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Abstract
Dell’s supply chain for desktops involves Asian vendors shipping components by sea to several U.S. plants.

While suppliers are responsible for shipping enough inventory to meet total needs across all production sites,
Dell can re-route and expedite their shipments while in transit and also transfer on-hand inventory in order
to balance supply across sites. This paper describes the development, implementation and impact of the
process and optimization-based control system now used by Dell to address this supply routing challenge for
its US-bound monitors. In a first phase, Dell created a new job definition focused solely on supply routing,
and implemented a supporting visualization tool. In a second phase, a decision support system relying on
an MIP formulation was implemented, overcoming two main challenges: (i) the estimation of shortages as a
function of expected inventory, accounting for actual forecast quality; and (ii) the estimation of a meaningful
shortage cost. This new methodology is estimated to have reduced Dell’s inventory re-positioning costs for
monitors by about 60%.

1 Introduction

Dell’s growth over the last ten years has coincided with a significant increase in the

complexity of its operations. For its North American desktop division, this evolution has

specifically taken the following forms: (i) increase in the number of assembly plants and

warehouse facilities; (ii) replacement of most US-based suppliers with Asian suppliers; and

(iii) increasing variety of products offered to customers. Although these changes have di-

rectly impacted most of Dell’s operational functions, they have in particular substantially

complicated the task of its procurement group. Indeed, this group has thus become respon-

sible for maintaining the availability of more components in more locations, working with

suppliers having longer transportation lead-times.

In order to address this supply availability challenge, Dell has long relied on Vendor-

Managed Inventory (VMI) relationships. That is, its suppliers are expected to maintain
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sufficient inventory of components in each of Dell’s relevant locations, based on a demand

forecast periodically communicated by Dell, e.g., 14 Days of Supply in Inventory (DSI).

As part of that relationship, component inventory continues to be owned by suppliers until

only a couple of hours before that inventory is pulled by Dell’s assembly lines (or warehouse

pick process), and suppliers are mostly free to follow any schedule of shipments as long as it

meets some minimum service level8. In order to benefit from transportation volume discounts

however, these shipments are typically sent by ocean and air carriers directly contracted by

Dell. Also, Dell centralizes inventory and shipment information, in part because it often

uses several suppliers for the same component. As a result, Dell has retained the function

of managing both the routing of its pipeline inventory and the transhipments of its on-hand

inventory between various facilities (supply routing), regardless of that inventory’s ownership

(see Reyner 2006 and Kapuscinski et al. 2004 for more background and references on Dell’s

business model, supply chain and history).

The supply routing function just defined is particularly important for components such

as desktop chassis and monitors, which account for a substantial proportion of total supply

transportation costs. These components are shipped by ocean from Asia to the US in full

containers of a single part type because of their large volume and weight. As a result, gaps

between actual realized demand in each assembly or warehouse facility and the forecasts

driving these shipments can become quite large over this transportation delay. This may

cause large imbalances in the inventory positions of Dell’s various sites, and may in turn

lead to customer delivery delays due to component shortages as well as additional inventory

holding costs. To mitigate these problems, Dell can change at some cost the final destination

of any container still in transit on the ocean (diversion) as well as its planned ground

transportation mode (expediting) up until a couple of days before it is disembarked in Long

Beach, CA. The available ground transportation modes include, with increasing cost and

decreasing lead-time, the default rail and truck mode; a single driver truck-only mode; and

a two driver (team) truck-only mode. In addition, Dell can also perform transhipments

(transfers) of on-hand inventory between its facilities. The available transportation modes

for transfers include a set schedule of pre-contracted truck "milk runs" between Dell US

8 Supplier DSI targets in individual locations constitute widely followed but non-contractual operational
guidelines. Contractual supplier obligations only relate to the sum of all inventory provided across
all of Dell’s facilities over time. Failure to meet these obligations results in negotiation of liability for any additional
costs incurred by Dell (see Tsay 1999 for a relevant discussion of manufacturing supply contracts).
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facilities, which have low relative cost but limited capacity, as well as special single or team

trucks contracted on the spot9. Figure 1 illustrates the supply-chain structure and the

associated supply routing decisions just defined, and also shows the four main locations in

the US where chassis and monitors are shipped for assembly and/or inclusion into customer

orders as well as typical transportation lead-times.

Asian
Suppliers

Long Beach, CA
(port)

Austin, TX

Reno, NV

Winston-
Salem, NC

Nashville,
TN

2-3 days before port: 
diversion decision 

point

≈ 30 Days

2-3 weeks by rail
2-7 days by truck
1-5 days by team truck

Full containers

90-day weekly
forecast

Transfers 1-4 days
(milk runs, special trucks)

Figure 1: Dell’s Supply-Chain Structure and Supply Routing Decisions for US-Bound Desktop
Chassis and Monitors.

The volume of material continuously going through the supply chain just described is

very significant: a rough estimate from Dell’s public 10-K filing for fiscal year 2008 reveals

that tens of thousands of units of each component type must have been shipped every

week on average to Dell US facilities over that period. The challenge of making all the

associated diversion, expediting and transfer decisions in a timely and cost-effective manner

thus constitutes a supply chain control problem that is both difficult and important: while we

are not at liberty to provide any specific financial information here, it is reported for example

in the public thesis of Reyner (2006) that “A presentation was given to Dell’s management in

the second quarter of 2006 that quoted expedite costs in the tens of millions per quarter [...].”

The present paper summarizes the collaboration between Dell and university researchers over

several years to develop the optimization-based control system now used by Dell to address

this supply routing challenge for its US-bound monitors. It contributes to the operations

9 Following the terminology used by Dell and its carriers, we define milk runs, special single driver
trucks and team trucks as different transportation modes, even through they all actually rely on
the same type of transportation vehicle.
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management literature by providing a detailed description of a real-world control challenge

that has not been discussed extensively so far even though it is critical to the operation of an

important supply chain. It also describes a model for addressing this challenge along with

an implementation process that have both been tested and validated by practice.

The remainder is organized as follows. After a discussion of the related literature in §2,

we present the two main successive phases of that collaboration in §3 and §4. As described

in §3.1, the first phase consisted of creating a new position referred to as supply routing

analyst and solely dedicated to the inventory routing decisions described above. It also

included the development of a spreadsheet-based visualization tool in support of that role.

The associated implementation issues are discussed in §3.2, and the resulting impact in

§3.3. The second phase involved the development of a more sophisticated decision support

system relying on an mixed-integer program (MIP) solved independently for every monitor

type over a rolling horizon, as described in §4.1. The main modeling challenge encountered

at that stage consisted of embedding into this optimization problem formulation a function

representing the expected shortage costs resulting from the routing decisions considered, and

thus capturing Dell’s actual demand uncertainty in a model that is otherwise deterministic.

Next, section §4.2 discusses the main challenges we overcame to implement the model, in

particular the determination of a sensible value for the unit shortage cost. The financial

impact of this work is then discussed in §4.3, which also explores the qualitative differences

between the supply routing decisions determined by the analyst and those recommended by

the optimization model. Finally, §5 contains concluding remarks pertaining to the limitations

of our work, ongoing related developments, possible future research and key learnings from

this collaboration. An important notational convention used throughout this paper consists

of using symbols in bold for random variables, and the same symbols with no highlight for

their mathematical expectations, e.g., d , E[d]. Also, notations with an upper bar denote
cumulative quantities, e.g., d̄t =

Pt
k=1 dk. We use throughout the following cost terminology:

supply transportation costs refer to the sum of all costs that Dell incurs directly or indirectly

in order to transport its components from the supplier location to the plant where they will

be assembled into (or, in the case of monitors, packed with) a computer. They comprise

embedded transportation costs and re-positioning transportation costs, from which we omit

the word "transportation" when no ambiguity arises. Embedded costs correspond to the
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default transportation mode for a given component type (for monitors, transit by ocean

from Asia and then by rail to the US destination originally intended) and are included in the

"on dock" price per part charged by suppliers. Re-positioning costs, which are paid directly

by Dell to the carriers, comprise all other ground transportation costs incurred as a result

of the supply routing decisions defined above (i.e. diversions, expediting and transfers).

Finally, some of the numerical data included in this paper are disguised in order to protect

the confidentiality of Dell’s sensitive information.

2 Literature Review

The reader may have noted from §1 that the high-level structure of Dell’s supply chain

for large desktop components in North America closely resembles the one captured by the

inventory distribution model of Eppen and Schrage (1981). Among common features, Dell’s

supply routing problem also involves the centralized allocation of incoming inventory among

several facilities where it is stored and consumed, and its cross-docking disembarkment op-

eration in Long Beach, CA exactly matches the definition of a "stockless depot" considered

in that paper10. Consequently, many of the results and insights described in the body of

literature on multi-echelon inventory allocation that started with that seminal paper (see

Axsäter, Marklund and Silver 2002 for a recent survey) are conceptually relevant to the

problem considered.

