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1 OBJECTIVES 

Flight and stance duration during jumping represent 
basic and very useful information for track and field 
coaches, and empirical evidence has been given that 
these parameters correlate strongly with elite 
performance (Hunter, 2004; Li et al. 2010; Slawinski 
et al. 2010). In highly dynamical sports such as track 
and field, athletes must be able to generate high 
forces within a very short time and in an appropriate 
manner. Consequently, reactive strength training 
including multiple jumps or drop jumps from 
different heights is very important for such athletes 
(Kale et al., 2009, Markovic et al., 2007). Objective 
feedback on performance is crucial to ensure a high 
quality of such a training as intrinsic information is 
merely available to the athlete due to the high 
movement velocities. From a trainer’s perspective, 
on the other hand, the quality of performance cannot 
be assessed precisely enough by pure observation.  

For the diagnosis of jumping performance in 
field-based conditions, several devices have been 
established in the last years. Contact mats or opto-
electrical systems like Optojump® allow a precise 
and unobtrusive measureing of temporal parameters, 
but limitations must be stated according the 
operational area as well as group or ubiquitous 
monitoring. More recently, the availability of 
miniature solid-state inertial measurement units 
(IMUs) offers large opportunities to overcome these 
restrictions, and therefore open a new perspective 
for in-field diagnosis. Combined with wireless data 
transmission, IMUs can be used to provide athletes 
and coaches with fast and accurate performance 
measurements to improve athletic development and 
elite performance. Additionally, IMUs merely affect 
athletes during performance due to their small size 
and weight.  

IMUs have already been used to detect kinematic 
parameters in track and field applications. High 
correlations could be shown between IMUs and 

reference measurements (force platforms and 
optometric systems) for flight time and jump height 
during counter-movement-jumps (Picerno et al. 
2011; r=.87) and for reactive strength index during 
drop jumps (Patterson and Caulfield, 2010; r=.98). 
Reactive strength index, for example, can be used 
for several purposes for the optimization of 
plyometric training or for injury prevention (Mc 
Clymont, 2003). It has also been applied as a tool to 
judge athletes’ recovery state (Horita et al. 1999; 
Toumi et al. 2006). 

Bergamini et al. (2012) reported mean 
differences of .005 seconds between IMU and high-
frequency video or dynamometry for stance and 
stride durations during sprinting. Lower correlations 
between force and acceleration peaks for drop jumps 
(r=.70) and countermovement jumps (r=.55-59) 
were found if only a three-axis accelerometer data 
were considered (Tran et al. 2010). 

The aim of the recent study was the development 
and validation of an inertial sensor based device for 
detecting explosive jump events in elite athletes. 
Additionally, an ubiquitous group monitoring should 
be supported to use the device during training 
sessions with multiple athletes. 

2 METHODS 

2.1 System Design 

A flexible wearable inertial sensor unit was 
developed, that should support easy adaptation to 
different diagnosis scenarios without changing the 
hardware. Main requirement were a high data 
resolution and accuracy, a direct connection to smart 
phones/tablets without additional hardware, a 
logging of raw data as well as compactness, little 
weight, easy usability and long battery lifetime. 

To connect the sensor unit with mobile devices, a 
Bluetooth Low Energy (BLE) connection was 
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chosen. It allows ranges in free field up to 30m. In 
comparison to classic Bluetooth or WiFi, BLE can 
save up to 100x more energy. A drawback is smaller 
amount of data that can be transferred in time. This 
is compensated by an on-board processing. All 
sensor values are direct handled by the MCU. Only 
the results (e.g. stance duration) are sent. 
Additionally, all raw data is saved on an internal 
microSD card for later PC analysis. Via microUSB 
data can be read out and battery recharged. 

To ensure an easy usage of the system, an 
Android App was developed. It connects to the 
sensor units of the athletes automatically. A sensor 
unit itself wakes up itself, so that no switch is 
needed. As soon as for example a jump was 
detected, the data is processed by the MCU, sent via 
BLE to the App and the results are displayed there 
(see Figure 1). Trainers can select one or more 
sensor units in parallel to monitor different athletics 
at the same time. 

 

 

Figure 1: Screenshot of Android App. 

 

Figure 2: Sensor unit hardware overview. 

Be capable of using the system for future scenarios, 
a platform-based approach was chosen. A board 
including MCU, sensors, wireless communication, 
memory, power management unit, and extension 
port was developed. Depending on the scenario, it 
can be equipped with the components needed for it. 

For on-board processing of data and system 
management the world most energy efficient ARM 
Cortex M3 processor Giant Gecko from Silicon Labs 
was chosen (48MHZ, 1MB Flash, 128KB RAM). 

