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Abstract: In order to achieve effective process control, fast, inexpensive, 
nondestructive and reliable nanometer scale feature measurements are 
extremely useful in high-volume nanomanufacturing. Among the possible 
techniques, optical scatterometry is relatively ideal due to its high 
throughput, low cost, and minimal sample damage. However, this technique 
is inherently limited by the illumination spot size of the instrument and the 
low efficiency in construction of a map of the sample over a wide area. 
Aiming at these issues, we introduce conventional imaging techniques to 
optical scatterometry and combine them with Mueller matrix ellipsometry 
based scatterometry, which is expected to be a powerful tool for the 
measurement of nanostructures in future high-volume nanomanufacturing, 
and propose to apply Mueller matrix imaging ellipsometry (MMIE) for 
nanostructure metrology. Two kinds of nanostructures were measured using 
an in-house developed Mueller matrix imaging ellipsometer in this work. 
The experimental results demonstrate that we can achieve Mueller matrix 
measurement and analysis for nanostructures with pixel-sized illumination 
spots by using MMIE. We can also efficiently construct parameter maps of 
the nanostructures over a wide area with pixel-sized lateral resolution by 
performing parallel ellipsometric analysis for all the pixels of interest. 
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OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (120.2130) 
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1. Introduction 

Nanomanufacturing is referred to as the manufacturing of products with feature dimensions at 
the nanometer scale. It is an essential bridge between the newest discoveries of fundamental 
nanoscience and real-world nanotechnology-enabled products. One critical issue to realize 
nanomanufacturing is the development of necessary instrumentation and metrology at the 
nanoscale, especially the fast, low-cost, and non-destructive metrology techniques that are 
suitable in high-volume nanomanufacturing. The currently available metrology tools, such as 
scanning electron microscopy (SEM), atomic force microscopy (AFM), or transmission 
electron microscopy (TEM), are mostly suitable for the exploratory nanoscale research while 
are not capable of meeting the metrology requirements in high-volume nanomanufacturing. In 
comparison, optics-based metrology tools have drawn more and more attention in 
semiconductor manufacturing because of their attractive merits, such as low cost, noncontact, 
non-destruction, and high throughput. As a non-imaging technique, optical scatterometry has 
been introduced for critical dimension (CD) and overlay metrology with great success for 
many years. 

The optical scatterometry involves an inverse diffraction problem solving process with the 
objective of finding a structural profile whose theoretical signature can best match the 
measured one [1]. Despite the great success for the CD and overlay metrology, conventional 
optical scatterometry, which is traditionally based on reflectometry and ellipsometry, is 
quickly reaching its limit and requires improvements for future process nodes with the ever-
decreasing in feature dimensions [2]. Compared with conventional optical scatterometry, 
which at most obtains two ellipsometric angles, Mueller matrix ellipsometry (MME), 
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sometimes also referred to as Mueller matrix polarimetry, can provide up to 16 quantities of a 
4 × 4 Mueller matrix in each measurement. Consequently, MME-based scatterometry can 
acquire much more useful information about the sample and can achieve better measurement 
sensitivity and accuracy [3–9], and is thereby expected to be a powerful tool for nanostructure 
metrology in the future high-volume nanomanufacturing. 

From the fundamental measurement mechanism, the above optical scatterometry 
techniques collect reflected light from the spot illuminated at the sample surface and deliver it 
to the detector system. The final reconstructed structural profiles are the averaged results over 
all structures confined in the illumination spot. In this sense, any sample structures smaller 
than the spot size will not be accurately discriminated. Particularly, when the sample is 
inhomogeneous, the above averaged analysis will lead to incorrect results. From another 
perspective, as the nanostructures on the chips are commonly aperiodic in reality, the 
scatterometric measurements are often made on special target gratings etched in scribe lines 
between the chips with an assumption that the dimensional characteristics of the target 
gratings are representative of those of the nanostructures themselves. With the continuous 
increase of integration scales of chips, the measurements would require much smaller targets 
than 50 μm × 50 μm gratings currently used in the scribe lines. In general, the size of the 
illumination spot should be smaller than that of the grating target and has a lower limit to 
cover at least several grating periods for the reflected fields to approach plane waves [10]. 
Smaller spot sizes are thereby required for accurate measurement of inhomogeneous samples 
as well as those small target gratings. Standard spot sizes are in the range from 3 to 1 mm in 
diameter, and microspot sizes are typically between 50 and 25 μm so far [11], depending on 
the spectral range of the measurement. Further smaller microspots will complicate the optical 
systems [12]. In addition, in order to construct a profile map of the sample, the optical 
scatterometry needs equipping a motorized stage and performs measurements spot-by-spot 
until enough data are collected. The final analysis efficiency and the lateral resolution of the 
constructed profile map are thus greatly limited. 

