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Abstract:  This paper presents a systematic analysis of the problem of 
multiple scattering by a finite group of arbitrarily sized, shaped, and 
oriented particles embedded in an absorbing, homogeneous, isotropic, and 
unbounded medium.  The volume integral equation is used to derive 
generalized Foldy–Lax equations and their order-of-scattering form.  The 
far-field version of the Foldy–Lax equations is used to derive the transport 
equation for the so-called coherent field generated by a large group of 
sparsely, randomly, and uniformly distributed particles.  The differences 
between the generalized equations and their counterparts describing 
multiple scattering by particles embedded in a non-absorbing medium are 
highlighted and discussed.    
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1.  Introduction  

Multiple scattering of electromagnetic waves by particles is an important discipline which has 
been the subject of numerous publications over the past few decades (see, e.g., [1–7] and 
references therein).  The conventional theories of multiple scattering have explicitly relied on 
the assumption that the host medium surrounding the particles is non-absorbing.  The 
important general case of an absorbing host medium has largely been ignored, a paper by 
Yang et al. [8] and two recent papers by Durant et al. [6, 9] being rare exceptions. 

The objective of this series of papers is to perform a systematic analysis of the problem of 
multiple scattering by particles imbedded in an absorbing host medium by generalizing the 
results summarized in [3, 7].  The requisite study of the problem of single scattering has 
recently been published [10] (see Appendix below for errata).  Like in [10], my goal here is to 
perform as general an analysis as possible without providing a detailed microphysical 
specification of the scattering particles.  In particular, the particles are allowed to have 
arbitrary sizes, shapes, and orientations.   

In this first part of the series, the focus is on such fundamental ingredients of the multiple-
scattering theory as the vector Foldy–Lax equations, their order-of-scattering form, and the 
average (coherent) field.  In order to save space and minimize redundancy, I assume that the 
reader has access to [3, 10] and use the same terminology and notation.      

2.  Vector Foldy–Lax equations 

Consider electromagnetic scattering by a fixed group of N finite particles collectively 
occupying the interior region  

 ,     
1

INT i

N

i
VV

=
= ∪  (1) 

where iV  is the volume occupied by the ith particle (Fig. 1).  The host medium can be 
absorbing, but otherwise it is assumed to be infinite, homogeneous, linear, and isotropic.  The 
particles are assumed to have the same constant permeability, but are allowed to have 
different and spatially varying permittivities.  The general volume integral equation describing 
the total electric field everywhere in space [10] can be re-written in the following form:  
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Fig. 1.  Scattering by a fixed group of N finite particles. 
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is the dyadic Green’s function, 111 ikkk ′′+′=  is the (complex) wave number of the host 
medium, I

�

 is the identity dyadic, 
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is the potential function, and )(riU  is the ith-particle potential function.  The latter is given by 
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where 12 )(    )( kk ii rr =m  is the refractive index of particle i relative to that of the host 
medium.  Importantly, all position vectors originate at the origin O of the laboratory 
coordinate system, Fig. 1.   

By following step-by-step the derivation outlined in Section 4.1 of [3], it is straightforward 
to show that the solution of Eq. (2) can be expressed as 
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where the electric field )(rEi  exciting particle i is given by 
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the )(exc rEij  are partial exciting fields given by 
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and iT
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 is the solution of the integral equation  
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and thus the ith-particle dyadic transition operator with respect to the laboratory coordinate 
system. 

Equations (6)–(8) do not differ mathematically from Eqs. (4.1.6)–(4.1.8) of [3] derived for 
the case of a non-absorbing host medium.  They represent the generalized vector form of the 
Foldy–Lax equations (FLEs) and describe rigorously electromagnetic scattering by the fixed 
group of N particles embedded in an absorbing medium.  A fundamental property of the FLEs 
is that iT

�

 is the dyadic transition operator of particle i in the absence of all the other particles 
(cf. Eq. (9) above and Eq. (10) in [10]). 