Two sensors can be used: the IMU MPU-9150 
from InvenSense combines a 3-axis accelerometer 
(up to 1 kHz and +/-16g), 3-axis gyroscope (up to 1 
kHz and 1000 deg./s.) and 3-axis magnet field 
(about 100Hz) sensor in one chip. Additionally in 
the future, an air pressure sensor can be mounted 
capable measuring height differences up to 10cm. 

For BLE communication, the Nordic nRF8001 is 
used (up to 30m free field). An own antenna was 
designed for optimal electromagnetic radiation. A 
second radio working in sub-GHz band can be used 
for future scenarios to enhance range (up to 200m 
free field). 

An internal microSD card can save data up to 
4GB. 

The power management unit handles different 
power sources (normal battery, rechargeable battery, 
USB power) and recharges batteries. Batteries last 
for several hours. 

An extension port can be used for future add-ons 
like new sensors. Figure 2Figure 2: Sensor unit 
hardware overview gives an overview. 

Overall size of the unit is 80x56x24mm³ (see 
Figure 3).  
 

 

Figure 3: Sensor unit (left) and board (right). 

For fast software development and fast testing of 
new algorithms a software framework following a 
layered approach was created. Each layer abstracts 
from the layer below. Accordingly, parts or layers of 
the software can be changed easily without 
modifying any other component. For example, 
sensors can be changed or added without touching 
the other parts of the software. Basic tasks like 
initializing the MCU or the basic operating system 
are abstracted from the application itself (see also 
Figure 4). 
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The lowest layer connects to the hardware 
interfaces. The “device drivers” layer handles all 
low level hardware like wireless radios or getting 
sensor data. The layer “user libraries” provides basic 
functionalities to the application. The “Task 
manager” for example allow parallelization of jobs 
like getting sensor data, saving it in raw format, 
processing it, and sending it via BLE. The “BLE” 
module abstracts from the BLE hardware and 
provides for example easy access for sending 
“advertisement data”, which can be read be the App. 
The “Motion” module does pre-processing of the 
IMU data and provides the information to the next 
layer. 

In “user program” the main part of the 
application is written (here “Dropjump”). It utilizes 
and combines functionalities of the lower layers 
without interfering with the layer itself. All modules 
are compiled and linked together to get at the end 
the final software for the sensor unit. This way, new 
applications can be developed in short time and parts 
of the hardware can be extended or replaced, 
respectively. 
 

 

Figure 4: Sensor unit software overview. 

2.2 Evaluation Study 

The purpose of the evaluation study was first to 
identify recognizable features in the data signals 
supplied by the IMU for the estimation of stance (tS) 
and flight duration (tF) as well as jump height (H) 
and reactive strength index (RI). Stance duration 
was determined by the first (landing) and last 
(takeoff) ground contact of the feet. Flight time was 
calculated from the take-off and the subsequent 
landing. Jump height was derived by the following 
equation: 

ܪ    ൌ	
ீ௥௔௩௜௧௬	௫	௧ಷ

଼
                  (1) 

Reactive strength index was calculated as shown 
in equation 2. 

  RI ൌ 	
ୌ	ሺ୫୫ሻ

୲ೄ		ሺ௠௦ሻ
     (2) 

Landing and take off were estimated from the 
acceleration in vertical direction. Accelerometer data 

were first filtered by a fifth order moving average 
filter. Landing was then defined as the beginning of 
at least five consecutive data values including a 
gradient larger then 400. With a delay of 90ms, 
beginning at landing, a local minimum in the range 
of 240ms is defined as takeoff. Figure 5 indicates 
exemplarily acceleration data including first landing 
(1), take off (2) and second landing after the jump 
(3). All data processing was performed on-board. 

 

 

Figure 5: Filtered accelerometer data from a drop jump off 
of a box raised 31.5cm. The red points show the beginning 
of ground contact (1), the local minimum detected at take 
off (2) and the beginning of ground contact when landing 
after the jump (3).  

Because of delays in onboard data processing 
when detecting a jump event, tF was calculated by 
adding a correction factor of 20ms to the original 
value. 

The IMU device was mounted close to the ankle 
as shown in Figure 6 with its x-Axis pointing 
vertically upwards. 

 

 

Figure 6: IMU Device mounted close to the ankle. 