Considering the great potential of MME as well as the inherent issues in scatterometry 
techniques, we combine MME with imaging techniques and propose to apply Mueller matrix 
imaging ellipsometry (MMIE) for grating reconstruction. Naturally, MMIE has all the 
characteristics of both MME and imaging techniques. First, MMIE can acquire a 4 × 4 
imaging Mueller matrix in a single measurement. Each element of the imaging Mueller matrix 
is a two-dimensional image over the whole field of view, which allows for the direct 
visualization of the sample. According to the imaging Mueller matrix, we can intuitively 
choose the region of interest for further data analysis. Second, each pixel of the detector array 
in MMIE along with the front optical system is equivalent to a Mueller matrix ellipsometer in 
principle. Moreover, this equivalent Mueller matrix ellipsometer has a pixel-sized 
illumination spot, which is much smaller than the microspot in scatterometry techniques. In 
other word, a Mueller matrix imaging ellipsometer can be equivalently regarded as thousands 
of parallel-combined Mueller matrix ellipsometers with pixel-sized illumination spots. By 
applying MMIE, we can reconstruct grating structures by performing ellipsometric analysis 
for a single pixel of the detector array. We can also perform parallel ellipsometric analysis for 
multiple pixels of interest to construct a profile map of the sample over a wide area without 
scanning the sample stage. Consequently, the analysis efficiency and the lateral resolution of 
the constructed profile map will be greatly improved. To the best of our knowledge, except 
the characterization of film thickness uniformity [13–15], there is no reported study yet on the 
application of imaging ellipsometry techniques, especially MMIE, for nanostructure 
metrology. 

The remainder of this paper is organized as follows. Section 2 first introduces the principle 
and prototype of an in-house developed Mueller matrix imaging ellipsometer, and then 
introduces the grating samples measured by the instrument. Section 3 introduces the data 
analysis for grating reconstruction by MMIE, including the forward optical modeling, the 
inverse diffraction problem solving, as well as the measurement configuration optimization. 
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Section 4 provides the corresponding experimental results to demonstrate the great potential 
of MMIE for nanostructure metrology. Finally, we draw some conclusions in Section 5. 

2. Experimental 

2.1 Instrumentation of MMIE 

A dual rotating-compensator configuration is adopted to measure the sample imaging Mueller 
matrices. As schematically shown in Fig. 1, an expanded parallel beam generated by a 
collimating lens illuminates a sample and the reflected light intensity is measured by a 
camera. The basic system layout of the dual rotating-compensator Mueller matrix imaging 
ellipsometer in order of light propagation is PCr1(ω1)SCr2(ω2)A, where P and A stand for the 
fixed polarizer and analyzer, Cr1 and Cr2 refer to the 1st and 2nd rotating compensators, and S 
stands for the sample. The 1st and 2nd compensators rotate synchronously at ω1 = 5ω and ω2 
= 3ω, where ω is the fundamental mechanical frequency. The Stokes vector Sout of the 
reflected light beam can be expressed as the following Mueller matrix product [8, 16] 

 out A 2 C2 2 2 S 1 C1 1 1 P in[ ( )][ ( ) ( ) ( )] [ ( ) ( ) ( )][ ( ) ( )] ,A C C C C P Pδ δ= − − −S M R R M R M R M R R M R S
 (1) 

where Mi (i = P, A, C1, C2, S) is the Mueller matrix associated with each optical element and 
the sample. R(α) is the Mueller rotation transformation matrix for rotation by the angle α, 
which can be the orientation angles of transmission axes of the polarizer and analyzer, P and 
A, and the orientation angles of fast axes of the 1st and 2nd rotating compensators, C1 and C2. 
Here, C1 = 5ωt + CS1 and C2 = 3ωt + CS2, and CS1 and CS2 represent the initial positions of the 
two compensators. δ1 and δ2 are the phase retardances of the 1st and 2nd compensators. The 
optimal values of P, A, CS1, CS2, δ1 and δ2 can be achieved using the optimization method 
presented in [17]. 