In spite of all these papers’ relevance however, both our goal and methodology differ

substantially from theirs. Specifically, our objective is to develop and implement an oper-

ational system for a large existing supply chain, as opposed to deriving theoretical insights

from a stylized model. Consequently, our approach sacrifices tractability for realism and

operational applicability, and the model we formulate is a mixed-integer program solved

over a rolling horizon using numerical (branch and bound) algorithms, as opposed to say a

dynamic program — see Chand, Hsu and Sethi (2002) for a more general review of rolling

horizon methods.

Some insights on the supply chain motivating our work may be gained from Kapuscinski

et al. (2004), which describes the development and implementation by Dell of replenishment

models for its component inventory. That paper is thus an important complement to ours,

10 An important difference however is that Dell only performs the allocation function (splitting
incoming quantities among final destinations) and has delegated the ordering function (determining
incoming quantities) to its suppliers.
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in that it focuses on how the inventory ordering decisions, which we assume exogenous here,

should be generated by Dell’s suppliers as part of their VMI relationship (see §1).

The paper most related to ours however is Caggiano, Muckstadt and Rappold (2006),

which considers operational models for inventory and capacity allocation decisions in a multi-

item reparable service part system with a central warehouse and field stocking locations. In

particular, their Extended Stock Allocation Model (ESAM), which leaves the repair decisions

aside, is similar in many respects to the one we describe in §4: it is a mathematical program

meant to be solved on a rolling horizon basis, its decision variables comprise inventory al-

location and expedited shipment decisions, its objective function includes a transportation

component and a newsboy-like backorder component and it assumes deterministic lead-times

and an exogenous supply pipeline. However, the ESAM is still simpler than our model, in

that it does not capture transhipments, considers a single expedited transportation mode,

assumes a linear transportation cost structure and ignores transportation scheduling and

capacity constraints. These differences are material, as the solution approach ultimately

followed in Caggiano, Muckstadt and Rappold (2006) consists of developing heuristic solu-

tions by exploiting the structural properties that can be established in their setting, while

we compute instead solutions to an approximate (linearized) version of our model (see §4.1).

Most importantly however, our paper describes an actual implementation of the optimization

model presented along with an assessment of its impact, and thus offers a grounded perspec-

tive on the many important practical issues involved. This practical focus is reflected in the

structure of this paper, whereby we now describe in turn the two successive phases followed

by Dell as part of that implementation.

3 First Phase: Process Design

3.1 Development The first phase of this project, which is described more extensively

in Reyner (2006), started in the Spring of 2005. Its goal was to correct an observed increase

in expediting and transfer costs for large components by coordinating the associated deci-

sion process across the relevant groups within Dell. The associated solution designed and

implemented later that year focused on monitors because they are very large contributors to

Dell’s supply transportation costs. It comprised two main components: The first was orga-

nizational, and involved the creation (and staffing) of a specific job definition named supply
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routing analyst, with the responsibility of gathering and analyzing all relevant information in

order to make and implement all supply routing decisions. The primary objective specified

for this new position consisted of reducing the re-positioning transportation costs incurred

by Dell, subject to acceptable levels of inventory availability at the various sites (Austin,

TX; Nashville, TN; Reno, NV; Winston-Salem, NC).

The second component was the development of a supporting spreadsheet-based informa-

tion acquisition and visualization tool, which became known as the Balance Tool. As seen

from the information subset displayed in Figure 2, this tool simultaneously displays all avail-

able demand forecasts and scheduled supply deliveries for each monitor type in each of the

relevant factories and warehouses over a rolling horizon of several weeks, with a planning pe-

riod of one day. The corresponding information sources include Dell’s carriers, who update

the scheduled supply deliveries on a daily basis, and Dell’s own forecasting group, which

provides a weekly update of all demand forecasts (for each monitor type in each location)

for every week over a forecasting horizon of several months; these weekly forecasts are then

divided equally between all working days of the corresponding week in order to obtain daily

forecasts. Combining that information with the current inventory on hand and backlog in

the various sites allows Dell to compute projected net inventory equivalent DSI (days of

supply in inventory) levels in all the relevant locations over this horizon, and highlight any

anticipated shortages. Specifically, the Balance Tool uses a color code to show different

categories of DSI levels on each day of the horizon in each facility; the color codes are red

(critical situation), yellow (should be monitored) and green (sufficient inventory)11. Based

on daily updates of the information displayed for each component and using special entry

cells, the supply routing analysts can then manually explore the implications of all possible

routing decisions. For example, a container scheduled to arrive in Austin in the later part

of the horizon could be diverted to Nashville and expedited by team truck, which the Bal-

ance Tool would reflect by removing that container from Austin’s supply line on its original

scheduled arrival date and adding it to that of Nashville on a closer date (determined by

the difference between the transportation times from Long Beach to Austin by rail and to

Nashville by team truck, respectively). The resulting new inventory and DSI levels in both

sites resulting from such a move would then be instantly displayed, showing for example the

11 The red, yellow and green colors from the original tool appear respectively as dark, medium
and light gray cell backgrounds on Figure 2.
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extent to which this action would help correct a projected shortage situation in Nashville

in the short term when Austin is projected to have excess inventory later in the horizon.

Finally, the length of the planning horizon was chosen so that it would always include any

containers located before the diversion cut-off point of 2-3 days before port, assuming the

longest possible ground transportation lead-time and then adding an additional time buffer.

Demand forecast (obtained by 
evenly splitting a weekly forecast 
between days of the week)

Scheduled supply deliveries

Forecasted DSI:
Green (light gray): > 7.5 DSI
Yellow (medium gray): 2 to 7.5 DSI
Red (dark gray): < 2 DSI

Timeline – day 0 is the present day, 
the top line indicates the number of 
days from today

The starting inventory on day 0 is the inventory currently available in each 
location. On subsequent days, it is a forecast of starting inventory.

User entry row for planned 
transfers and diversions. In 
this example, a transfer of 
2000 units from Reno to 
Nashville is considered.

Each group of rows refers to a location (Winston-Salem is not shown here due to space constraints).

Figure 2: Visualization of Dynamic Routing Decisions with the Balance Tool (simplified ver-
sion, adapted from Reyner 2006)

3.2 Implementation The creation of the supply routing analyst position was welcomed

by the various groups previously involved in making these decisions, in part because many

of those involved regarded supply routing as a non-explicit yet time-consuming part of their

work assignment. The Balance Tool was implemented with the spreadsheet program Mi-

crosoft Excel, augmented with Visual Basic macros that automated certain functions such

as retrieval of external data as well as creation and deletion of parts.

An important implementation decision in this phase was to organize a live pilot of the

newly designed decision process for a selected subset of components (monitors) relatively

early on (September 2005). This pilot uncovered many improvement opportunities for the
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Balance Tool, forced a grounded reflection on how supply routing decisions should be made

in specific situations, and helped quantify the impact of the new process, as we discuss next.

3.3 Impact The financial impact of this first phase was estimated using a fairly coarse

methodology. Specifically, managers reviewed all the decisions made over a limited period of

time during the live pilot described above, along with the associated input data. In each case,

they determined which alternative decisions would likely have been made under the previous

process, along with their associated re-positioning transportation costs. Because the part

shortages were generally perceived to have decreased during the pilot, the re-positioning

cost savings calculated in this way were considered meaningful. Although this methodology

involves many subjective and arguably biased inputs, its results were still deemed valid by

Dell’s managers and led to their conclusion that the new process reduced re-positioning

transportation costs by about 40% (Reyner 2006). We suspect that this quantitative impact

estimation was easily accepted because it had a clear qualitative explanation. Specifically, the

new process generated comparatively more rail diversions (which only involve a small bill of

lading splitting fee) and fewer transfers and less expediting (which cost considerably more).

Indeed, rail diversions had been a neglected lever because they require more information

than transfers and their organizational ownership had previously been unclear. Shortly after

this live pilot was completed in January 2006, Dell started using the new process described

above continuously for all its monitors (about two dozen different part types).

