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1 Abstract—The monitoring and forecasting of the mining
slope deformation are of great significance to prevent potential
geological disasters in mining regions and the geological factors
have been widely used for the purpose of mining slope
deformation monitoring. However, literature review shows that
very little work has been done in prediction of mining slope
deformation using meteorological factors. To address this issue,
a new method is proposed using the meteorological factors to
forecast the mining slope deformation. Herein, the
meteorological factors include the temperature, atmospheric
pressure, cumulative rainfall, relative humidity and refractive
index of the mining slope. A genetic algorithm optimized BP
neural network (GA-BPNN) was employed to fuse the
meteorological factors to establish the prediction model for the
mining slope deformation. The experiments have been
implemented to evaluate the new approach and a comparison
between the GA-BPNN, BPNN and radical basis function neural
network (RBF) prediction models has been carried out. The
analysis results show that the proposed method can provide
precise prediction of the mining slope deformation and its
performance is superior to its rivals.

Index Terms—Geologic measurements, meteorological
factors, forecasting, artificial neural networks.

I. INTRODUCTION

The geological disasters such as mining subsidence and
mine slope landslide are widespread in the deep loose layers
of mining regions in Eastern and Northern China, leading to
huge economic loss and catastrophe in the mining production
activities [1,] [2]. Thus, the monitoring of the mine slope
condition is of great importance to assess the health condition
of mining regions and ensure the mining operation safety.

In recent years, the security level of the mining slope is
evaluated through forecasting and monitoring the
deformation of the mine slope [3]. This has been achieved by
utilizing all kinds of related external influencing factors such
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as various geological and meteorological data [4]. The
geological influencing factors have been widely studied to
investigate the mine geological disasters [4], [5]. However, it
is always difficult to directly monitor the geological
parameters due to the complexity of the mine slope structure.
The sensors for geological parameters detection are hardly
installed in practice. Alternatively, the meteorological factors
can be easily measured in practice. The meteorological
factors include the temperature, atmospheric pressure,
cumulative rainfall throughout the year, relative humidity and
refractive index of the mine slopes, etc. These factors also
have important impacts on slope deformation and they can
reflect the deformation condition of the mine slopes. Hence, it
is possible to monitor the deformation of the mine slopes
using the meteorological factors.

However, many researches have been done using the
geological factors for the purpose of mining slope
deformation monitoring while very limited work has been
done using meteorological factors. Among existing predictors
when using geological and meteorological data, there are
mainly three methodologies, i.e. the grey theory prediction [6],
[7], time series prediction [8] and artificial neural network [9].
The grey theory prediction has the optimal and unique ability
of performing fitting predictions using small data sets but
suffers from prediction accuracy for many actual systems [7].
The accuracy of the mine slope deformation data monitoring
could reaches centimeter order in magnitude. So the grey
theory prediction method is not suitable for this application.
The time series prediction [10] can learn the relationship
between the forecast target and the time course. However, the
time series prediction may seldom consider the external
factors out of the time series while the mine slope deformation
is always under the various external influences. Artificial
neural network (ANN) [9], [11] has significant advantages in
possessing associative inference and adaptive capacity, and
particularly it can be applied to processing various kinds of
nonlinear problems [10]. ANN has already been proven to
have relatively high precision in predicting the surface
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subsidence in mining [12]–[16]. The back propagation neural
network (BPNN) is the most popular used ANN [17].
However, the gradient descent training algorithm of BPNN
has been theoretically and experimentally proven to be
ineffective in the network training. The premature
phenomenon restricted the applications of the BPNN [18].
Since the GA has strong ability of finding a global minimum
[19], it is worth investigating the GA trained BPNN in
prediction of the mine slope deformation.

In order to forecast the deformation of mine slopes in a
practical manner, this work presents a new approach by the
use of meteorological factors. The novelty of the work is that
for the first time, the GA optimized BPNN has been
introduced to establish the nonlinear mapping relationship
between slope deformation and its meteorological influencing
factors. Experimental tests have been carried out to evaluate
and validate the performance of the proposed method for
mine slope deformation forecasting.