By multiplying the matrices in Eq. (1), we obtain the following expression for the 
irradiance at the detector (proportional to the first element of Sout) 

 

[ ]

[ ]

16

00 11 0 2 2 2 2
1

16

0 2 2 2 2
1

( ) cos(2 ) sin(2 )

1 cos(2 ) sin(2 ) ,

n n n n
n

n n n n
n

I t I M a a n t b n t

I n t n t

ω φ ω φ

α ω φ β ω φ

=

=

 = + − + − 
 

 = + − + − 
 




 (2) 

where I00 is the spectral response function and φ2n is the angular phase shift. I0 = I00M11a0, α2n 
= a2n/a0, and β2n = b2n/a0 are the d.c. and d.c.-normalized a.c. harmonic coefficients, 
respectively. The sample Mueller matrix elements Mij (i, j = 1, 2, 3, 4) are linear combinations 
of α2n and β2n. By performing Fourier analysis, the sample Mueller matrix elements associated 
with each pixel of the camera can be extracted from these harmonic coefficients [16]. 

According to the above measurement principle, we developed a prototype of the Mueller 
matrix imaging ellipsometer, as depicted in Fig. 1, based on the previously developed dual 
rotating-compensator Mueller matrix ellipsometer in our lab [8]. The light source is a laser-
driven light source with fiber-coupled output (LDLSTM Eq. (-99)FC, Energetiq, USA). The 
wavelength of the probe light is chosen by a monochromator (Omni-λ320, Zolix, China). The 
imaging lens is a matched achromatic doublet pair with an image magnification of 1:1 
(MAP10100100-A, Thorlabs, USA). The camera is a high speed and high sensitive sCMOS 
camera with a pixel size of 6.5 μm × 6.5 μm and a sustained frame rate of 100 fps (Zyla 5.5 
sCMOS, Andor, UK). The camera was mounted with a slight tilt as shown in Fig. 1 in order 
to obtain a clear image of the sample surface [13]. The two arms of the instrument and the 
sample stage can be rotated to change the incidence and azimuthal angles in experiments. 
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Fig. 1. Scheme (top) and prototype (bottom) of the dual rotating-compensator Mueller matrix 
imaging ellipsometer. L1 and L2, collimating lens and imaging lens; F, filter or 
monochromator; P and A, polarizer and analyzer; Cr1 and Cr2, the 1st and 2nd rotating 
compensator. 

2.2 Sample description 

Two kinds of grating structures were measured using the in-house developed Mueller matrix 
imaging ellipsometer. One is a Si grating structure that was fabricated by e-beam lithography 
followed by dry etching and was used as a template in nanoimprint lithography [7–9]. The Si 
grating structure is in a rectangular region with a size of about 750 μm × 1800 μm, which is 
located in the middle of the whole Si wafer and is also termed as the metrological box in the 
remainder of this paper. Figure 2(a) shows the SEM micrograph of the investigated Si grating 
template, which has a pitch of 800 nm. As shown in Fig. 2(a), the Si grating structure is 
characterized by top CD x1, grating height x2, and sidewall angle x3. In the data analysis, we 
fixed the grating pitch and just let the parameters x1~x3 vary. The optical constants of Si were 
fixed at values taken from [18]. Another sample is a typical etched trench nanostructure from 
the practical manufacturing process lines of flash memory storage cells. Flash memory is an 
electronic non-volatile computer storage medium that can be electrically erased 
reprogrammed. Due to the much lower cost than byte-programmable EEPROM (electrically 
erasable programmable read-only memory), flash memory has become the dominant memory 
type wherever a system requires a significant amount of non-volatile, solid state storage. The 
key of flash memory is its storage cells, which are usually comprised of some nanostructures. 
The investigated etched trench nanostructure was made on a 12 inch Si wafer that consists of 
thousands of dies and each die has a size of about 280 μm × 1200 μm. Figure 2(b) depicts the 
TEM micrograph of the etched trench nanostructure, which has a pitch of 154 nm. As shown 
in Fig. 2(b), the etched trench nanostructure has three grating layers. The Si3N4 grating layer 
is characterized by top CD x1, grating height x2, and bottom CD x3. The SiO2 grating layer has 
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the same sidewall angle with that of the Si3N4 grating layer and is characterized by top CD x3 
and grating height x4. The Si grating layer has a different sidewall angle to that of the former 
two grating layers and is characterized by grating height x5 and bottom CD x6. In the data 
analysis, we fixed the grating pitch and just let the parameters x1~x6 vary. The optical 
constants of Si3N4 and SiO2 were fixed at values taken from [19]. 

 

Fig. 2. SEM/TEM micrographs and geometric models of the Si grating template and etched 
trench nanostructure. 