4 Second Phase: Optimization

In spite of its positive impact, the first project phase also revealed the following improve-

ment opportunities:

— Relying exclusively on the analysts’ judgement proved problematic from a time efficiency

standpoint, because of the high number of parts to manage, the very high number of

potential decisions involved for each part, the large amount of relevant information and the

high decision-making frequency: while forecasts can change daily, for example whenever

a large customer order is received, the analysts were only able to review and change the

status of any particular part once a week on average;

— From a resiliency standpoint, it also seemed problematic for Dell to depend entirely on a

handful of individuals for such frequent and critical control decisions;

9



— Finally, the Balance Tool only characterized expected shortages very coarsely through

the net inventory levels displayed and the color code described above, and did not pro-

vide an estimate of the re-positioning transportation costs associated with the decisions

considered. It was thus suspected that even an experienced analyst could easily make

sub-optimal decisions in this setting.

These observations motivated the second phase of this project, which started in September

2006. Its objective was to develop and implement an optimization-based decision support

system to assist the supply routing analysts. It was decided upfront that the structure

of this optimization model would support the decision process established in the previous

phase. Specifically, the model envisioned would need to generate recommendations on a

rolling horizon basis and for each monitor considered independently, consistent with the

supply routing analysts’ practice when using the Balance Tool. We note here that managing

each monitor type independently of all the other components, which greatly simplifies the

problem, is only made possible by the shipments of monitors in full containers of a single

part type. Since this does constitute a limitation of our approach, we return to this issue in

§5. Another important design consideration stemmed from the envisioned execution of the

model on a rolling horizon basis. Specifically, since the model was to consider a time horizon

of several weeks and generate in each run a set of recommended supply routing decisions

for each part over that period, some of these decisions could possibly be only enacted on

some distant day in the future. In this context, we defined the concept of time sensitivity for

each individual decision as the number of days before the opportunity to enact that decision

would disappear. For example, a recommended diversion decision affecting a container on

a vessel five days away from Long Beach would have a time sensitivity of three days if the

diversion cutoff point for this part was two days before port. This would enable the analysts

to only enact the decisions with a time criticality lower than a set threshold (for example

the number of days before the next anticipated run on that part), with the overall goal of

waiting for as long as possible for the most recent data before committing to any decision.

4.1 Development An important requirement for this optimization model was to capture

the main trade-off involved in Dell’s supply routing decisions, namely the tension between

re-positioning transportation costs on one hand and shortage costs on the other hand (note

that inventory holding costs were ignored, for reasons that will be explained in §4.1.2). While
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expressing the re-positioning costs incurred as a function of the routing decisions considered

is relatively straightforward as will be seen shortly, the critical modeling challenge was to

quantify the benefits associated with these decisions, that is the overall change of expected

shortage costs in all of the sites where the projected inventory levels were affected. Our

approach involved the formulation of an approximate expected shortage function depending

on these inventory levels and the exogenous variability of demand forecasts for each location.

Mathematical details for this function and its approximation are presented in §4.1.1, and

the resulting MIP embedding this approximate expected shortage cost function is described

in §4.1.2.

4.1.1 Expected Shortage Costs We adopted a standard linear structure B
P

t∈T ,c∈L vtc

for the total expected shortage costs predicted in all facilities c ∈ L , {Austin, Nashville,
Reno, Winston-Salem} for a specific part over the rolling horizon t ∈ T , {1, .., T} con-
sidered, where B is a unit daily shortage cost rate and vtc is the expected shortage level

for future day t in location c. In practice, shortage costs stem from a variety of factors in-

cluding: order cancellations by impatient customers; expedited shipping to customers with

late orders; substitutions of more expensive components for the same price; lost profit from

customers turned away by long posted lead-times; price concessions on future orders... We

refer the reader to Kapuscinski et al. (2004) and Dhalla (2008) for more comprehensive and

detailed descriptions. We discuss the constant B later in §4.2 and develop next an expression

for vtc as a function of the supply routing decisions considered and the available inventory

and demand data.

Our first step consisted of characterizing the distribution of actual demand relative to the

forecast available for that quantity at the time when routing decisions need to be made, as

this information was not available to us at the outset. This empirical study of the cumulative

forecast error (see §A.1 in the Online Appendix) both suggested the structure and provided

the standard deviation input data σtc for the stochastic model

tX
k=1

dkc ∼ N(
tX

k=1

fkc, σtc), (1)

where: dtc is the random variable representing demand on day t for a given part in a given

location c ∈ {Austin, Nashville, Reno, Winston-Salem}, as estimated at the beginning of the
current day (always indexed by 1 in our rolling horizon model), so that d̄tc ,

Pt
k=1 dkc is the
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cumulative demand for the next t days; N(f, σ) refers to a normal distribution with mean f

and standard deviation σ; ftc is the (deterministic) forecast of the same quantity generated

by Dell and provided to the supply-chain analyst on day 1, so that f̄tc ,
Pt

k=1 fkc is the

corresponding cumulative forecast of demand up to day t; and finally σtc is the standard

deviation of the forecasting error d̄tc− f̄tc. Note that the forecasting error study mentioned

above did identify some systematic biases. These biases were ignored however, since they

were relatively small and convincingly explained by the forecasting team. The notations ftc

and dtc , E[dtc] will thus be used interchangeably from now on.

The inventory dynamics over the rolling horizon considered are described in our model

by the following balance equation, which assumes that any unmet demand is backlogged:

I(t+1)c = I1c +
tX

k=1

skc − d̄tc for t ≥ 1, (2)

where: Itc is the (random) net inventory level available at the beginning of day t in location

c, as predicted at the beginning of day 1 (so that I1c = I1c is deterministic input data),

and stc is the net result of deliveries into and transfers out of location c on day t (which

is directly affected by the supply routing decisions we seek to determine). Note that stc

is assumed to be deterministic in our model, which ignores supply uncertainty. This is

justified by the fact that in Dell’s setting, supply uncertainty is small relative to demand

uncertainty given the (daily) time granularity considered12. As a result, the ranges of lead-

times appearing in Figure 1 are essentially driven by the differences across destinations, as

opposed to any potential unpredictable variability affecting the lead-time associated with

a given transportation mode on a specific leg. Also, that assumption does not affect the

operational applicability of the model output, as will be seen further.

Next, we approximate the shortage level vtc for day t in location c predicted at the

beginning of day 1 as

vtc , (Itc − dtc)− . (3)

Note that the expression Itc−dtc for the net inventory level during day t that appears in (3)
corresponds to the most pessimistic assumption for the daily schedule of supply and demand.

That is, demand is assumed to occur entirely at the very beginning, and supply deliveries

12 One referee speculates that Dell will at some point discover that it has more lead-time variability
than it at first thought, and will consider switching back to having closer suppliers, in response
to the costs induced by that uncertainty.
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at the very end, of day t. This approach was followed because the expressions derived from

other assumptions (say continuous supply and demand processes) are less tractable, detailed

hourly demand and supply data were not easily accessible, and because of Dell’s expressed

desire to err on the conservative side when predicting shortages13. Substituting (2) and (1)

in (3) yields

vtc ∼ [N(Itc − ftc, σtc)]
− for t ≥ 1, (4)

which characterizes the distribution of these shortages in terms of decision variables and

input data14. The expectation of the random variable in (4) is thus given by the standard

normal loss function

vtc = σtcφ

µ
ftc − Itc
σtc

¶
+ (ftc − Itc)Φ

µ
ftc − Itc

σtc

¶
, (5)

where φ and Φ are the standard normal p.d.f. and c.d.f., respectively.

Our final goal is to embed the function of ftc − Itc defined by (5) in the objective of a

linear integer programming minimization model. Because this function is convex, we can use

the following standard approximation method: for each location c and time period t, we add

linear constraints requiring that variable vtc exceed a number of supporting tangents to the

function defined by the right-hand side of (5), which amounts to approximating that function

by the upper envelope of a finite number of its tangents. The resulting optimization model

thus requires a pre-computation of the slopes atcp and intercepts btcp of a set of tangents

(indexed by p) to the expected shortage function (5) defined for each location c and time

period t. To this end, we first determine a relevant approximation range [ILBtc , IUBtc ] for Itc that

only depends on input data. A tight upper bound IUBtc follows from the observation that the

maximum expected net inventory level in location c at the beginning of time t is obtained by

instantly transferring to c all inventory from other facilities, and re-routing towards c with

the fastest ground transportation mode (team truck) all "divertable" containers that can

arrive at c by time t. Likewise, a tight lower bound ILBtc corresponds to the situation where

all inventory available in c is transferred immediately to other facilities, and all containers

initially bound to c are diverted away while demand continues to deplete this facility15.