3.  Multiple scattering  

In general, the FLEs (6)–(9) are equivalent to Eqs. (9) and (10) of [10].  However, the fact that 
iT
�

 for each i is an individual property of the ith particle computed as if this particle were 
alone allows one to introduce the mathematical concept of multiple scattering.  Let us rewrite 
Eqs. (6)–(8) in a compact operator form: 
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Iterating Eq. (11) gives 
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whereas the substitution of Eq. (13) in Eq. (10) results in the order-of-scattering expansion of 
the total electric field:  
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The first term on the right-hand side of Eq. (14) represents the unscattered incident field, the 
second term is the sum of all “single-scattering” contributions, the third term is the sum of all 
“double-scattering” contributions, etc.  The order-of-scattering interpretation of Eq. (14) is 
illustrated in Fig. 2.  The arrows denote the incident field, the symbol    represents the 
“multiplication” of a field by a TG ˆˆ  dyadic according to Eq. (12), and the dashed curve 
indicates that both “scattering centers” are represented by the same particle.   
 Equation (14) constitutes a very clear and fruitful way of re-writing the original FLEs.  It 
is important to remember, however, that the concept of multiple scattering does not represent 
an actual time-sequential process in the framework of frequency-domain electromagnetics [7]. 
 The mathematical structure of Eq. (14) is exactly the same as that in the case of a non-
absorbing host medium [7], except now the wave number of the host medium is allowed to be 
complex-valued.  
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Fig. 2.  Diagrammatic representation of Eq. (14). 
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4.  Far-field Flody–Lax equations 

Let us now make the following two simplifying assumptions: 

● Each particle from the group is located in the far-field zones of all the other particles.  
● The observation point is located in the far-field zone of any particle from the group. 

Let us also chose for each particle an individual local origin positioned close to the particle’s 
geometrical center, Fig. 3(a).  Comparison with Eq. (9) of [10] shows that the right-hand side 
of Eq. (8) is the field scattered by particle j in response to the incident field represented by 

).(rE j   Since the resulting scattered field at any point is independent of the choice of 
coordinate system, it is convenient to evaluate the right-hand side of Eq. (8) in the far-field 
zone of particle j using the local coordinate system centered at Oj.  This means that now the 
dyadic Green’s function, the dyadic transition operator, and the incident field jE  are specified 
with respect to the jth local particle coordinate system.  According to Section 3 of [10], the 
result of scattering is an outgoing spherical wavelet centered at :jO  

                        )(exc rEij  ≈ )ˆ()( 1 jijjrG rE  (15) 
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Fig. 3.  Scattering by widely separated particles.  The local origins Oi and Oj are chosen 
arbitrarily inside particles i and j, respectively. 
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and the vectors r, ,jr ,iR ,jR  and ijR  are shown in Fig. 3(a).  Note that we use a caret above 
a vector to denote a unit vector in the corresponding direction.  

It is rather obvious that Eij in Eq. (16) is the value of the exciting field caused by particle j 
at the origin of particle i.  Since the radius of curvature of the exciting wavelet generated by 
particle j is much greater than the size of particle i, Eqs. (7) and (16) show that each particle is 
excited by the external incident field and the superposition of locally plane homogeneous 
waves with amplitudes ijiijk ERR )ˆiexp( 1 ⋅−  and propagation directions :ˆ

ijR  
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where we assume, as usual, that )(inc rE  is a homogeneous plane electromagnetic wave 
propagating in the direction of the unit vector :ˆ incn  
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According to Eqs. (16) and (19) of [10], the outgoing spherical wave generated by the jth 
particle in response to a plane-wave excitation of the form )ˆiexp( inc

1
inc
0 jk rnE ⋅  is given by 
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 where jr  originates at ,jO  inc
0E  is the incident field at ,jO  and 

)ˆ,ˆ( incnrjjA
�

 is the jth particle scattering dyadic centered at .jO   To make use of this fact, we 
rewrite Eq. (21) for particle j with respect to the jth-particle coordinate system centered at ,jO  
Fig. 3(a).  Since ,  jj Rrr +=  we obtain 
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The electric field at iO  caused by particle j in response to this excitation is given by     
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By equating Eq. (24) with the right-hand side of Eq. (16) corresponding to ,iRr =  we finally 
obtain a system of linear algebraic equations for the partial exciting fields :ijE  
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Obviously, this system is much simpler than the original integral FLEs. 
 The solution of the system (25) yields the electric field exciting each particle as well as the 
total field.  Indeed, we have from Eq. (21) for a point :iV∈′′r  
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[see Fig. 3(b)], which is a vector superposition of locally plane homogeneous waves.  
Substituting this formula in Eq. (6) and recalling the expression for the far-field 
electromagnetic response of a particle to a plane-wave excitation yields the total electric field: 
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where the observation point r, Fig. 3(b), is located in the far-field zone of any particle forming 
the group.     

