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A solvability conditions of mixed problems for equations
of parabolic type with involution

In this work the partial differential equations with involutions are considered. The mixed problems for
the parabolic type equation, with constant and variable constants, corresponding to the Dirichlet type
boundary conditions is investigated. The involution is contained by the second derivative with respect to
the variable z, which is the difficult case for investigations. One-dimensional differential operators with
involution have an infinite number of positive and negative eigenvalues. This means that' the operator on
the right-hand side of the equation under study is not semi-bounded. In the case of classical problems,
ordinary differential operators usually appear on the right-hand side of the equations, which are semi-
bounded. Therefore, the incorrectness of mixed problems for a parabolic equation with an involution is
discussed in this paper. Examples are given. Sufficient conditions for the initial data are found when the
problem under study has a unique solution. The representation of the solution in the form of partial sums
of the Fourier series in eigenfunctions is found. The density in the space Lz (—1,1) of the set of initial
functions is proved everywhere, when the problem has a unique solution.
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Introduction

We study the solvability of the following problem:
U (T, t) = Ugy (—x, ), —1<z<1, >0 (1)

Ug (_Lt) = Uy (Lt) =0, u(z,0) :90(1‘)7 (2)

A transformation S of a function f(z) from the class Lo (—1,1) is said to be an involution, if
(S%f) (z) = f (z). In particular, a transformation of the form (Sf) (z) = f (—z) is involution. Equation (1) is
said to be an equation of parabolic type with involution. This name has nothing to do with the well-known
classification of equations of mathematical physics.

A necessary condition of the existence of a solution of problem (1), (2) is the consistency of the initial data
with equation (1) and boundary conditions (2). Therefore, we will require that

o (z) € C*[~1,1]andy’ (—1) = ¢’ (1) = 0.

We say, that problem (1), (2) is well-posed, if 1) the solution of the problem exists, 2) the solution of the
problem is unique, (3) the solution of the problem depends continuously on the initial data (is stable).
The application of the Fourier method to problem (1), (2) leads to a spectral problem with involution

—X"(~z) = AX (x), X'(-1)=X'(1)=0. (3)

Questions of the well-posedness of mixed problems for differential equations with involution are considered
in [1-3]. In works [4, 5], inverse problems for equations with involution are considered. Spectral problems with
involution were investigated in [6-15]. Mixed problems for equations of the form (1), apparently, are considered
first in this paper.

The incorrectness of the mized problem (1), (2)

It is well known [13, 14] that the spectral problem (3) is self-adjoint and has two series of eigenvalues
A1 = K272, Ao = f(kJr %)zwz. The corresponding eigenfunctions have the form Xy (x) = cosknz,
k=0,1,2,,,, ,; Xga(z) =sin (k + %) nx, k =0,1,2,,,; which form a complete orthonormal system in the

class Ly (—1,1).
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We note, that the spectral problem (3) has an infinite number of negative eigenvalues, the double differentiat-
ion operator on the left-hand side of the differential equation (3) (or the operator of double differentiation with
respect to z on the right-hand side of the differential equation (1) is not semi-bounded. That is the fundamental
difference of the equation has studied from many different equations.

The standard method consists of the idea of representing the formal solution of the mixed problem (1), (2)
in the following form of infinite series

1
u(x,t) = Z Ape 1 cos kra + Z Bje M2t gin <k + 2) T, (4)

Ak1 Ak2

where

1 1
1

Ay = /<p (z) coskmadx, By = /4,0 (x) sin (k + 2) wadr. (5)

21 21
If function ¢ (z) is not infinite times differentiable, i.e. if the Fourier coefficients B /of the funetion ¢ ()
do not decrease with sufficient rapidity, then the second term in (4) diverges, since A\;2 < 0. Therefore, in the
case of general initial value, the mixed problem (1), (2) may not have a solution. In-the case when the solution
exists but it does not have the property of stability i.e. does not depend continuously/on the initial value. For

example, perturbation

1
us (x,t) = ee M2t sin (k‘ + 2) T

does not exceed the number ¢ for ¢t = 0, but will be greater than any preassigned number Cy for ¢t = ¢, at
sufficiently small ¢ and § and sufficiently large k. Thus, the mixed problem (2) in the case of parabolic type
with involution (1) is not well-posed. Nevertheless, we show that the solution of the mixed problem under study
exists and is unique.