13 The alternative approximation vtc , (Itc + stc)
− is equally tractable and is the most optimistic in the sense just

defined. It thus constitutes a bound which allowed us to verify that the assumption reflected by
(3) was relatively immaterial.
14 Random variables and their distributions are used interchangeably in (4), as no related ambiguity arises here.
15 The equations for ILBtc and IUBtc in terms of input data are straightforward and omitted here.
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Finally, we calculate iteratively a discrete set of sampling points Ptc ⊂ [ILBtc , IUBtc ] indexed

by p, and the corresponding slopes atcp and intercepts btcp of the tangents to the r.h.s. of

(5) in those points, using numerical implementations of φ and Φ along with the maximum

error rule method described in Rote (1992)16. In practice, we found that with this method

calculating only four tangents for each time and location yields a very high accuracy.

4.1.2 Optimization Model Formulation The optimization model we developed to

generate supply routing recommendations over a rolling horizon for each monitor type con-

sidered independently is the following MIP:

Input Data:

Time and Location The rolling horizon considered is T , {1, .., T}, and the set of rele-
vant locations is L , {Austin, Nashville, Reno, Winston-Salem}.
Part Characteristics For the part considered, the maximum number of parts per truck

is denoted Q and W refers to the number of parts per pallet.

Supply Pipeline Incoming supply consists of a set C of containers indexed by i, each

containing a quantity of parts qi with a current destination ci ∈ L and an expected arrival
date Ai ∈ T . Containers that are still divertable (typically all containers still on the ocean
and at least 2 or 3 days away from port) form a subset CRT⊂ C, while the containers in
the complement set CNRT , C\CRT may no longer be re-routed before they arrive at their
destination17. The expected arrival date at the port (Long Beach, CA) of container i in CRT

is denoted ALB
i ∈ T . Often containers travel as a group of multiple containers all sharing the

same bill of lading and therefore the same destination, transportation mode and expected

arrival time. Containers with the same bill of lading may be split however, provided they

belong to CRT . In this case, the carrier creates as many new bills of lading as the new

resulting number of container groups traveling together, incurring an administrative fee of

cBL times the number of new bills of lading created. Bills of lading are indexed by j ∈ J ,
and the subset of containers sharing each bill of lading j is denoted Cj, so that C = ∪j∈J Cj.

Current Net Inventory The sum of on-hand inventory currently available (that is at the

16 This algorithm initiates with Ptc = {ILBtc , IUBtc }. In each iteraction, tangents are constructed for each new point
in Ptc, and the x-axis values of the intersection of tangents corresponding to adjacent points in
Ptc are added as new points. The algorithm terminates when the maximum difference between
the y-axis values of these intersections and the corresponding function values reaches a specified upper bound.
17 The superscripts RT and NRT stand for routable and non-routable, respectively.
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beginning of day 1 of the rolling horizon) minus backorders in each location c ∈ L is denoted
I1c.

Demand Forecast The forecast of demand in location c ∈ L during day t is denoted ftc,

while the cumulative forecast of demand from day 1 to day t (included) is denoted f̄tc.

Container Ground Transportation Modes Ground transportationmodes between the

port and Dell’s facilities are indexed bym ∈MRT , {rail,single truck,team truck} and char-
acterized for each destination c ∈ L by a cost per container cRTcm and an average lead-time

LRT
cm (expressed in days). Note that the re-positioning transportation costs incurred when

diverting a container i to a destination c with transportation mode m are cRTcm − cRTcirail in

addition to any bill of lading creation fee involved. That is, the embedded costs cRTcirail corre-

sponding to a shipment by rail to the original destination ci must be subtracted since they

are reimbursed by the original rail carrier to Dell when a container is diverted (see §1 for

definitions of transportation costs, and §4.2.2 for a discussion of related implementation is-

sues). Finally, the potential expected delivery date at location c of any divertable container

i ∈ CRT is ALB
i + LRT

cm .

Special Transfers Special transfers of inventory between two facilities c and c0 in L are
characterized by their expediting mode m ∈MSP , {single truck,team truck}, their cost
per truck cSPcc0m and their lead-time L

SP
cc0m.

Milk Run Transfers Milk run transfers of inventory from facility c to facility c0 are char-

acterized by their schedule of departures SMR
tcc0 (equal to 1 if a run from c to c0 is scheduled on

day t and 0 otherwise), their cost per pallet cMR
cc0 , the maximum number of pallets of a given

part allowed in each run R, and their lead-time LMR
cc0 . Note that the milk-run capacity limit

R is part-specific. Milk run carriers have a contractual obligation to provide transporta-

tion capacity up to a specified number of trucks on every given run; however that capacity

is common to many different parts. In order to avoid potential capacity allocation conflicts

between parts and incentives for each part manager to reserve some of that capacity be-

fore others, Dell has introduced these part-specific capacity limits, which are substantially

smaller than the total truck capacity available18.

Shortage Cost Parameters They include the unit daily shortage cost rate B as well as

18 These static part-specific capacity limits may not be optimal, and researching improved mechanisms with
dynamic, situation-specific allocation limits for example seems worthwhile. However, the current
practice is simple and relies on tools and processes that are readily available.
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each slope atcp and intercept btcpof the approximating tangents to the expected shortage cost

function indexed by p ∈ Ptc for each day t and location c. An associated upper bound for

the absolute value of the expected net inventory level at the beginning of day t in location

c is Mtc = max(|IUBtc |, |ILBtc |) (see §4.1.1).

Decision Variables:

Container Routing Binary variables yicm are set to 1 if container i ∈ CRT is routed from
the port to facility c using transportation mode m ∈MRT , and 0 otherwise. In addition,

binary variables zjcm take the value 1 if at least one container i ∈ Cj from bill of lading j is

routed to facility c using transportation mode m ∈MRT , and 0 otherwise.

Special Transfers Integer variables Xtcc0m represent the number of full trucks sent from

facility c to facility c0 on day t using expediting mode m ∈ MSP , binary variables xtcc0m

are set to 1 if a less-than-full truck is used between c and c0 on day t with mode m and 0

otherwise, and continuous variables wtcc0m ≤ Q represent the number of parts carried in that

truck19.

Milk Run Transfers Integer variables rtcc0 represent the number of pallets included in

the run from facility c to facility c0 on day t.

Inventory Variables Continuous variable Itc denotes the expected net inventory level at

the beginning of day t > 1 in location c, associated variables include its positive part I+tc and

negative part I−tc , and a binary indicator variable I
1
tc = 1{Itc≥0}.

Expected Shortages Continuous variables vtc approximate the predicted expected short-

ages during each day t in each location c (see §4.1.1).

19 The integrality of wtcc0m is immaterial in light of the quantities at stake here.
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Formulation:

Min
X

i∈CRT ,c,m∈MRT

(cRTcm − cRTcirail)yicm +
X
j∈J

cBL

⎛⎝ X
c,m∈MRT

zjcm − 1

⎞⎠
+

X
{t,c,c0,m∈MSP :c6=c0}

cSPcc0m (Xtcc0m + xtcc0m) +
X

{t,c,c0:c6=c0}

cMR
cc0 rtcc0 +B

X
t,c

vtc (6)

subject to:

Itc = I1c − f̄(t−1)c +
X

{i∈CNRT :ci=c,Ai≤t−1}

qi +
X

{(i,m)∈CRT×MRT :ALB
i +LRTcm≤t−1}

qiyicm

+
X

{(τ,c0,m)∈T ×L×MSP :c0 6=c,τ+LSP
c0cm≤t−1}

(QXτc0cm + wτc0cm) +
X

{(τ,c0)∈T ×L:c0 6=c,τ+LMR
c0c ≤t−1}

Wrτc0c

−
X

{(τ,c0,m)∈T ×L×MSP :c0 6=c,τ≤t−1}

(QXτcc0m + wτcc0m)−
X

{(τ,c0)∈T ×L:c0 6=c,τ≤t−1}

Wrτcc0 (7)

X
m∈MRT ,c

yicm = 1 ∀i ∈ CRT (8)

zjcm ≥ yicm ∀j ∈ J , c ∈ L,m ∈MRT , i ∈ Cj (9)

Itc = I+tc − I−tc ∀t ∈ T , c ∈ L (10)

I+tc ≤MtcI
1
tc ∀t ∈ T , c ∈ L (11)

I−tc ≤Mtc(1− I1tc) ∀t ∈ T , c ∈ L (12)X
{(c0,m)∈T ×L×MSP :c0 6=c}

(QXtcc0m + wtcc0m) +
X

{c0∈L:c0 6=c}

Wrtcc0 ≤ I+tc ∀t ∈ T , c ∈ L (13)

wtcc0m ≤ Qxtcc0m ∀t ∈ T , (c, c0) ∈ L2,m ∈MSP (14)

rtcc0 ≤ RSMR
tcc0 ∀t ∈ T , (c, c0) ∈ L2 (15)

vtc ≥ atcp(ftl − Itc) + btcp ∀t ∈ T , c ∈ L, p ∈ Ptc (16)

yicm, zjcm, xtcc0m, I
1
tc ∈ {0, 1} (17)

Xtcc0m, rtcc0 ∈ N (18)

wtcc0m, Itc, I
+
tc , I

−
tc ≥ 0 (19)

The objective (6) is the sum of all re-positioning transportation costs associated with the

decisions considered, including container diversions (first term), bill of lading fees (second

term), special trucks (third term) and milk runs (fourth term), along with the corresponding

expected shortage costs (last term). Note that our choice of minimizing total costs, as

opposed to say minimizing re-positioning costs subject to a service level constraint on total

expected shortages, is dictated by context. Specifically, Dell’s suppliers are responsible for
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all initial shipment decisions (see §1), which are thus exogenous to the routing problem

considered. As a result, such a service level constraint could lead to infeasibility problems.