3. Theory 

As schematically shown in Fig. 3, without loss of generality, we denote the structural 
parameters under measurement as a P-dimensional vector x = [x1, x2, …, xP]T, where x1, x2, 
…, xP can be the line width, line height, and sidewall angle of the grating sample, and the 
superscript “T” represents the transpose. The vector a = [λ, θ, φ]T that consists of the selected 
wavelengths λ, incidence angles θ, and azimuthal angles φ denotes the measurement 
configuration. Theoretical Mueller matrices of a grating sample can be calculated by rigorous 
coupled-wave analysis (RCWA) [20–22]. In RCWA, both the permittivity function and 
electromagnetic fields are expanded into Fourier series. Afterwards, the tangential field 
components are matched at boundaries between different layers, and thereby the boundary-
value problem is reduced to an algebraic eigenvalue problem. The overall reflection 
coefficients are calculated by solving this eigenvalue problem. According to the reflection 
coefficients, the 2 × 2 Jones matrix J(x, a) associated with the zeroth order reflected light of 
the grating sample, which connects the incoming Jones vector with the reflected Jones vector, 
can be formulated by 

 
rp ip ippp ps

sp ssrs is is

( , ) ,
E E Er r

r rE E E

      
= =      

      
J x a  (3) 

where Es,p refers to the electric field component perpendicular and parallel to the plane of 
incidence, respectively. In the absence of depolarization, the 4 × 4 Mueller matrix M(x, a) can 
be calculated from the Jones matrix J(x, a) by [23] 
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21 22 23 24 * 1

31 32 33 34
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( ) ( ) ( ) ,
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M M M M
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−
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 

M x,a A J x,a J x,a A  (4a) 

where the symbol ⊗  denotes the Kronecker product, J*(x, a) is the complex conjugate of 
J(x, a), and the matrix A is given by 
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In practice, the Mueller matrix M(x, a) is usually normalized to the (1, 1)th element M11, with 
the normalized Mueller matrix elements 11ij ijm M M= . 

The least-squares regression analysis is then performed for any pixel of the camera of 
MMIE, during which the fitting parameters are varied until the calculated and measured data 
match as close as possible [24]. Alternatively, the library search can also be performed, during 
which a Mueller matrix spectra library is generated offline prior to the experiment and then 
the library is searched to find the best match with the measured spectra [25]. In both of the 
above approaches, the solution of the fitting parameters is achieved by minimizing a weighted 
mean square error function defined by 

 

2meas calc4
, ,2

1 , 1 ,

( , )1
,

15 ( )

N
ij k ij k

r
k i j ij k

m m

N P m
χ

σ= =

 −
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

x a
 (5) 

where k indicates the k-th spectral point from the total number N, indices i and j show all the 
Mueller matrix elements except m11, and P is the total number of fitting parameters. meas

,ij km  

denotes the Mueller matrix elements collected by the selected pixel of the camera, and 
calc

, ( , )ij km x a  denotes the calculated Mueller matrix elements associated with the parameter 

vector x and the configuration vector a. Since the wavelengths λ are varied in a spectral range, 
here the vector a is only the combination of the fixed incidence and azimuthal angles, i.e., a = 
[θ, φ]T. ,( )ij kmσ  is the estimated standard deviation associated with ,ij km . The fitting 

procedure also delivers 95% confidence limits for the fitting parameters. The confidence 

limits are defined as 1.96 r iiCχ× × , where Cii is the ith diagonal element of the fitting 

parameter covariance matrix [26]. 

 

Fig. 3. Representation of polarized light incidence for a one-dimensional grating structure. 

Similar to MME, we can also obtain different measurement configurations by changing 
the combination of incidence and azimuthal angles in MMIE. As revealed in the previous 
literatures [3, 6], the solution accuracy of the fitting parameters sometimes varies greatly in 
different measurement configurations. To find the optimal configuration, with which more 
accurate measurement can be achieved, we can perform the following optimization by [6, 8] 
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where ( ) 1T T−+ =x x x xJ J J J     is the Moore-Penrose pseudo-inverse of a weighted Jacobian matrix 

xJ  whose elements are proportional to partial derivatives of the Mueller matrix spectra with 

respect to elements in the parameter vector x. aJ  is also a weighted Jacobian matrix but with 
elements proportional to partial derivatives of the Mueller matrix spectra with respect to 

elements in the configuration vector a = [θ, φ]T. The matrix +
x aJ J   is referred to as the 

configuration error propagating matrix, and +
x aJ J   describes the maximum gain factor in the 

propagation of the configuration error Δa. In the optimization process, the values of +
x aJ J   

are firstly scanned in the given parameter domain Ω for the maximum. Then all of the 

maxima of +
x aJ J   are scanned in the ranges of incidence and azimuthal angles (Θ and Φ) for 

the minimum. The combination of incidence and azimuthal angles corresponding to this 
minimum will be the final optimal measurement configuration. 