The solvability classes of the mized problem (1), (2)

First of all, let us show the uniqueness of the solution of the mixed problem.

Theorem 1. If a solution of the mixed problem (1); (2) exists, then it is unique.

Proof. Assume that the mixed problem (1),/(2) exists. Any solution u (z,t) of problem (1), (2), as a function
of x, can be represented as a Fourier series.

oo oo 1
u(x,t) = Z Tr1 (t) cos kmx + Z Tyo (t) sin (k + 2) T
k=0

k=0

by orthonormal basis { X}, (z)} = {Xy1 = cosknx, Xy = sin (k + 3) 72 }. Since this series converges in the sense
of the norm of the space Ly (—1,1), then it also converges in the sense of the scalar product.
Therefore

T (1'% (@, ) coskrz), Tio (1) = <u (2,1), sin <k " ;) mz) .
We write these two equations in brief in the form
Ty (t) = (u(2,1), X (2)) - (6)
We multiply both sides of equation (1) by scalar product to X}, («), which gives
(ugy, Xg) = (Uae (—2,t) , Xi) -

The right-hand side of the equality obtained is twice integrable by parts, and on the left side we use the rule of
differentiation with respect to the parameter ¢ under the integral sign. Taking into account the equation (3), we
obtain relation % (u, X)) = A1 (u(x,t), Xi) . By substitution the equality (6), we obtain the Cauchy problem
for an ordinary first-order differential equation

T (t) = =MeTr (1), T (0) = (o, Xi) -

The initial condition is obtained from (6) for ¢ = 0. By the uniqueness of the solution of the Cauchy problem,
Ty (t) is uniquely determined. This proves the uniqueness of the solution of problem (1), (2). Theorem 1 is
proved.
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We show classes of admissible initial functions ¢ (z), for which problem (1), (2) has a solution. First we
show that the series (4) is a solution of the problem (1), (2) if all the coefficients of By, are zero.

Theorem 2. If initial function ¢ (x) is even, belongs to the class C?[—1,1] and satisfies the conditions
¢ (=1) = ¢/ (1) = 0, then the solution of problem (1), (2) exists, is unique and can be represented as a
series (4).

Proof. If ¢ () - even function, then all the Fourier coefficients By, of the form (5) are equal to zero. Therefore,
the series (4) takes the form

u(z,t) = ZAke_k2”2tcos krz. (7)
k=0

In order to prove the theorem we have to show that the series (7) converges for any ¢ > 0 ,and it ean be
term-by-term differentiated once with respect to the variable ¢ and twice with respect to the variable x. The
last two operations are possible under the condition of uniform convergence of the series

oo
- Z 272 Ape ™ ™t cos kna (8)
k=0
for all ¢ > 0. Uniform convergence of the series (8) is proved in the same way as.in thie case of a classical equation

of parabolic type (see, for example, [16; 203]).
The convergence of the series (7) follows from the convergence of the majorant series

o0
Z | Ay cos kx| (9)
k=0
The convergence of the series (9) is proved in exactly the same way as the absolute and uniform convergence
of the classical Fourier series in the trigonometric system is proved [16; 203]. Thus, the solution of problem (1),
(2) exists, unique and can be represented as a series (7). The proof.of the theorem is completed.
Next, let consider the problem (1), (2), where the initial function ¢ (x) is a trigonometric polynomial

Ny No
. 1
o(x) = Z ay coskmx + Z by, sin (k + 2) . (10)

k=0 k=0

We note that functions in the form of series or polynomials in eigenfunctions are used in the study of various
problems. For example, in [17] (see alsoreferences in it) functions of the type (10) are used in the study of the
spectral properties of loaded differential operators.

Theorem 8. If initial function ¢ (x)is a trigonometric polynomial of the form (10), then the solution of
problem (1), (2) exists, is unique and can be represented in the form

N1 N2
1 1\2
u (@yt).= Z Ay, cos kmx ekt + Z Bysin (k + 2) 7w elkt3) ”Qﬂ
k=0 k=0

where

1
Ay = /go(x) coskmxdr, k=0,1,2,...,Ny;
e
1

1
By, = /w(x) sin (k + 2) rxdr, k=0,1,2,..., No.

Proof. The validity of the theorem follows from the fact that the coeflicients
A, =0, k=N +1,..., Bp,=0, k=No+1,...

and from the statement of the Theorem 1.