Also, (6) does not account for any inventory costs that could arise from excessive inventory

in a given location. While it would be straightforward to add a term summing the on-

hand inventory variables I+tc multiplied by an inventory holding cost rate, it turns out that

the relevant costs associated with excessive inventory mostly stem here from the additional

storage required in the warehouses adjacent to its factories when the overall amount of

inventory across all parts exceeds a threshold. While the inventory holding costs incurred

by Dell’s suppliers in those warehouses may in turn affect Dell in important ways, these

primarily depend on the overall quantity of inventory shipped (as opposed to the allocation

of this inventory across sites), which is exogenous. In light of these considerations and

because the inventory storage costs incurred historically represent only a very small fraction

of the re-positioning costs, it was decided to leave them out of the optimization model.

Constraints (7) are inventory balance equations defining the relationship between the ex-

pected net inventory variables Itc and the inventory currently available (I1c), the demand

forecasts (f̄(t−1)c), the pipeline of non-routable containers (
P

{i∈CNRT :ci=c,:Ai≤t−1} qi), and all

the supply routing decisions considered (all subsequent terms in the r.h.s.). Constraints (8)

ensure that every container is routed to exactly one destination through one transportation

mode. Constraints (9) ensure that the term
P

c,m zjcm − 1 appearing in the objective corre-
sponds to the number of new bills of lading created for the containers initially included in bill

of lading j as a result of the routing decisions. Constraints (10)-(12) ensure that variables

I+tc , I
−
tc and I1tc correspond to the positive part, negative part and non-negativity indicator

of variable Itc, respectively. Constraints (13) state that the total inventory transferred out

of any facility c during a given day t, either through special trucks or a milk run, may not

exceed the inventory on hand expected to be available in that facility at the beginning of

that day. Constraints (14) ensure both that the quantity of parts recommended for trans-

portation aboard a less-than-full special transfer truck does not exceed its capacity, and that

the binary variables signalling the existence of such trucks take values consistent with their

definition. Similarly, (15) enforces both the capacity and the scheduling restrictions of milk

runs between facilities. Note that the variables SMR
tcc0 are only introduced here to simplify

exposition, as for implementation purposes it is more computationally efficient to only de-
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fine variables rtcc0 over the set of indices (t, c, c0), such that there exists a run from c to c0 on

day t. Finally, constraints (16) together with the minimization objective ensure that in any

optimal solution (and any solution computed through a branch and bound MIP algorithm)

the variables vtc implement indeed the approximate expected shortage level during day t in

location c, which is described in §4.1.1.

4.2 Implementation We discuss in turn software development and computational

performance (§4.2.1), input data collection and shortage cost estimation (§4.2.2) and finally

pilot testing (§4.2.3).

4.2.1 Software Development and Computational Performance The software

implementation of the model described in §4.1 was performed using the development envi-

ronment OPL Studio linked with the optimization engine CPLEX 9.1, using Microsoft Excel

as a repository for the static input data (costs, lead-times, forecast accuracy parameters,

shortage costs) and also to visualize the output data. As illustrated in Figure 3, these out-

put data include not only the individual recommended decisions for all monitors, but also

their time sensitivity (see definition at the beginning of §4), and the associated visualiza-

tion interface can sort all decisions generated accordingly20. In addition, links were created

with some of Dell’s existing databases in order to automatically import the dynamic input

data (current inventory levels, forecasts, pipeline inventory) whenever required. Finally, the

pre-processing necessary to compute the piecewise linear approximations to the expected

shortage cost functions (see §4.1.1) was implemented using Microsoft Visual Basic21. The

creation of this software tool from complete specifications required approximately 6 months

of full-time work by an experienced developer familiar with optimization theory at an in-

troductory graduate course level. We refer the reader to §A.2 in the Online Appendix for a

more detailed description of this software (including additional screen copies of its interface),

and to Foreman (2008) for the source code.

Our next step was to evaluate the computational time associated with executing the

branch and bound algorithm on realistic problem instances. To this end, we gathered a large

20 Figure 3 notes: The entries "Red Ball" appearing in the 7th column of the table under the
heading "Mode" refer to the name of a carrier contracted by Dell to perform the milk runs between
sites described in §1, which has become synonymous with that transportation mode within Dell.
The different container quantities seen for part number FG645 stem from the use of both 20’ and 40’ containers.
21 The daily execution of this process at Dell for all monitors requires requires approximately 5
minutes for accessing and loading all the required data and performing the pre-processing necessary to create the
updated optimization problem instances, and another 5 minutes for computing solutions to these problems.
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Figure 3: Output Interface of the Model Software Implementation

and representative collection of input data sets on which we performed many optimization

runs. This demonstrated that while achieving optimality occasionally required more than an

hour for these problems, a suboptimality gap equivalent to a bill of lading creation fee (the

smallest individual transportation cost component appearing in the objective function (6))

was almost always achieved in a matter of seconds using standard search strategies. As a

result, the achievement of a suboptimality gap equal to that amount was set as our algorithm

termination criteria, and we did not further investigate the computational solution time for

this problem22.

4.2.2 Input Data Collection and Shortage Cost Estimation While the input data

requiring frequent updates (current inventory levels, forecasts, pipeline inventory) could

be readily obtained from Dell’s existing databases, it proved difficult to obtain accurate

rail transportation costs. It was known however that rail transportation costs are very

small relative to all other re-positioning costs involved, which justified the approximations

cRTcm − cRTcirail ≈ cRTcm for m ∈ MRT\{rail}, and cRTcrail − cRTcirail ≈ 0 in the first term of the

objective. After checking through sensitivity analysis that this would have little impact if

any on the decisions recommended, we thus decided to ignore rail transportation costs, i.e.

we set cRTcm = 0 for m ="rail".

The most important implementation hurdle faced at this point however was to determine

22 While we do not offer a full explanation for this good computational performance, we believe that it is due to the
relatively high structural similarity between our model and a time-space network formulation where
nodes represent every day and location, flows represent inventory, and arcs joining these nodes represent either
the passing of time or the routing decisions considered. Note that flow conservation constraints
in such a network formulation correspond exactly to our inventory balance equation (7).
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what value(s) should be used in practice for the unit shortage cost rate B introduced in

§4.1. As the model’s main input parameter for resolving the trade-off between shortage

and re-positioning transportation costs, it had a significant impact on the output: with a

low value of B most decisions generated could be container diversions with no expediting

and some milk-run transfers, while in the same situation a high value of B could generate

much expediting and many transfers through team trucks. However, no study previously

performed within Dell was available to guide the implementation team towards an objective

value for that parameter. The strategy decided then was two-fold: For the long term, an

in-depth study of Dell’s shortage costs was initiated, following a methodology similar to that

described by Oral et al. (1972) (see Dhalla 2008 for more details); in the short term, B was

to be treated as a control lever that the supply routing analyst could initially adjust, with

the goal of achieving through experimentation the same trade-off between transportation

costs and service level as the one that was implicitly associated with the decisions made

to date. While this short term strategy would not be necessarily optimal, it would still

hopefully generate consistent supply routing decisions in an efficient manner. In addition,

these decisions could still possibly produce substantial savings in re-positioning costs.

Unfortunately, this empirical determination of B proved more difficult than anticipated.

This is because the analyst would primarily evaluate the criticality of a given supply situ-

ation by inspecting on the Balance Tool the DSI levels projected in all of Dell’s facilities

over the planning horizon, and then relied on a subjective and empirical notion of the rela-

tionship between these DSI levels and the corresponding expected shortages — we refer the

reader to §4.3.2 and §4.3.3 for a more detailed discussion of the analyst’s heuristics and their

implications.