It is also worth pointing out that the developed technique for nanostructure metrology is 
essentially identical to typical optical scatterometry techniques, in which only the zeroth order 
diffracted light of a periodic nanostructure is collected. In this sense, for a one-dimensional 
grating structure as depicted in Fig. 3 at a classical mounting (azimuthal angle φ = 0°), the 
grating period Λ should satisfy that 

 ( ){ }sin arcsin sin ,NAλ θ θΛ < + −    (7) 

to avoid higher order diffracted light entering the camera. Here, NA represents the numerical 
aperture of the imaging lens shown in Fig. 1, which is less than 0.13 in our instrument. The 
above inequality is derived from the grating equation by assuming that the ambient of the 
grating is air. Since only the zeroth order diffracted light is collected, we actually cannot 
directly obtain the image of features of the grating structure. However, when the grating 
period Λ disobeys Eq. (7), higher order diffracted light will enter the camera and we will 
obtain the image of the grating structure. In this case, it is unnecessary to solve the inverse 
diffraction problem as described in Eq. (5) to extract the structural features, which can be 
directly obtained from the measured image by applying proper image reconstruction 
algorithms, as do in conventional image-based metrology techniques. It is therefore beyond 
the scope of this paper. In addition, to realize single-pixel ellipsometric analysis, the size of 
the illumination spot corresponding to a single pixel of the camera should cover several 
grating periods (at least 10 grating periods according to the simulation in [10]) for the 
diffracted electromagnetic fields to approach plane waves. 

4. Results and discussion 

The Si grating template and the etched trench nanostructure were then measured using the in-
house developed Mueller matrix imaging ellipsometer. In the experiment, the spectral range 
was varied from 400 to 700 nm with increments of 10 nm. In order to reduce the calculation 
time of the optimization procedure described in Eq. (6), we fixed the incidence angle θ at 60° 
and only varied the azimuthal angle φ in a range from 0 to 90° with increments of 5° to find 
the optimal azimuthal configuration. The optimal azimuthal angle for the Si grating template 
was found to be at φ = 0° and at φ = 60° for the etched trench nanostructure, respectively. The 
standard deviation associated with the Mueller matrix elements ,( )ij kmσ  in Eq. (5) was 

achieved based on the standard deviation of 30 repeat Mueller matrix measurements. 
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4.1 Measurement of the Si grating template 

As an example, Fig. 4 shows the measured imaging Mueller matrix at the wavelength of 500 
nm. In MMIE, since each pixel of the camera together with the optical system before the 
camera can be regarded as a Mueller matrix ellipsometer in principle, we can thereby obtain a 
Mueller matrix at each wavelength from each pixel of the camera. All the Mueller matrices 
associated with each pixel of the camera compose the final imaging Mueller matrix. At the 
azimuthal angle of φ = 0°, the two 2 × 2 off-diagonal blocks of the Mueller matrices of the Si 
grating template vanish, as can be observed from Fig. 4, and other matrix elements can be 
expressed in terms of conventional ellipsometric angles Ψ and Δ [23], i.e., m12 = m21 = 
−cos2Ψ, m34 = −m43 = sin2ΨsinΔ, and m33 = m44 = sin2ΨcosΔ (m11 = m22 = 1). According to 
Eq. (7), since only the zeroth order diffracted light of the Si grating is collected, we will not 
obtain the image of its structural features. However, due to the difference (or contrast) 
between the Mueller matrices associated with the Si substrate and the Si grating structure, we 
can readily distinguish the metrological box where the Si grating structure is from the 
measured imaging Mueller matrix given in Fig. 4. According to the imaging Mueller matrices, 
we can also intuitively choose the region or pixels of interest for further ellipsometric analysis 
to reconstruct the Si grating structure. 

 

Fig. 4. The measured imaging Mueller matrix of the Si grating template at the wavelength of 
500 nm. The middle rectangular region is the metrological box where the Si grating structure 
is, and other regions correspond to the Si substrate. The incidence and azimuthal angles are 
fixed at θ = 60° and φ = 0°, respectively. The imaging Mueller matrix elements are normalized 
to m11. 