To evaluate accuracy of event detection the 
provided information were compared with force 
platform data (AMTI BP 600400) sampled at 
1000Hz. The validation study included ten 
participants (7 track and field athletes, 3 basketball 
players). Mean age was 25.1 years with standard 
deviation (SD) 3.45 years. Participants had a mean 
height of 186.3 cm, SD= 10.4 cm and a mean weight 
of 77.3 kg, SD= 12.45 kg. 3 were female and 7 were 
male. Overall, each participant performed 15 drop 

icSPORTS�2014�-�International�Congress�on�Sport�Sciences�Research�and�Technology�Support

218



 

jumps. A testing session consisted of 5 drop jumps 
from three different heights (31.5cm, 40cm and 
50cm). Subjects stepped off of the box and 
performed their drop jump with each foot landing on 
the force platform. After each jump participants had 
a rest time of two minutes.  

Statistical analysis was performed using R 
(Project for Statistical Computing). Bland-Altman 
plots for multiple observations per individual (Bland 
and Altmann 2007) of tS, tF, and RI were computed 
to assess the agreement between the developed 
device and force platform data. H was not included 
for the statistical analysis as no additional 
information was expected due to the its computation 
(see equitation 1) 

3 RESULTS 

Overall, 141 out of 150 jumps were detected 
correctly which corresponds with a detection rate of 
94 %. For ts and tF minimal differences of 0ms could 
be detected. After calculating H and RI, observations 
without differences between IMU and force platform 
occurred as well. A descriptive overview of the 
results of the evaluation study is given in table 1.  

The 95% Level of Agreement (LOA) ranges 
from 9.82 to -8.13 ms for tS; 15.02 to -11.40 ms for 

Table 1: Descriptive overview for parameters tS, tF, H and 
RI. “mean diff” represents the mean difference between 
the device and force platform, “sd” its standard deviation, 
“min” represents the minimal occurred and “max” the 
maximal occurred difference during all correct detected 
jumps. 

 N mean diff sd min max 
tS 141 3.40 ms +/- 2.97 ms 0 ms 14 ms 
tF 141 4.87 ms +/- 3,85 ms 0 ms 22 ms 
H 138 0.59 cm +/- 0,47 cm 0 cm 2,4 cm 
RI 138 0.06 +/- 0,05 0,00 0,22 

 

 
Figure 7: Bland- Altmann plot comparing tS determined by 
IMU and force platform data. The slight lines show the 
95% confidence interval. 

tF and 0.16 to -0.16 for RI. Figure 7 shows the 
difference in measures plotted against the mean of 
both measures on each trial for tS. 

4 DISCUSSION 

The results indicate the developed device as a 
suitable tool for detecting selected parameters in a 
field based diagnostic. A group and ubiquitous 
monitoring is supported by the developed system. 
Multiple athletes can be assessed for diagnostics in 
the Android App by wearing the IMU. 

However, the Bland-Altman results, specifically 
the confidence interval calculations, highlight some 
potentially important discrepancies between the 
force platform and accelerometer values. It is 
notable that our results and algorithm are only based 
on the accelerometer data, but nevertheless are 
comparable to results reported by Bergamini et al. 
(2012) and Patterson and Caulfield (2010). It is 
noteworthy, that the results include one participant 
with “bad” detections, which seems to be caused by 
technical difficulties in performing the Drop Jumps. 
Without this single participant mean differences for 
tS between IMU and force platform decrease to 
2.87ms and the 95% LOA to 7.48 to -7.31ms. The 
recent algorithm yields the advantage of less 
processing power to facilitate on-board processing 
and fast data broadcasting via Bluetooth low-energy. 
Further research will focus on the optimization of 
the algorithms. Promising approaches might be the 
use of gyroscope data supplemental as well as 
Kalman Filtering for data processing.  

The developed IMU device promises an 
optimization of plyometric training or even 
technique training in jumping events by objective 
feedback of crucial performance parameters. 
Monitoring fatigue in repeated jumping or 400m 
sprinting, as example, might also be an interesting 
area of application. 

Therefore, further research aims to develop an 
algorithm to detect parameters like stance and flight 
durations or step lengths and frequencies in sprinting 
with a satisfying accuracy.   

The continuous monitoring of multiple 
movements will also allow analyzing movement 
variability as a feature of expertise. Former studies 
in badminton showed that expertised athletes not 
tend to show higher manifestatitons of performance 
parameters but stable results in repeated executions 
(Jaitner and Gawin, 2010). Regarding stability and 
variabilty of chronometrical influencing variables 
only less empirical evidence is given for elite sports 
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in track and field. To investigate this is a main aim 
of further research for example in hurdling.  

The use of the developed device in field based 
studies will probably result in a deeper 
understanding of how to design training programs to 
optimize explosive performance like jumping and 
sprinting in elite track and field athletes. 
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