In the end, the implementation team resolved the question of what initial values for B

should be chosen through a study of historical data. We implemented the idea of constructing

management decision rules based on a regression of past managerial actions, which goes back

at least as far as Bowman (1963). More specifically, we constructed a database where each

entry corresponds to a set of routing decisions made by the analyst for a given part on

a given day, and includes both the associated re-positioning transportation costs as well

as the corresponding reduction in total expected shortages over the planning horizon, as

estimated by the model using all relevant input data available at the time. As Figure 4
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illustrates, we then performed a linear regression with forced zero intercept of the reduction

in expected shortages achieved (dependent variable) as a function of the re-positioning costs

incurred (independent variable) for each part over that dataset, which spanned several weeks

of decisions. An interesting aspect of these regressions is that their fit provided a measure
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Figure 4: Linear Regression of Expected Shortage Reductions Achieved Against Re-Routing
Transportation Costs Incurred

for the consistency of the analysts’ historical decisions with respect to the trade-off between

re-positioning costs and expected shortages, as determined through our stochastic evaluation

model. From this standpoint, it was found that these regressions yielded a better fit with

the data than was expected, as reflected by their relatively high R2 values (the value of .75

reported in Figure 4 is typical). Consequently, we decided to use their slopes as an (inverse)

estimate of the unit shortage cost rate B corresponding to the current implicit trade-off.

This regression study greatly facilitated the determination of what unit shortage cost rate

values should be used initially.

4.2.3 Pilot Test A key aspect of the implementation was to first go through a pilot period

of several weeks before the full deployment of the new tool, during which the model output

was to be systematically compared with the supply routing decisions generated manually
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with the Balance Tool. The two main objectives pursued in this pilot were: (i) improve the

software interface and functionalities with observations grounded in practice; and (ii) build

an archive of input and output data in order to evaluate the qualitative and quantitative

impact of the model. We now review the improvements that resulted from this pilot, and

discuss next in §4.3 our quantitative impact assessment.

A first improvement consisted of eliminating the "flipped expedites" initially observed as

part of the model output. This would arise when two sites in short supply were scheduled

to receive at some point in the future some containers loaded by a common supplier in the

same ship, and therefore with the same expected port arrival date. As illustrated in Figure 5,

the model could then recommend to use expedited ground transportation (e.g., team truck)

for all containers, but also switch the containers’ destinations. We found out however that,

for reasons not captured by the initial model (an expediting decision entails a bill of lading

creation expense independently of the chosen destination), both the carriers and the supply

routing analysts prefer the simpler communications associated with a small number of des-

tination changes, provided this does not impact re-positioning transportation costs. To cap-

ture this preference we introduced the additional objective function term
P

i∈CRT ,c∈L\{ci} yicm,

which essentially adds a dollar penalty for such destination changes. This modification in-

deed eliminated all such "flipped expedites" without affecting the re-positioning costs of

computed solutions, and thus improved the simplicity of the model output.

657FT
YRLF8463748
HCEF5798165

RYT549786
RYT549722

657FT

Figure 5: Example of Model Output with Swapped Container Destinations

Another feature addition was motivated by issues occasionally found with the demand

forecasts, in particular those covering the next 7 days of demand. Because these were only

updated once a week by the forecasting team using a fairly coarse method for disaggregating

weekly forecasts into daily forecasts (see §3.1), the supply routing analysts had designed

an alternative forecasting method based on a simple time-series analysis of the actual parts

consumption patterns observed in all relevant locations over the previous days. Whenever the

predictions for the next seven days of demand provided by that alternative method differed

substantially from those provided by the forecasting team, the analysts tended to substitute
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their own daily forecast for the upcoming week. From an organizational standpoint, we

believe that such forecast corrections are better done centrally by the forecasting team,

perhaps by making better use of relevant decentralized input data such as these recent

actual parts consumption patterns. However, we also recognized that some hurdles for

implementing such coordination between the forecasting and the procurement teams would

likely take time to overcome. This created a need for the software to support the ad-hoc

forecast correction practice just described. Specifically, we added a feature whereby the

historical consumption of each part in every site is stored in a database covering the past

ten days of actual demand, and any major discrepancy between a time series-based forecasts

constructed from that database and those provided by the forecasting team is automatically

highlighted. The analyst could then decide to automatically modify the model input data

f̄tc by replacing the original forecast for the next 7 days of the horizon with the alternative

one based on time series calculations.

Finally, an important implementation issue was to determine how large orders from retail-

ers distributing Dell’s computers should be captured by the model. That question arose in

a context of strategic change for Dell, which in 2007 started to develop distribution partner-

ships with large retailers in addition to its existing direct sales channels. As a result, large

customer orders for a single type of computer became more frequent. In particular, the sup-

ply routing analysts were starting to receive notes informing them of committed schedules of

large retailer deliveries for specific parts, which they were asked to plan for in addition to the

existing forecasts for direct channels. The approach followed to account for these special or-

ders consisted initially of simply adding these large customer orders to the existing forecasts.

That method however resulted in transfers and diversions that were sometimes thought to

be excessive. We determined that this resulted from a substantial overestimation of demand

variability (and therefore expected shortages) in those sites, as the original demand model

resulting from our forecast accuracy study evaluated the standard deviation of (cumulative)

demand σtc as a specified coefficient of variation times the corresponding forecast value f̄tc

(see §A.1 in the Online Appendix). This did not reflect the fact that these special retail

orders have a substantially lower associated uncertainty than the direct channel orders. In

order to address this issue, we created a feature to capture these special orders by modi-

fying the means of demand forecasts f̄tc correspondingly, but without affecting the forecast
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standard deviations σtc (see §4.1.1 and §A.1 in the Online Appendix). This substantially

reduced the seemingly unnecessary diversions and transfers.

4.3 Impact

4.3.1 Financial Impact Assessment The quantitative impact evaluation of the model

implementation described in §4.2 had to account for any effects on both re-positioning trans-

portation costs and part shortages — a reduction in re-positioning costs alone is easily ob-

tained by eliminating all ground expediting modes for example, and may thus not represent

an improvement if it is associated with an increase of shortages. Conversely, using only

team trucks for all ground transportation would likely reduce part shortages, but also sub-

stantially increase re-positioning costs. In order to construct an unambiguous measure of

overall impact, one method considered was to use the current implicit shortage cost rate B

(see §4.2) in order to estimate shortage costs, and then measure any changes in the sum of

re-positioning and shortage costs. Out of concern that the shortage cost rate was affected

by subjective factors, Dell executives suggested that it would be desirable to not rely on its

inferred value for impact evaluation purposes.

For this reason, we followed an alternative methodology consisting of computing a poste-

riori the reduction of re-positioning transportation costs achieved by the optimization model

relative to the legacy process, under the additional constraint that its output should result

in shortages no higher than that achieved historically. We note that the underlying idea of

constraining for comparison purposes a subset of performance dimensions for which the cost

coefficients are hard to estimate in practice (e.g., backlog and ordering cost) has already

been used by previous authors (e.g., Hopp et al. 1997). More specifically, our assessment

study is based on a representative group of monitors K accounting for approximately half

of total monitor sales over a period of 14 weeks in 2007 that preceded the implementation

of the optimization-based process. We constructed a dataset including every correspond-

ing individual routing decision made by the analysts using the existing manual process and

the Balance Tool described in §3, along with all the corresponding input data (inventory,

forecasts, supply line) available at the time when these decisions were made. From that

dataset, we were able to construct an instance of the optimization problem (6)-(19) for every

week that the analysts made a set of routing decisions for each monitor k within that group.