Table 1 presents the comparison of fitting parameters obtained from the SEM and MMIE 
measurements. We also provide the results measured by the previously developed dual 
rotating-compensator Mueller matrix ellipsometer in our lab with the same measurement 
configuration to that of MMIE. The developed Mueller matrix ellipsometer has a beam 
diameter of about 200 μm after equipping the focusing lens [8]. It is worth pointing out that 
the MMIE-measured results in Table 1 were extracted from the Mueller matrix spectra 
collected by a single pixel located near the center of the metrological box. In other word, the 
MMIE-measured results are equivalent to those obtained by a Mueller matrix ellipsometer 
with a beam size of about 6.5 μm × 6.5 μm. According to Table 1, we can observe that the 
MMIE-measured results exhibit good agreement with those measured by SEM and MME. 
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Table 1. Comparison of fitting parameters of the Si grating template obtained from the 
MME, MMIE and SEM measurements. 

Parameter SEM MME MMIEa 

x1 [nm] 350 347.2 ± 0.77 348.9 ± 0.82 

x2 [nm] 472 469.1 ± 0.93 469.3 ± 1.01 

x3 [deg] 88 86.8 ± 0.10 87.1 ± 0.11 
aThe results were extracted from Mueller matrices collected by a single pixel of the 
camera 

 

Fig. 5. Comparison of the measured Mueller matrix spectra of the Si grating template that were 
collected by MME and by a single pixel of the camera of MMIE as well as the calculated best-
fit Mueller matrix spectra to the MMIE-measured Mueller matrix spectra. The wavelengths are 
varied from 400 to 700 nm with increments of 10 nm. The incidence and azimuthal angles are 
fixed at θ = 60° and φ = 0°, respectively. 

Figure 5 shows the comparison of Mueller matrix spectra measured by MME and MMIE 
at the corresponding pixel. As observed from Fig. 5, the MMIE-measured spectra exhibit 
good agreement with those measured by MME over most of the spectrum. The differences 
between them are mainly because that the MME- and MMIE-measured data are average 
values over different illumination locations and sizes. At an oblique incidence, an illumination 
spot with a radius of r will become an elliptic illumination spot with a minor axis 
(perpendicular to the plane of incidence) of r and a major axis (parallel to the plane of 
incidence) of cosr θ . Hence, the MME data are the average over an elliptic illumination spot 
with a minor axis of about 200 μm and a major axis of about 400 μm, while the MMIE data 
are the average over a rectangular illumination spot with size of about 13 μm × 6.5 μm. 
According to the spot size, we can further know that, as for the MMIE measurement, the 
illumination spot covers at least 16 grating periods, which is sufficient for the reflected fields 
to approach plane waves. We also calculated the depolarization index spectrum associated 

with the MMIE-measured data by T 2 2
11 11[Tr( ) ] 3DI M M= −MM , 0 ≤ DI ≤ 1 [27]. Here, 

Tr(⋅) represents the matrix trace and MT is the transposed matrix of M. DI = 0 and DI = 1 
correspond to a totally depolarizing and totally non-depolarizing Mueller matrix, respectively. 
The calculated depolarization indices exhibited that 1 0.025DI − <  over the whole spectral 

range of 400~700 nm. The depolarization effect can thereby be ignored in the regression 
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analysis. The calculated best-fit Mueller matrix spectra to the MMIE-measured spectra are 
presented in Fig. 5. A good match can be easily observed from Fig. 5, which yields of fitting 
error of 2 14.5rχ = . The results shown in Table 1 and Fig. 5 thus reveal the potential of MMIE 
in realizing pixel-sized Mueller matrix measurement and analysis for the grating sample. 

As shown in Fig. 4, we can obtain the Mueller matrices of the Si grating template over the 
whole field of view in a single measurement. Besides the ellipsometric analysis performed for 
a single pixel, we can also perform parallel ellipsometric analysis for all the pixels of interest 
located in the metrological box so as to obtain the variation of fitting parameters over a wide 
area. Figure 6 shows maps of the structural parameters x1~x3 of the Si grating template over 
the bottom half region of the metrological box. Since there are some contaminants on the 
surface of the Si grating sample outside this region, as can be observed from Fig. 4, we did 
not perform ellipsometric analysis for the entire metrological box. Additionally, to make sure 
that the illumination spot corresponding to each analyzed pixel covers identical and enough 
grating periods for the reflected fields to approach plane waves, we ignored 2 pixels located 
near the edges of the metrological box in the analysis, as presented in Fig. 6. The lateral 
resolution of Fig. 6 mainly depends on the pixel size of the camera, the image magnification 
of the imaging lens, and the incidence angle. For our instrument, the current lateral resolutions 
in the X and Y directions are about 13 μm and 6.5 μm, respectively. According to Fig. 6, we 
observe that there are several nanometer variations in the structural parameters of the Si 
grating template over the analyzed region. Nevertheless, the parameter maps exhibit relatively 
uniform variation and reasonable agreement with the corresponding result measured by SEM. 
In this sense, the result shown in Fig. 6 also explains why the fitting parameters measured by 
MME and MMIE presented in Table 1 show good agreement. Consequently, the result shown 
in Fig. 6 reveals the potential of MMIE in realizing parallel Mueller matrix measurement and 
analysis to construct maps of fitting parameters of grating structures over a wide area. 