II. DESCRIPTION OF THE PROPOSED APPROACH

A. Influence Mechanism of the Meteorological Factors
The meteorological factors, such as the temperature and the

rainfall, etc., can provide significant evident to the
deformation condition of the mine slopes [19]. On one hand,
the surface runoff is the main external force to crush the mine
slope. The crush force of the surface runoff may corrode the
slope surface, erode the slope toe, and generate the gully
network. On the other hand, the rainfall infiltration will
increase the pore water pressure and make the cohesive force
of the soil and damping force decreased. As a result, the
rainfall could induce the slope landslide. Figure 1 shows the
mechanism of action of rainfall on slope landside.
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Fig. 1. The mechanism of rainfall action on slope landside.

TABLE I. THE RELATIONSHIP BETWEEN SLOPE SLIDE SITUATION
AND RAINY SEASON IN CHINA DURING MAY TO SEPTEMBER,

1989.

District
Number

of
landslides

Number of
landslides during
the rainy season

Percentage
(%)

Bijie Guizhou 42 40 96
Wanxian

Chongqing 294 256 87

Liangshan
Szechwan 212 203 95

Northern region of
Szechwan 218 214 98

The river valley in
Jinsha river 477 458 96

Longnan region 213 203 95
YiLiang Yunnan 75 71 94

Total 1531 1445 94

It is reported in [19] that the landslide is prone to happen in
rainy season. Table I gives the statistic of the occurrence rate
of the landslide in rainy seasons in China. It can be seen in the
table that the rainfall has significant influence on the
landslide.

Fig. 2. The mechanism analysis of temperature action on slope landside.

The temperature may increase the porosity effect of the
rock mass and decrease the bonding strength. As a result, the
rock strength, elastic modulus, elongation at break, and peel
strength are all decreased. Figure 2 shows the mechanism of
action of rainfall on slope landside.

Hence, it can be seen from Fig. 1 and Fig. 2 and Table I that
the rainfall and temperature could be used as important
indexes to indicate the deformation condition and landslide of
the mine slopes. Besides these two indicators, some other
meteorological factors also have strong influence or/and
connection to the deformation condition of mine slopes, such
as the, atmospheric pressure, relative humidity and refractive
index [20], [21]. All of them will be adopted to predict the
deformation condition of mine slopes in this work.

B. The GA Optimized BPNN
As discussed in Section I, a new method based on the

combination of BPNN and GA is presented to forecast the
deformation of mine slope.
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Fig. 3. The flow chart of GA Optimized BPNN method.

The BPNN generally uses the gradient descent method to
adjust weight values and threshold values between neurons in
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different network layers to make the actual output of the
network close to the desired value [16]. However, this
gradient descent learning mechanism often suffers from the
local minimum. To overcome this shortcoming, the GA is
used to quickly search the global optimal value to optimize
the BPNN. The detail of the theory of GA can be referred to
[19]. In this paper, the link weights and thresholds of the
BPNN are optimized by GA. Figure 3 illustrates the solution
procedure of the GA optimized BPNN method for
deformation forecasting of mine slope.

C. The Proposed Forecasting Approach
In this work, the meteorological data is used to predict the

deformation of the mine slope using the proposed GA-BPNN.
The inputs of the BPNN are the temperature, atmospheric
pressure, cumulative rainfall, relative humidity and refractive
index of the mining slope. Due to the strong randomness of
the wind speed and direction, they are not chosen as the input
variables. The outputs of the BPNN are east coordinates,
north coordinates and elevation coordinates of the monitored
positions. Figure 4 shows the forecasting process of the
proposed method.

Fig. 4. The diagram of the intelligent forecasting method.

The detailed implementation of GA-BPNN could be
described as follows:

(1) Determine the structure of BPNN, 5× n× 3, where n
is the neural number in hidden layer;

(2) Set the initial values of the weight coefficients
connecting the input layer, hidden layer and output layer of
the BPNN;

(3) Code the chromosomes of the weight coefficients and
set the GA parameters (i.e. the replication, crossover and
mutation rates);

(4) Design the fitness function and calculate the
corresponding fitness value of current chromosomes;

(5) Do the crossover and mutation to produce the best
fitness values;

(6) End the optimization if the results can satisfy the
termination conditions.

Usually, the fitness function can be designed as

2

1

1 ( ) ,
n

i i
i

fitness p t
n 
  (1)

where it is the actual values, ip is the BPNN outputs, and n is
the number of samples.