Note that the set of historical routing decisions recorded each week along with their corre-
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sponding expected shortage variables23 v̂ktc (and associated secondary variables) constitute

a feasible solution to that problem instance, with re-positioning transportation cost Ĉk and

total objective value Ĉk+B
P

t,c v̂
k
tc. Our impact assessment was then based on the solution

to the modified optimization problem obtained by minimizing only the re-positioning trans-

portation cost components of (6) subject to the previous constraints (7)-(19) along with the

additional constraint that
P

t,c v
k
tc ≤

P
t,c v̂

k
tc. Denoting by Ck the optimal value of the modi-

fied objective (i.e. the lowest re-positioning transportation costs achievable when allowing no

more expected shortages than achieved historically), Figure 6 contains a plot of the weekly

re-positioning transportation costs
P

k∈K Ĉk incurred historically for all these parts as well

as data labels indicating the corresponding relative total reduction k∈K Ĉk−Ck
k∈K Ĉk

achieved by

the optimization model.
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Figure 6: Weekly Re-Positioning Transportation Costs Incurred and Relative Reduction
Achieved by the Optimization Model for Six Monitors from February 26 to June 1, 2007

When summed over all 14 weeks of the data collection period defined above, the cumula-

tive re-positioning transportation cost savings associated with these optimization model runs

represent approximately 46% of the total incurred historically, which provides an aggregate

measure for the impact of this implementation. However, these relative savings seem to
23 The hat symbol used in v̂ktc and Ĉk emphasizes that these notations refer to the historical routing
solution implemented by the analyst and its objective value.
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depend on the overall scarcity of supply, which is driven by the total quantities of compo-

nents shipped by suppliers relative to demand and is thus exogenous to the routing model

considered here. This can be seen from Figure 6, where the average weekly transportation

costs plotted increase substantially in the second half of the data collection period (April

16 — June 1) compared to its first half (February 26 — April 13). This increase corresponds

to an industry-wide shortage of glass substrates and color filters that began to impact the

deliveries of flat panel monitors by Dell’s suppliers in the middle of April that year (Uno

2008), and in turn resulted in additional re-positioning costs (in particular expediting). This

affected the corresponding relative re-positioning transportation cost savings, which can be

evaluated independently for the first and second halves of the data collection period at 38%

and 48% respectively. These observations suggest that the lower of these last two numbers

constitutes a better estimation for the relative re-positioning transportation cost savings

attributable to the optimization model during normal periods characterized by appropriate

overall supply quantities. It should be noted however that the relative benefits derived from

the optimization model seem to increase during severe shortage situations. Our explanation

of this observation is that under the legacy process, the analysts are typically required then

to execute a higher number of routing decisions every day, which leaves them less time for

analysis. More generally, we wanted to identify the main qualitative reasons explaining the

cost savings attributed to the optimization model. This led us to inspect the output of many

of the optimization runs we conducted a posteriori as described above, and compare them

with the historical supply routing decisions made by the analysts with the same input data.

Although we cannot provide an exhaustive description of these qualitative comparisons due

to space constraints, the two representative examples discussed next in §4.3.2 and §4.3.3

convey the main insights we obtained.

4.3.2 Qualitative Impact Assessment: First Example Figure 7 shows a disguised

and simplified but qualitatively representative version of the Balance Tool interface for a

specific 15 inch monitor and a portion of the planning horizon as it appeared to the analyst

on March 13, 2007. It shows a situation with an apparent excess of inventory relative to

predicted demand in Nashville and Winston-Salem, and a shortage of inventory appearing in

Austin and Reno at some point over the horizon considered. The situation in Austin would

be particularly preoccupying at that point, as the shortages there are predicted to be higher
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and occur sooner than in Reno, which is only attributed a small demand forecast. Indeed,

the (disguised) total number of expected shortages across all sites and days in the (complete)

horizon predicted by our shortage model in the case where no action would be taken then

is 50,000 unit-days of shortages (i.e. a measurement corresponding for example to predicted

shortages of 2,500 units across all Dell sites on each day of a 20 day horizon). Note also that

no upcoming deliveries of containers by suppliers for that component are visible within the

planning horizon, leaving transfers as the only supply routing decisions available.

Figure 7: Disguised and Simplified Copy of the Balance Tool Interface for a 15 inch Monitor
on March 14, 2007

On that day, the analyst ordered a transfer of 5,000 parts from Winston-Salem to Austin

with three full special team trucks, for a (disguised) cost of $30,000. Winston-Salem was

chosen as the location providing inventory because it had the largest amount of inventory

available, both in absolute terms and when evaluated through DSI levels. Also, note that

Winston-Salem has a forecasted demand about 30% lower than that of Nashville over the

horizon considered, so that a transfer of a given quantity out of that facility results in

a larger decrease of its DSI level. Finally, observe that no inventory was transferred to

Reno, presumably because the potential corresponding transportation costs were not justified

by the minor and distant predicted shortages at stake in that location. These decisions

therefore suggest a good appreciation by the analyst of the overall directions, criticality and

time-sensitivity of inventory imbalances across sites, and indeed decreased by 59% the total
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expected shortages predicted by our stochastic model, down to about 20,450 unit-days of

shortages (note that because the overall supply quantity is exogenous, in many situations

such as this one routing decisions may not reduce expected shortages below a certain level).

In the same situation however, the optimization model recommended two regular truck

transfers of 1,665 parts each (this quantity corresponds to a full truckload for that part)

from Nashville and Winston-Salem respectively, along with a schedule of subsequent milk

run transfers from Nashville to Austin containing each the maximum number of parts allowed

— this solution is illustrated by Figure 8, which also shows the impact of these decisions on

the predicted inventory and DSI levels. By construction, that solution achieved the same

total expected shortages as the analyst’s, however its total re-positioning transportation

cost amounts to $20,010, which represents a 33% reduction relative to the cost incurred

historically. Remarkably, the total quantity of inventory transferred to Austin according to

Milk RunTruck Milk Run Milk Run Milk Run Milk RunMilk Run

Truck

Figure 8: Routing Decisions Recommended by the Optimization Model for the Example Il-
lustrated by Figure 7

that solution (5,175) is very similar to that decided by the analyst, which is a by-product of

the additional constraint on expected shortages. However, it exploits the lower transfer cost

to Austin from Nashville than from Winston-Salem, and is immune to considerations about

the potential perceptions of high DSI levels in Winston-Salem — the reason here why the

model does not recommend all inventory to be transferred from Nashville is that this would

generate more expected shortages for that facility in the later part of the horizon, which is not
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shown in Figure 8. Another source of cost difference is the use of regular trucks as opposed

to team trucks, which results from the model’s calculation that the corresponding lead-

time difference of one day (delivery on March 15 instead of March 16) does not justify this

additional cost in light of the predicted inventory situation in Austin over these couple of days

— as seen in Figure 7 Austin is still predicted to have 5.6 DSI on March 19 absent any transfer

decisions, also this time period (March 15-19) is situated very early in the rolling horizon.

As mentioned earlier, the analysts tend to infer the criticality of shortages based on DSI

levels alone, whereas the model also takes into account whether that level is predicted early

or late in the planning horizon, which affects the variability of the corresponding cumulative

demand forecast, and therefore the estimation of expected shortages. As a result, for a given

DSI level the analysts tend to overestimate expected shortages relative to the model in the

early part of the horizon, and underestimate them in the more distant part. Finally, the

model solution also exploits the lower transportation costs associated with milk run transfers

(RB) than with special trucks, even though the capacity restrictions of milk run transfers

result in a higher number of individual transfer decisions. In addition, milk run transfers

for a given leg are only available on specific days, and therefore require the additional step

of checking their current weekly schedule. These last observations explain why the analysts,

who are subject to time pressure and human cognitive limitations, are unlikely to devise this

type of transportation plan, which is more cost effective but also more complex.

4.3.3 Qualitative Impact Assessment: Second Example Figure 9 shows a disguised

portion of the Balance Tool interface for a 20 inch monitor on the morning of April 17, 2007.

That initial situation is characterized by insufficient inventory in Nashville, with the other

facilities showing sufficient inventory levels that are initially comparable in terms of DSI.

Also, there are planned container arrivals in Reno on May 7 (960 parts), and in Nashville

on May 10 (3564 parts, not visible in Figure 9). Absent any routing decisions in that initial

situation, our stochastic model predicts a (disguised) total of 80,000 expected unit-days of

shortages over the complete rolling horizon.

On that day however, the analyst ordered an immediate transfer of 5000 parts from Austin

to Nashville using 4 team trucks, and a ground transportation expediting by team truck of all

3564 parts (3 containers) initially scheduled to arrive in Nashville on May 10. This advanced

the arrival date of these parts to April 30, and thus mitigated the predicted shortages in
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Figure 9: Disguised and Simplified Copy of the Balance Tool Interface for a 20 inch Monitor
on April 17, 2007

Nashville from April 30 to May 10. The (disguised) total re-positioning transportation cost

of these decisions was $71,400. The optimization model solution for the same situation

is illustrated by Figure 10, and consists of two immediate regular truck transfers of two

full trucks each (2,500 parts) from Austin and Winston-Salem to Nashville, two milk run

transfers from Austin to Nashville and a diversion to Nashville by rail of the 980 parts

initially scheduled to arrive in Reno on May 7 (which postponed their arrival date to May

14 because of the longer lead-time from California to Nashville). It achieves by construction

the same number of expected unit-days of shortages, but costs 53% less in transportation

than the manual solution implemented historically (or $33,450).