 

Fig. 6. Maps of the structural parameters x1~x3 of the Si grating template over the bottom half 
region of the metrological box shown in Fig. 4. The grating period is along the X direction. 
Data were obtained by performing ellipsometric analysis for each pixel of the measured 
imaging Mueller matrices. The measurement configuration is identical to that given in Fig. 5. 

4.2 Measurement of the etched trench nanostructure 

The etched trench sample from practical manufacturing process lines was also measured using 
the Mueller matrix imaging ellipsometer. Like the analysis for the Si grating template, as for 
the etched trench sample, we will first try to reconstruct the etched trench nanostructure from 
the Mueller matrices collected by a single pixel of the camera. Then, we will try to obtain the 
map of fitting parameters of the etched trench nanostructure over a whole die by performing 
ellipsometric analysis for each pixel of the measured imaging Mueller matrices. 
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Table 2 presents the comparison of fitting parameters obtained from the TEM, MME and 
MMIE measurements. Here, the MMIE-measured results were extracted from the Mueller 
matrix spectra collected by a single pixel located near the center of a randomly selected die. 
According to Table 2, we can observe that the MMIE-measured results at the optimal 
azimuthal configuration of φ = 60° exhibit reasonable agreement with those measured by 
TEM and MME-measured results at the same configuration. We also compared the MMIE-
measured results at φ = 60° with those obtained at φ = 0°. φ = 0° is the usual azimuthal 
configuration adopted in conventional (imaging) ellipsometry, because in this configuration 
the corresponding Mueller matrix elements can be fully expressed in terms of classical 
ellipsometric angles Ψ and Δ, which can thereby be entirely collected by conventional 
(imaging) ellipsometry. As can be observed from Table 2, except the parameter x6, most of 
the other fitting parameters obtained at the optimal azimuthal configuration exhibit higher 
accuracy and moreover smaller uncertainties. Tables 3 and 4 present the parameter correlation 
coefficients obtained at φ = 0° and φ = 60°, respectively. The values of the parameter 
correlation coefficients fall between −1 and 1, with 0 meaning no correlation and with −1 and 
1 meaning perfect correlation. It is noted from Tables 3 and 4 that the fitting parameters 
obtained at φ = 60° also have relatively smaller correlation than those obtained at φ = 0°. The 
results shown in Tables 2 to 4 therefore demonstrate the superiority of MMIE over 
conventional imaging ellipsometry. 

Table 2. Comparison of fitting parameters of the etched trench nanostructure obtained 
from the MME, MMIE and TEM measurements. 

Parameter TEM 
MME 

(φ = 60°) 

MMIEa 

φ = 60° φ = 0° 

x1 [nm] 75.0 77.1 ± 0.88 74.5 ± 0.82 75.1 ± 3.53 

x2 [nm] 135.6 129.5 ± 2.44 133.8 ± 1.76 123.1 ± 10.63 

x3 [nm] 86.9 83.1 ± 0.88 81.9 ± 0.75 94.0 ± 0.73 

x4 [nm] 9.9 14.5 ± 2.45 12.9 ± 2.00 20.0. ± 6.17 

x5 [nm] 134.3 140.8 ± 1.18 140.4 ± 0.95 124.9 ± 1.21 

x6 [nm] 129.6 122.7 ± 0.64 121.7 ± 0.56 125.1 ± 0.60 
aThe results were extracted from Mueller matrices collected by a single pixel of the 
camera 

Table 3. Parameter correlation coefficient matrix of the etched trench nanostructure 
obtained from the MMIE measurement at φ = 0°. 

Parameter x1 x2 x3 x4 x5 x6 

x1 1      

x2 -0.899 1     

x3 0.442 -0.360 1    

x4 0.813 -0.981 0.322 1   

x5 0.224 -0.056 -0.549 -0.016 1  

x6 0.437 -0.536 -0.140 0.522 0.208 1 

Table 4. Parameter correlation coefficient matrix of the etched trench nanostructure 
obtained from the MMIE measurement at φ = 60°. 