Since the set of trigonometric polynomials in the complete orthonormal system {Xj1, Xy2} is everywhere
dense in Ly(—1,1), then from theorem 3 implies

Theorem /4. The set M of admissible initial functions is everywhere dense in Ly (—1, 1), if the mixed problem
(1), (2) is solvable for all function from M.
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A mized problem for an equation with a variable coefficient
We consider the mixed problem (2) for an equation with a variable coefficient
up (2,t) = Uy (—2,8) + g () u(z,t), —-1<2x<1, t>0. (11)
The application of the Fourier method to problem (11), (2) leads to a spectral problem with involution
—X"(—x)+q(x) X (z) =X (z), X' (-1)=X'(1)=0. (12)

In the paper [15] it is shown that the baseness eigenfunction {Xj ()} of spectral problem (12).n the space
Ly (—1,1). If coefficient ¢ (z) is a real continuous function in the interval under consideration,then this'basis
is an orthonormal basis by virtue of the self-adjointness of the spectral problem (11). Therefore initial function
¢ (x) can be decomposed into convergent in norm of the space Ly (—1,1) Fourier series by orthonormal basis
(X0 (@)}

We have following

Theorem 5. If in equation (11) the coefficient ¢ (z) is a real continuous function and an initial function ¢ ()
is a polynomial of the following form

= > AXp(2)+ Y BiXpo(x

Ak1>0, Ak2<0,
k=L,N k=1,M

then the solution of problem (11), (2) exists, unique and can be represented by the following

(.Z‘ t E Ake )\klthl E Bke )‘k2th2( )
Ak1>0, Ak2<0,
k=1,N k=1,M

where

1
Ak:/go(as)Xkl (@)dz, k=1,2,...,N;
21

1
/cp ) Xpo () dx, k=1,2,..., M,
1

Xi1 (x), Xko () — eigenfunction, eorresponding to eigenvalues Ag1 > 0 and Ag2 < 0 respectively.

By virtue of the density ©f the set of polynomials in the complete orthonormal system {X} (x)} in class
Ly (—1,1), for the mixed problem (11), (2) the assertion of Theorem 4 is satisfies.

In conclusion, we mote that-all the results formulated remain valid in the case of conditions u (—1,t) =
=u(l,t) =0, u(z,0)=¢(2),

This work was. supported by the Committee of Science of the Ministry of Education and Science of the
Republic Kazakhstany project no. AP0531225.
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0.9. Copcendbi

WNuBosmonusicel 6ap mapadoJiajblK TYpAeri TeHaeyaep
YIIIiH apaJiac ecenTep/AiH, NIeNTMIIiIiK TIapTTapbl

Maxkasaga naBOMIONUSICH 6ap TapabosIaiblK, TYPAEri TeHey VIMmiH meTTik maprrapsl lupuxiae Typimme
©oJIaTHIH apaJjiac ecenTep KapacThIphliasl. Kosddunrenrrepi TypakThl »KoHe ailHBIMAJIBI O0JIATHIH TEHIEY-
Jiep 3eprresireH. TeHzeymiH « aflHbIMAJIBICHI GOMBIHINA EKIHINI TYBIHIABICHIHIA WHBOJIONUs Oap. MyHmait
JKaraaiiia ecenTepi 3ePTTEYiH 63 KUbIHALIKTAPH! 6ap. VHBomomusicer 6ap 6ipesmem i auddepeHimas bt
orepaTopJIapIblH OH KoHe Tepic TaHOaJ bl MEHIIIKTI MOH/IEPi IeKci3 Kol 6oJa ibl. By Tenieyain ol »KarbiH-
JIaFbI OIEPATOpP OH aHBIKTAJFAH eMec JereHi OGinmipeni. Kitaccukasbik Karqaitiapia 9IeTTe TEHAEY/IIH OH,
JKaFbIHIAFbl OIIepaTOpJIap OH aHbIKTaJFaH 00Jbi Keje/ai. COHIBIKTAH aBTOpP MHBOJIIOIUSACKHI Oap mapaboJia-
JIBIK, TYDJIETi TeHJey YIIiH apaJac eCcenTep/iiH KOWbLIBIMBI KOPPEKTIIi eMeC OOJIaThIHABIFBIH TaJKbLIAFaH.
Mpeicangap kemnripren. KapacThIpbIIbII OTBIpFaH €CenTep/iiH >KaJjfbl3 memriMi 6ap OOJIybIH KaMTaMachbl3
ereTiH OacTankp!l (pyHKIMAIAD VIMH XKETKUTIKTI maprrap anran. MyHaait 6actankel OyHKITUSIIAD KUABIHBI
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Ly (—1,1) keHicTiringe THIFbI3 OPHAJACKAH YKUBIH GOJIATHIHJIBIFBI €CENTIH, KAJFbI3 enimi 6ap 6osFan »kar-
naitna kepcerinren. [lemivMuin MeHmikTi GyHknusaaap 6oiibiama Pypbe KATapbIHbIH, 1epOeC KOCHIHIbLIAPhI
TYpiHJ/e KeCKiH/Ie/IeTIH/IITrT aHbIKTAIFaH.