Observe that both the manual and the model solutions involve initial transfers to Nashville

of the same quantity of parts (5,000). However, the model does not use the more costly team

trucks for these transfers. Also, it spreads the origins of these transfers across two locations

(Austin and Winston-Salem), which saves many expected shortages in the later part of the

horizon in Austin: note that with only 2,875 parts withdrawn from Austin in the model’s

solution (against 5,000 for the manual one), the last day of the horizon portion shown in

Figure 10 (May 8) shows only 6.2 predicted DSI, with continued demand and no subsequent

container arrival in Austin in the time horizon beyond that — the situation in Austin from

then on is thus significantly worse with the analyst’s solution.

The recommendation of transfers from both Austin and Winston-Salem results from the

convexity of expected shortages as a function of the negative of the inventory level (see
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Milk Run

Rail Diversion, Delivery May 14

Truck

Milk RunTruck

Figure 10: Routing Decisions Recommended by the Optimization Model for the Example
Illustrated by Figure 9

discussion following (5)): from that property total expected shortages are lower when the

"pain" (that is low inventory levels) is shared across several locations rather than concen-

trated in one location only. Note also that, in contrast with the model’s decisions, the

expediting decision by the analyst does not affect the shortages in Nashville beyond May

10 (the original container arrival date), a distant time period with high cumulative demand

forecast variability. Finally, this example illustrates another important difference between

the analysts’ heuristic and the model output. Specifically, analysts often needed to quickly

evaluate the situation for many different parts and quickly determine whether any specific

one deserved some attention. When doing so, they tended to inspect the total number of

cells showing in red or yellow on each part’s Balance Tool for any day and location because

of a low predicted DSI level (see Figure 2), and use that number as an overall indicator of

criticality. By extension, they had come to also use that metric as a proxy for total expected

shortages when making routing decisions.

Indeed, the first reaction of an analyst with whom we shared the model solution shown in

Figure 10 was that it was worse than the one determined manually because it entails a larger

area of the Balance Tool showing in red. Because of the convexity property just discussed

however, that metric can in fact lead to an increase of total expected shortages, as is shown

by the simple example of two locations facing the same demand on a given day with a total

of 3 DSI available for both (allocating 1.5 DSI to each minimizes total expected shortages

but results in both location showing in red on the Balance Tool, whereas allocating all 3
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DSI to a single location only puts the other one in the red). Finally, we believe that the

performance differentials observed between the sensible but simple solutions generated by an

experienced analyst and the corresponding model recommendations illustrated in Figure 8

and 10 make it implausible that a simple near-optimal heuristic not relying on optimization

methods may be developed for this problem.

5 Conclusion

At the time of writing, the process and optimization model for supply routing described

in this paper have been used continuously by Dell for several quarters, with no plans for any

significant changes. There are still several important improvement opportunities associated

with this work however, all of which motivate ongoing or future research. A first path is the

implementation of unit shortage costs resulting from a rigorous evaluation of the main cost

components involved. The related study mentioned in §4.2 (Dhalla 2008) is now completed,

and has already been used to generate more objective estimates for the value of the unit

shortage cost rate B that should be used in optimization model runs. In particular, that

study has shown how B should depend not only on the part, but also the location considered

— a key factor is that one of the facilities in Dell’s network receives a larger proportion of

option orders (e.g., for monitors only), for which the cost consequences of delays are milder

than for complete system orders. That study also showed that in some cases our (standard)

assumption of a linear structure for shortage costs (see §4.1.1) was fairly coarse, in part

because the likelihood of order cancellation by a customer does not seem to increase linearly

with the number of days of delay relative to the promised delivery date. This motivates

ongoing efforts to develop and test a more realistic optimization model. Because of the likely

associated increases in complexity and data maintenance requirements however, it is not

clear yet that this work will ultimately affect Dell’s practice.

Another opportunity would be to capture the dependencies across different parts when

generating supply routing decisions. A first avenue would be to extend the current model

structure to components that, unlike monitors and chassis, are shipped in mixed containers

of several part types. While we did not focus on these "mixed" parts initially because they

account for less transportation costs, that extension may still generate substantial savings

over time. A more ambitious goal would be to take into account the inventory situation

of several components likely to be required by the same customer orders when determining
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supply routing (and more generally ordering) decisions for each. Interestingly, while the

academic literature discusses the potential benefits of this practice (see Song and Zipkin

2003), it does not seem to have impacted operations at Dell yet, in part because of concerns

linked to organizational incentives (e.g., two managers responsible for the supply of different

components both saving on expediting costs because of a simultaneous belief that the other

manager’s component will be short anyway). Finally, another opportunity is to relax the

assumption that demand in individual sites is exogenous, i.e. jointly optimize the allocation

of customer orders to manufacturing sites and inventory transfer decisions. The approach

followed in the present paper seems correct as a first approximation because Dell ships

directly to most of its customers. Therefore, the differences in (unit) outbound shipping

costs for complete systems across different manufacturing sites are often substantially larger

than the average (bulk) inbound transportation costs for individual components. In certain

situations however, for example when transfering customer orders to a different factory may

avoid some overtime, such joint optimization could prove profitable.

Despite all these limitations, the financial impact assessment presented earlier (the relative

cost reduction estimates of 40% and 38% discussed in §3.3 and §4.3 amount to a cumula-

tive reduction of re-positioning transportation costs for monitors by about 60% since the

beginning of this collaboration) suggest that the model described in the present paper is

already quite valuable for operational purposes. This is also supported by several recent

developments at Dell. Specifically, Dell has committed some resources to implement that

model in its European manufacturing network, where the supply chain structure is more

complex because it involves several disembarkation ports where inventory can be held at

and re-routed from. In addition, Dell is funding an effort to develop and test an extension

of that model to compute recommended quantities, timing and transportation modes for all

component shipments between a global Asian warehouse and all of its manufacturing sites

worldwide (see Foreman 2008). Finally, we note that many features of the model defined in

§4 do not seem specific to Dell, so that part or all of it may also be useful in the future to

other firms facing supply routing and/or transportation mode decisions.

References

Axsäter, S., J. Marklund, and E. A. Silver (2002). Heuristic methods for centralized con-
trol of one-warehouse, n-retailer inventory systems. Manufacturing and Service Operations

34



Management 4 (1), 75—97.

Bowman, E. H. (1963). Consistency and optimality in managerial decision making. Man-
agement Science 9 (2), 310—321.

Caggiano, K. E., J. A. Muckstadt, and J. A. Rappold (2006). Integrated real-time capacity
and inventory allocation for reparable service parts in a two-echelon supply system. Manu-
facturing and Service Operations Management 8 (3), 292—319.

Chand, S., V. N. Hsu, and S. Sethi (2002). Forecast, solution, and rolling horizons in
operations management problems: A classified bibliography. Manufacturing and Service
Operations Management 4(1), 25—43.

Dhalla, N. (2008). Evaluating shortage costs in a dynamic environment. Master’s thesis,
Massachusetts Institute of Technology.

Eppen, G. and L. Schrage (1981). Centralized ordering policies in a multi-warehouse sys-
tem with leadtimes and random demand. In L. Schwarz (Ed.), Multi Level Production /
Inventory Control Systems: Theory and Practice, pp. 51—69. North Holland, Amsterdam,
The Netherlands.

Foreman, J. (2008). Optimized supply routing at Dell under non-stationary demand. Mas-
ter’s thesis, Massachusetts Institute of Technology.

Hopp, W. J., M. L. Spearman, and R. Q. Zhang (1997). Easily implementable inventory
control policies. Operations Research 45 (3), 327—340.

Kapuscinski, R., R. Q. Zhang, P. Carbonneau, R. Moore, and B. Reeves (2004, May-June).
Inventory decisions in Dell’s supply chain. Interfaces 34 (3), 191—205.

Oral, M., M. S. Salvador, A. Reisman, and B. V. Dean (1972). On the evaluation of shortage
costs for inventory control of finished goods. Management Science 18(6), B344—B351.

Reyner, A. (2006). Multi-site inventory balancing in a global extended supply chain. Master’s
thesis, Massachusetts Institute of Technology.

Rote, G. (1992). The convergence rate of the sandwich algorithm for approximating convex
functions. Computing 48, 337—361.

Song, J.-S. and P. Zipkin (2003). Supply Chain Operations: Assemble-To-Order Systems,
Volume XXX of Handbooks in Operations Research and Management Science, Chapter 11.
North-Holland.

Tsay, A. (1999). The quantity flexibility contract and supplier-customer incentives. Man-
agement Science 45 (10), 1339—1358.

Uno, T. (2008, January). Semiannual TFT LCD Materials and Components Report. Austin,
TX: DisplaySearch, L.L.C.

35