Parameter x1 x2 x3 x4 x5 x6 

x1 1      

x2 0.200 1     

x3 0.570 0.351 1    

x4 -0.474 -0.944 -0.504 1   

x5 -0.082 -0.053 -0.450 0.100 1  

x6 -0.085 0.046 -0.239 -0.076 -0.229 1 
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Figure 7 shows the comparison of the measured Mueller matrix spectra collected by MME 
and by the corresponding pixel of MMIE at φ = 60°. The MMIE-measured data exhibit 
reasonable agreement with those measured by MME. The differences between them as 
indicated in Fig. 7 are mainly due to the different measurement locations. We calculated the 
depolarization index spectrum associated with the MMIE-measured data. It was found that the 
calculated depolarization indices showed 1 0.04DI − <  over the whole spectral range of 

400~700 nm. Hence, the depolarization effect can also be ignored in the regression analysis. 
Figure 7 presents the calculated best-fit Mueller matrix spectra to the MMIE-measured 
spectra. A good match can be easily observed from Fig. 7, which yields of fitting error of 

2 11.7rχ = . 

 

Fig. 7. Comparison of the measured Mueller matrix spectra of the etched trench nanostructure 
that were collected by MME and by a single pixel of the camera of MMIE as well as the 
calculated best-fit Mueller matrix spectra to the MMIE-measured Mueller matrix spectra. The 
wavelengths are varied from 400 to 700 nm with increments of 10 nm. The incidence and 
azimuthal angles are fixed at θ = 60° and φ = 60°, respectively. 

We further performed parallel ellipsometric analysis at the optimal azimuthal 
configuration for all the pixels located in a randomly selected die to obtain the variation of 
fitting parameters over an entire die. Figure 8 presents maps of the structural parameters x1~x6 
of the etched trench nanostructure over the selected die. When performing ellipsometric 
analysis, 2 pixels located near the edges of the die were ignored to make sure that the 
illumination spot corresponding to each analyzed pixel covers identical and enough grating 
periods (the illumination spot corresponding to a single pixel covers at least 40 grating 
periods of the etched trench nanostructure in the optimal azimuthal configuration). As can be 
observed from Fig. 8, there are several nanometer variations in the structural parameters of 
the etched trench nanostructure over the entire die. But overall, the parameter maps exhibit 
relatively uniform variation and reasonable agreement with the corresponding result measured 
by TEM. In conclusion, the results presented in Table 2, Figs. 7 and 8 further demonstrate that 
we can achieve Mueller matrix measurement and analysis for grating structures with pixel-
sized illumination spots by using MMIE. We can also efficiently obtain the parameter maps of 
grating structures over a wide area with a pixel-sized lateral resolution by performing parallel 
ellipsometric analysis for all the pixels of interest. In addition, although the MMIE-measured 
results presented in Tables 1 and 2 were all extracted from the Mueller matrix spectra 
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collected by a single pixel of the camera, it is worth pointing out that we can also average the 
Mueller matrices collected by multiple adjacent pixels to improve the signal to noise ratio for 
robust grating reconstruction. 

 

Fig. 8. Maps of the structural parameters x1~x6 of the etched trench nanostructure over an entire 
die. The grating period is along the X direction. Data were obtained by performing 
ellipsometric analysis for each pixel of the measured imaging Mueller matrices. The 
measurement configuration is identical to that given in Fig. 7. 

5. Conclusions 

In this work, MMIE is introduced to reconstruct grating structures. Two kinds of grating 
structures were measured using an in-house developed Mueller matrix imaging ellipsometer. 
One is a Si grating structure that is used as a template in nanoimprint lithography, and another 
one is a typical etched trench nanostructure from the practical manufacturing process lines of 
flash memory storage cells. The experimental results have demonstrated that MMIE at least 
has the following three advantages over conventional non-imaging optical scatterometry 
techniques. 

(1)  MMIE can acquire a 4 × 4 imaging Mueller matrix in a single measurement, which 
allows for the direct visualization of the sample and intuitive selection of interested 
regions for ellipsometric analysis. 

(2)  We can achieve Mueller matrix measurement and analysis for grating structures with 
pixel-sized illumination spots, which are much smaller than the microspot sizes in 
scatterometry techniques. 

(3)  We can efficiently construct parameter maps of the grating structures over a wide 
area with pixel-sized lateral resolution by performing parallel ellipsometric analysis 
for all the pixels of interest without scanning the sample stage as do in scatterometry 
techniques. 
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