The expression for the order-of-scattering expansion of the total field also becomes much 
simpler under the assumption of far-field scattering.  Indeed, iterating Eq. (25) and 
substituting the result in Eq. (27) yields  
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where 
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The diagrammatic formula shown in Fig. 2 can also represent equation (28) provided that the 
symbol    is now interpreted as the multiplication of a field by a B

�

 dyadic.  
Neither the derivation of Eqs. (25), (27), and (28) nor their formal mathematical structure 

differ from those in the case of a non-absorbing host medium [3]. 

5.  The Twersky approximation 

Let us consider electromagnetic scattering by a large group of N particles sparsely distributed 
throughout a finite macroscopic volume V, Fig. 4.  Assuming that N is very large, we can keep 
in the far-field order-of-scattering expansion (28) only the terms corresponding to scattering 
paths going through a particle only once (so-called self-avoiding paths) [11]:  
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This formula represents the far-field Twersky approximation and is depicted diagrammatically 
in Fig. 5.  Comparison with Fig. 2 illustrates the types of diagrams neglected in the Twersky 
expansion. 
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6.  Coherent field 

Let us now assume that the N particles are randomly moving and decompose the field )(rE  at 
an internal point V∈r  into the average (or coherent), ),(c rE  and fluctuating, ),(f rE  parts:  
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Assuming also the full ergodicity of the particle ensemble and replacing time averaging by 
averaging over particle positions (subscript R) and states (subscript ξ ), we have 
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where 0 is a zero vector.  Furthermore, if all particles have the same statistical characteristics 
and the state and coordinates of each particle are independent of each other then we have from 
Eq. (34):  
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Fig. 5.  Diagrammatic representation of the Twersky expansion. 

 

Fig. 4.  Electromagnetic scattering by a large group of particles sparsely distributed 
throughout a macroscopic volume V. 
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where )(RRp  and )(ξpξ  are the corresponding probability density functions, and the spatial 
integrations are performed over the entire volume V.  Substituting Eqs. (30)–(33) yields 
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where ξA 〉〈 )ˆ,ˆ( nm
�

 is the average of the single-particle scattering dyadic over the particle 
states.  Taking into account that ,)()( 0 Nnp RRR =  where )(0 Rn  is the number of particles 
per unit volume, we finally derive in the limit →N ∞:  
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Let us now assume that the distribution of the particles throughout the volume V is 
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statistically uniform and introduce an s-axis parallel to the incidence direction and going 
through the observation point.  This axis enters the volume V at a point A such that 0)( =As  
and exits it at a point B (Fig. 6).  Let us evaluate the first integral on the right-hand side of Eq. 
(40):   

    incinc
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where .0 VNn =   The observation point is assumed to be in the far-field zone of any particle, 
which allows the use of the Saxon asymptotic expansion of a plane wave in spherical waves: 
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It is convenient to evaluate the integral (41) using a spherical polar coordinate system with 
origin at the observation point and with the z-axis directed along the s-axis.  This gives 
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Fig. 6.  Computation of the coherent field. 
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(43) 

Notice now that the boundaries of the scattering volume V are not perfectly fixed and can be 
expected to fluctuate during the time interval necessary to compute the coherent field 
according to Eq. (36).  Averaging over these fluctuations does not affect the first term on the 
right-hand side of Eq. (43), but effectively extinguishes the second term proportional to the 
rapidly oscillating exponential )]}.()([2iexp{ 1 rsBsk −   Taking the average of the coherent 
field over a small volume element centered at the observation point r would have the same 
effect.  Hence,  
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 Analogously, since ,jiij RRrR +′+=  we have for the second integral on the right-hand 
side of Eq. (40): 

ji
π

jijijii
π

iii RGRRRGRRn RRI ˆd)(dˆd)(d
4  

2

4  

22
02 ∫∫∫∫ ′′′′=  

                  ,)ˆ ,ˆ()ˆ,ˆ( incinc
jξjiξjii AA EnRRR ⋅〉−〈⋅〉−′−〈×

��

                (45) 

where 
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This means that only particles with origins on the s-axis contribute to .2I   Consequently, 
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The computation of the remaining integrals in Eq. (40) is quite similar.  We thus finally have: 
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Since incˆ)( nrrr sA +=  (Fig. 6), Eq. (48) yeilds 
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is the dyadic propagation constant, 

