to add the weights of all LG modes with the same indexn,
independently of the indexp. We thus let

u(ρ,ϕ ;z) =
1√
2π

n=∞

∑
n=−∞

an(ρ,z) exp(inϕ ), (2)

wherean = 1/(2π)1/2∫ 2π
0 u(ρ,ϕ ,z) exp(−inϕ )dϕ . The energy carried by the corresponding

light beam can be written asU = 2ε0∑∞−∞Cn, whereCn =
∫ ∞

0 |an(ρ,z)|2ρ dρ, can be shown
to be a constant independent ofz. The angular momentum of the light beam is thus given by
Lz = (2ε0/ω)∑∞−∞ nCn. The energy content (weight) of each of the spiral harmonics of any
field distribution in the paraxial regime of light propagation is then determined by:

Pn =
Cn

∑∞
q=−∞Cq

(3)

Standard imaging techniques extract information from a target translating the sought after
property into changes in the intensity, phase, frequency via nonlinear processes excitation, po-
larization or the spatial distribution of an input beam. The input beam can be a Gaussian beam
or a beam with certain intensity, polarization or phase distribution. The concept we put forward
here, which might be termedspiral spectrally-resolved imaging or spiral imaging in short,
comprises illuminating a target with a light beam with a convenient spatial shape, expanding
the reflected or transmitted signal into the spiral eigenstates of orbital angular momentum, and
acquiring information of the target by analyzing the weights of prescribed eigenstates in the
detected signal.

Consider a general illuminating fieldu0(ρ,ϕ ,z) with a defined spiral spectral decomposition.
This input beam can be a pure LG mode, or a combination of modes. Reflecting or transmitting
the beam by a target with a certain transfer function which depends on the transverse coordi-
natesR(ρ,ϕ ) causes the output field, given byuout(ρ,ϕ ,z) = R(ρ,ϕ )u0(ρ,ϕ ,z), to vary de-
pending on the physical properties of the target. Such variation directly translates into changes
into the spiral spectrum. Thus, the difference between the input and output spiral content con-
tains information about the transfer function of the target. To illustrate the potential of the
concept, here we address a few canonical examples.

3. Discussion

First, let a target imprint aφ-phase dislocation across the center of the illuminating beam. This
is similar to the case encountered, for example, in standard compact disc-reading where an on-
axis Gaussian beam illuminates partially a pit and partially the land. Adjusting adequately the
height of the pit leads to a phase difference between both parts of the reflected beam ofφ = π.
Let a collimated Gaussian beam, i.e., a puren = 0 line in the spiral spectrum, illuminate such
target. Figure 2 shows the spiral spectrum of the output field. Notice that about 82% of the
output energy is carried by then = ±1 sidelobes.

Variations of the path length in the region of the dislocation affectφ, a possibility that might
be used to detect minute variations of the physical or the effective strength of the dislocation
(i.e., the physical height in the case of reflective pits or the effective height in the case of
transparent pits). Figure 3(a) summarizes the impact of such phase delay variation in the spiral
spectrum in a few illustrative cases. Figure 3(b) shows the weight of the central (n = 0) and
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Fig. 2. Spiral spectra of the output field reflected/refracted from a target imprinting aπ
phase dislocation across in the center of the illuminating beam. The transfer function of
such a target has the form:R(x,y) = 1 for x < 0, andR(x,y) = −1 otherwise. The input
field is a Gaussian beam (pureLG00 mode).

the first adjacent sidelobes (n = ±1) of the output beam versus the phase delay. Notice the
monotonic variation of the weights of the sidelobes versus the path delay.
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Fig. 3. (a) Spiral spectra of the output field reflected/refracted from a target imprinting aφ
phase dislocation across in the center of the illuminating beam for four selected values of
the phase dislocation. (b) Weight of the central (n = 0), P0 and the first adjacent (n = ±1)
sidelobes,P1 + P(−1) versus the normalized phase dislocationφ/π. The transfer function

of the target has the form:R(x,y) = 1 for x < 0, andR(x,y) = eiφ otherwise. The input field
is a Gaussian beam.

The spiral spectrum can also be used to gain quantitative information about the position of
the phase dislocation. This is shown in Fig. 4, which displays the variation of the spiral spectra
of the output beam obtained when a Gaussian beam illuminates an off-axisπ phase-jump, for
different positions of the dislocation.