Kiam cesdep: Pypbe ToCisIi, apajac ecel, WHBOJIIOINSI, MEHIKTI GpyHKIMsIap, 6a3uc.

A A. Capcenbn

YcioBusi pa3penimMOCT CMeEITaHHbIX 3a/ia4d JIJId
ypaBHeHUI TapaboJImvIecKoro BuJa C WHBOJIIOIEH

Pabora mocssiiena n3ydeHHIo CMeMIaHHBIX 3aJad JJIs YpaBHEHUS MapaboJMIecKOro BHIA C WHBOJIIOIHEH
¢ KpaeBbIMu ycioBusiMu Tuia Jlupuxise. PaccMoTpeHbl ypaBHEHUSI C IOCTOSIHHBIMU U IIEPEMEHHBIME KO-
s dunmrentamu. VHBOIIONUIO COAEPKUT BTOpaAsi MPOU3BOIHAS 110 TEPEMEHHON T. DTOT/CIAydail SBJISIETCS
TPpyAHbIM Jid u3ydenus. OqaoMepHble nuddepeHnnaibHble OEPATOPhI C HHBOJIIOIUENR NMEIOT GECKOHETHOE
YHCIIO TOJIOYKUTEJBHBIX U OTPUIIATEIbHBIX COOCTBEHHBIX 3HAYEHUN. DTO O3HAYAET, ATO ONEPATOD B IIPABOM
9aCTU W3y49aeMOro YPaBHEHUsI He SIBJISIETCsT MTOJIyOIPAHWYEHHBIM. B CcIydae KIIacCMIeCKHX 3aJad B Ipa-
BOI YACTU yPaBHEHUI OOBIYHO CTOSAT OOBIKHOBEHHBIE I depeHInaIbHble OTIePATOPDI, KOTOPBIE SBJISIOTCS
rojryorpanndeHHbIME. [[l09TOMY B cTaThe aBTOPOM MTOKa3aHa HEKOPPEKTHOCTH CMELIAHHBIX 33/1a4 JIJIsd yPaB-
HeHust apaboIMIecKoro Buaa ¢ muBosonueii. [lpuBenensr npumepst. HalineHbr qoCTaTOYHBIE YCJIOBUST HA
HadaJIbHbIE JaHHBbIE, KOTJA U3y4yaeMas 3ajada UMeeT eJIMHCTBEHHOe pelenue. HaiijieHo npejcraBieHue pe-
[IEHWsI B BUJIE YaCTUYIHBIX cyMM psiga Pypbe mo cobcrBeHHBIM DyHKImsAM. /lokazaHa BCIOAY IJIOTHOCTH
B mpocrpancTise Lo (—1,1) MHOXKeCTBa HavaabHBIX (DYHKIHUI, KOrIa 3a4aMa UMEET eJIMHCTBEHHOE PEleHue.

Kmouesvie caosa: meron Pypbe, cMeIaHHas 3a/1a9a, HHBOJIIONUS, COOCTBEHHBIE (DYHKITHHU, OA3MC.
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