 ])ˆ(iexp[),ˆ( incinc sκsη nn
�� =  (52) 

is the coherent transmission dyadic, and )()0( inc
c As rEE ==  is the boundary value of the 
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coherent field.  Another form of Eq. (48) is 
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It is quite obvious that the coherent field is transverse: .0ˆ)( inc
c =⋅ nrE   Therefore, the 

electric vector of the coherent field can be written as the vector sum of the corresponding -θ  
and components-φ  in the local coordinate system centered at the observation point: 
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Introducing the two-component electric column vector of the coherent field according to 
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we have  
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where )ˆ( incnk  is the 22×  matrix propagation constant with elements 
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This implies that 
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where ξ〉〈 )ˆ,ˆ( incinc nnS  is the forward-scattering amplitude matrix averaged over the particle 
states.  

Equation (56) can be re-written as 

 ),0(),ˆ()( c
inc

c == sss EhE n  (62) 
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is the 22×  coherent transmission amplitude matrix.  The reciprocity relations (79) and (80) 
of [10] imply the following reciprocity relations for the coherent transmission dyadic and the 
coherent transmission amplitude matrix: 
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where T denotes the transpose of a dyadic or a matrix. 

7.  Transfer equation for the coherent field 

We will now switch to potentially observable quantities having the dimension of 
monochromatic energy flux.  The coherency column vector of the coherent field is defined as  
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where ω is the angular frequency and 1μ  is the permeability of the host medium.  As follows 
from Eqs. (56) and (61), cJ  satisfies the transfer equation 
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where JK  is the coherency extinction matrix given by Eq. (68) of [10].  In the Stokes-vector 
representation,  
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and  
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and K is the Stokes extinction matrix given by Eqs. (71)–(78) of [10].  The formal solution of 
Eq. (69) is given by 
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is the 44×  coherent transmission Stokes matrix.  Equation (82) of [10] implies the following 
reciprocity relation: 
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where ].1,1,1,1[diag3 −=Δ  

8.  Discussion 

The results of Sections 6 and 7 generalize the Foldy approximation [12] to the case of 
electromagnetic scattering by particles imbedded in an absorbing host medium.  Unlike in [6], 
our results are applicable to particles of any size, shape, orientation, and polydispersity. 
 Although the vector Foldy–Lax equations (Section 2) and their order-of-scattering 
expansion (Section 3) as well as their far-field versions (Section 4) fully preserve their 
original mathematical structure, a non-vanishing absorptivity of the host medium leads to 
explicit changes in formulas of Sections 6 and 7.  Specifically, Eqs. (48), (51), and (61) differ 
from their counterparts in [3] in that 1k  is replaced by .1k′   Furthermore, Eqs. (67), (69), and 
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(71) contain additional, intuitively obvious terms which are proportional to 1k ′′  and describe 
additional exponential attenuation due to true absorption of electromagnetic energy by the 
host medium.  Importantly, these results have been derived directly from the Maxwell 
equations and involve no phenomenological assumptions or hypotheses. 
 Equation (71) shows that the effect of a non-zero 1k ′′  on the coherent propagation of an 
electromagnetic wave through a turbid medium is two-fold.  First, it modifies the numerical 
values of the ensemble-averaged extinction matrix elements.  Second, it causes an additional 
exponential-attenuation factor ).2exp( 1sk ′′−   There is no doubt that the second manifestation of 
a non-vanishing absorptivity of the host medium is much more important than the first one 
since it affects directly the long-range transport of electromagnetic energy. 
 An essential ingredient of our derivation has been the explicit representation of 
exponentials of the type )iexp( 1αk  (with a real-valued α) as a product of a real-valued 
exponential )exp( 1αk ′′−  and a “purely complex” exponential )iexp( 1αk′  with a real-valued 

.1αk′   It is important to remember that mathematical results such as the Jones lemma, the 
method of stationary phase, or the Saxon expansion of a plane wave in spherical waves [3, 13] 
are applicable only to situations involving purely complex exponentials of the type )iexp( 1αk′  
with a real-valued .1αk′   We note in this regard that Eq. (61), when applied to the case of 
spherical particles, appears to be inconsistent with Eq. (55) of [6] in that the denominator in 
the second term of the former contains 1k′  rather than .1k   Although the origin of this 
discrepancy is not immediately obvious, it is likely to be the same as that of the discrepancy 
discussed in the penultimate paragraph of [10].        
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Appendix 

Two typos have been identified in [10].  First, “independence” on the 5th line following Eq. 
(38) should read “dependence”.  Second, Eq. (64) should read 
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