III. EXPERIMENTAL SETUP

In the experiments, the meteorological factors have been
collected using a Slope Stability Radar (SSR). The collected

meteorological factors include the temperature, atmospheric
pressure, cumulative rainfall, relative humidity and refractive
index of the mining slope. The deformation information of the
monitoring points has also been collected, including the east
coordinates, north coordinates and elevation coordinates of
the monitoring points. Then the recorded data is used to
establish a neural network to forecast the deformation data of
the mine slope.

Herein the SSR-XT radar was selected, which is a kind of
high-precision, remote and real-time slope stability
monitoring radar. Figure 5 shows the topography of the
experimental strip mine. The monitoring mining area has five
mining platform. The SSR-XT was installed at the platform of
the southern part of the strip mine and was responsible for
monitoring the northern part of the strip mine. The distance
between the SSR radar to the monitoring area was 2 km,
which was a suitable range for the SSR radar.

Fig. 5. The topography of the monitoring area in the experiments.

The Weather Transmitter (WXT510) is the main actuator
in the SSR-XT to collect the meteorological data. Figure 6
shows the WXT510. WXT510 was used to measure the
precipitation, atmospheric pressure, temperature and relative
humidity. Herein, the precipitation sensor detects the impact
of individual raindrops; then the volume of the drops is
approximated to be proportional to the impact value of
accumulated rainfall.

Fig. 6. The cut away view of WXT510: 1 – wind transducers, 2 –
precipitation sensor, 3 – pressure sensor, 4 – humidity and temperature
sensor.

The diameter of the antenna of the SSR radar reaches to 1.8
meters. This unit could monitor the slope deformation
continuously and obtain real-time coordinates deformation
data. The collected coordinate data contains east coordinates,
north coordinates and elevation coordinates of the monitored
positions.
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IV. APPLICATION OF PROPOSED FORECASTING METHOD

A continuous experiment test of half a year has been carried
out from May to November 2012, including the rainy season,
to monitor the mine slope of the China Coal Pingshuo group
Co., Ltd in North China. In the experiment period a serious
landslide happed on 25th July. Hence, we used the
meteorological data (i.e. the temperature, atmospheric
pressure, cumulative rainfall, relative humidity and refractive
index) and the relevant coordinate data from 23th July to 29th
July to evaluate the GA-BPNN model. One hundred and fifty
samples were recorded. In the analysis, one hundred of the
samples were used to train the BPNN and the rest fifty
samples were used to test the well-trained BPNN.

In the forecasting process, the BP NN adopted 5× 35× 3
structure. As mentioned above, the GA optimized BPNN
approach is proposed for the deformation forecast of the mine
slope. The BPNN is capable for simulating the variation
tendency of the mine slope deformation and dealing with the
nonlinear mapping problem [16]. The GA seeks to improve
the genelization ability of the BPNN by optimizing its weight
values between the input layer, hidden layer, and output layer.
Figure 7 shows the convergence curve and the fitness value of
the GA optimization. It can be seen in the figure that in the
beginning of the training process, the initial weight values of
the BPNN score a low fitness while the GA can search relative

suitable weight values to enhance the prediction ability of the
BPNN.

Figure 8 shows the comparison of the prediction for the east
coordinate between the radial basis function neural network
(RBFNN), BPNN, GA-BPNN. It can be seen in the figure that
the prediction precision of the GA-BPNN is higher than that
of the RBFNN and BPNN. The prediction error of the
GA-BPNN is much smaller than that of the RBFNN and
BPNN. This comparison indicates that taking the advantage
of the GA optimization, the BPNN could be trained well with
high genelization ability and hence the forecasting
performance is superior to the unoptimized neural networks.

In order to compare with the classical algorithm, we give
the detailed comparison of the BPNN and GA-BPNN.
Fig. 9–Fig. 11 show the training performance of the two
neural networks. By comparing the mean square error of the
training in Fig. 9 it can be seen that BPNN converge to a
scheduled accuracy after 9 steps while the GA-BPNN only
need 7 steps. Hence the GA can help the BPNN increase the
convergence speed. Figure 10 shows the validation results of
the trained BPNN. It is noticed from the figure that the
gradient index and mutation index of the BPNN is smaller
than that of the GA-BPNN. It seems that the trained BPNN is
better than the GA-BPNN; however, it is evident in Fig. 9 that
the prediction performance of BPNN is lower than the
GA-BPNN.