The above examples rely on the variation of narrowband data (i.e., weights of a few modes)

(C) 2005 OSA 7 February 2005 / Vol. 13,  No. 3 / OPTICS EXPRESS  877
#6024 - $15.00 US Received 13 December 2004; revised 24 January 2005; accepted 25 January 2005



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Dislocation Position, D

S
pi

ra
l W

ei
gh

t

P
0
 

P
1
+P

(−1)

Fig. 4. Weight of the central (n = 0),P0 and the first adjacent (n =±1) sidelobes,P1+P(−1)
for a Gaussian beam of beam waistη = 1 illuminating an off-axisπ phase dislocation
placed at a distanceD from the center of the beam.

to gain information about the properties of the target. However, broadband outputs are also
useful. For example, a property than provides information is the output spiral bandwidth, i.e.,
the width of the spiral spectrum of the generated field. An illustrative example is shown Fig.
5, which displays the spiral content produced by different combs ofπ edge-dislocations. The
impact of the separation between edges in the comb on the spiral bandwidth is clearly visible.
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Fig. 5. Output intensity distributions (left column), and spiral spectra (right column) for a
Gaussian beam of beam waistη = 1 illuminating a target imprinting a comb ofπ phase
dislocations. Each row displays a different valueD of the separation between the edges.
Top row,D = 1; middle row,D = 0.5; bottom row,D = 0.25.

The previous targets feature phase dislocations, phase discontinuities and edges. Continuous
phase (or amplitude) gradients might be also imaged by monitoring the spiral spectrum that
they produce. Two different examples are shown in Figs. 6 and 7, for targets with transfer func-
tions featuring phase gradients with the form exp(iαπx/η ), and exp(iαπ|x|/η ), respectively.
One important result is that while both gradients generate similar broadband outputs, with a
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bandwidth directly linked to the value of the strengthα , in the case of the antisymmetric phase
gradient all types of modes are excited, whereas in the case of the symmetric gradient all odd
sidelobes are suppressed.

−10 0 10
0

0.5

1
(a)

S
pi

ra
l S

pe
ct

ru
m

, P
n

−10 0 10
0

0.5

1
(d)

S
pi

ra
l S

pe
ct

ru
m

, P
n

Spiral mode number, n

−10 0 10

(b)

−10 0 10

(c)

−10 0 10
Spiral mode number, n

(e)

−10 0 10
Spiral mode number, n

(f)

α=0 α=0.25

α=1

α=0.5

α=1.5 α=2

Fig. 6. Spiral spectra of the output field for a Gaussian beam of beam waistη = 1 illuminat-
ing a target featuring an antisymmetric phase gradient across the input beam for different
selected strengthsα of the phase gradient. The transfer function of the target has the form
R(x,y) = eiαπx/η .
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Fig. 7. Same as in Fig. 6, for a symmetric phase gradient target of the formR(x,y) =
eiαπ|x|/η .

The idea behind spiral imaging holds not only for transfer functions that feature variations
in phase, but also for transfer functions with amplitude inhomogeneities of different sorts. For
example, Fig. 8 illustrates the case of a perfectly reflecting structure consisting of a blocking
strip of different widths that stops the beam at its center along one of the axes. Again changes
of the position, shape, and number of strips are translated in changes into the spiral spectrum.
In this plot, we used an illuminating beam in the form of a LG mode of winding numberm = 2,
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to stress that using illuminating beams with an optimized, or engineered, spiral spectrum is an
important aside possibility open also for exploration.
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Fig. 8. Intensity distributions (left column), and spiral spectra (right column) of the output
field reflected from a perfect mirror with a blocking strip of different widthsD placed in
the center of the illuminating beam. The transfer function of such a target has the form
R(x,y) = 1 for |x| > D/2, andR(x,y) = 0 otherwise. The input beam is a pure LG mode
with m = 2, and a beam waistη = 1.

It is worth emphasizing that the information acquired by this scheme is not only geomet-
rical. Because of the very nature of the orbital angular momentum, the spiral spectrum of
the light beam off the target extracts features encoded in the wavefront topology, hence on
the transversally-varying path length followed by the illuminating beam. Therefore, not only
intrinsic but alsoextrinsic path length variations caused by physical, chemical, or biological
processes are susceptible to be probed by this technique.

The details of the experimental implementation of the scheme put forward here depend on
the concrete setting considered, e.g., whether implemented in reflection or in transmission;
precise location and size of the detectors; corrections due to diffraction; etc. However, notice
that suitable techniques to generate, to filter and to manipulate individual spiral harmonics are
known in the form of combinations of holographic components and single-mode optical fibers.
Importantly from a practical point of view, such components can be made in compact form
using currently available micro-optics fabrication technologies [21, 22].

4. Conclusions

We thus conclude stressing the feasibility of our concept, and its applicability to different bands
across the electromagnetic spectrum. The phase and amplitude features shown here are intended
only ascanonical examples to illustrate the potential of the imaging technique. However, notice
that they might have direct applications, e.g., in compact disc technologies for optical storage
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[23], and for serial biosensing [24].
While the high sensitivity of the scheme advanced here to phase and amplitude variations

might pose restrictions on its practical applicability in turbid or in disordered media, it might
likewise be used to gain information about the random properties of the corresponding light
path. Finally, notice that the concept of digital spiral imaging can also be extended to non-
paraxial light beams and to their corresponding spiral spectra.
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