a)                                                                                                      b)
Fig. 7. The GA optimization: (a) convergence curve of the optimization and (b) fitness value of the optimization.

a) b)
Fig. 8. The forecasting performance: (a) the prediction results of the RBFNN, BPNN, and GA-BPNN, (b) the prediction error of the RBFNN, BPNN and
GA-BPNN.
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a)                                                                                              b)
Fig. 9. Comparison of the training performance of two neural networks: (left) BPNN, (right) GA-BPNN.

a)                                                                                           b)
Fig. 10. The training state of two neural networks: (a) BPNN, (b) GA-BPNN.

a) b)
Fig. 11. Regression of two neural networks: (a) BPNN, (b) GA-BPNN.

In addition, Fig. 11 confirms that the regression value of the
GA-BPNN is smaller than the BPNN, which suggests that the
genelization ability of the GA-BPNN is better than the BPNN.
Hence, it can infer that the reason why the gradient index and
mutation index of the BPNN is smaller than that of the
GA-BPNN is that the BPNN may fall into local minimum in
the training while the GA optimizes the BPNN to global
minimum. As a result the prediction performance of the
BPNN is lower than the GA-BPNN.

Table II shows the comparison between the prediction
values using the RBFNN, BPNN and GA-BPNN model.
Within the scope of the five prediction test points, the
GA-BPNN method prediction values are presenting the best
performance. The prediction values for points 1, 2, 3, 4 and 5

using the GA-BPNN method are better than the RBFNN and
BPNN methods.

TABLE II. THE PREDICTION VALUE USING RBFNN, BPNN AND
GA-BPNN PREDICTION METHOD.

Point 1 Point 2 Point 3 Point 4 Point 5
Real

Value
48443
6.6754

48443
6.6747

48443
6.6742

48443
6.6734

48443
6.6741

RBFNN 48443
6.6928

48443
6.6708

48443
6.6761

48443
6.7243

48443
6.7026

BPNN 48443
6.6749

48443
6.6739

48443
6.6720

48443
6.6706

48443
6.6706

GA-BPNN 48443
6.6753

48443
6.6747

48443
6.6739

48443
6.6742

48443
6.6751

Table III lists the MAE (mean absolute error), MAPE
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(mean absolute percentage error) and RMSE (root mean
square error) prediction errors. From Table III we can see that
the prediction precision of the GA-BPNN is higher than that
with RBFNN or just BPNN. For the three patterns, the
prediction mean absolute errors of RBFNN and BPNN are
0.0161 and 0.0016, respectively. Contrast with them, the
prediction mean absolute error of GA-BPNN is 0.0005. As a
result, we can see that the GA-BPNN algorithm has better
performance than RBFNN and BPNN.

TABLE III. THE MAE, MAPE AND RMSE USING RBFNN, BPNN AND
GA-BPNN PREDICTION METHOD.

MAE (%) MAPE (%) RMSE (%)

RBFNN 0.0161 3.9100×10-6 0.0013

BPNN 0.0016 4.1000×10-7 0.0012
GA-BPNN 0.0005 5.0000×10-8 0.0003

Hence, the GA optimization not only increases the
convergence speed of the BPNN in the training process but
also the genelization ability. The analysis results show that the
proposed GA-BPNN has been proven to be effective in the
prediction of the mine slope deformation.

V. CONCLUSIONS

The monitoring of slope deformation is of great importance
for mine safety evaluation. Using intelligent methods to
forecast deformation of the mine slope could save manpower
and material resources to a great extent. The forecasting
approach based on GA-BPNN is therefore presented for
accurate prediction of mine slope deformation in this paper.
Experimental tests in a real mine slope have been carried out
and the analysis results demonstrate that (a) the proposed
GA-BPNN is more accurate than the BPNN, (b) the MSE,
MAE, MAPE and RMSE of the GA-BPNN are smaller than
that of BPNN and RBFNN, and (c) the proposed forecasting
approach is feasible and efficient for the forecast of the mine
slope deformation. The MAE of the GA-BPNN predictor was
0.0005 and the RMSE was 0.0003. These two criterions fulfill
well the actual engineering requirements. Hence, the
proposed forecast approach in this work may provide
practical utilities for mine slope deformation forecasting.

Future research is planned to further investigate the
practical use of the proposed deformation forecasting
approach in mining industry. Their industrial application will
be explored in the mine safety production.
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