Heriot-Watt University

Finite-element view-factor computations for radiant energy exchanges

Muneer, Tariq; Ivanova, Stoynka; Kotak, Yash Satish; Gul, Mehreen Saleem

Published in:
Journal of Renewable and Sustainable Energy

DOI:
10.1063/1.4921387

Publication date:
2015

Document Version
Peer reviewed version

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Muneer, T., Ivanova, S., Kotak, Y. S., \& Gul, M. (2015). Finite-element view-factor computations for radiant energy exchanges. Journal of Renewable and Sustainable Energy, 7(3), [033108]. DOI: 10.1063/1.4921387

AUTHOR QUERY FORM

| Journal: | |
| :--- | :--- | :--- |
| J. Renewable Sustainable Energy | Please provide your responses and |
| any corrections by | |
| Aulishing | annotating this PDF and uploading it |
| Article Number: 007503RSE | website as detailed in the Welcome |
| email. | |

Dear Author,
Below are the queries associated with your article; please answer all of these queries before sending the proof back to AIP.

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof.

1. Is the title of your article accurate and spelled correctly?
2. Are the author names in the proper order and spelled correctly?
3. Please check affiliations including spelling, completeness, and correct linking to authors.
4. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in article	Query / Remark: click on the \mathbf{Q} link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation.
AQ1	Please define CIBSE at first occurrence in both the abstract and the text.
AQ2	Please check the hierarchy of the section headings.
AQ3	In sentence beginning "That differentiation is...," please confirm that "the following section" refers to Sec. III.
AQ4	In sentence beginning "In Sec. III...," please confirm that "next section" refers to Sec. III.
AQ5	Figures must be cited in numerical order; therefore, we have renumbered Figs. 14, 15, and 16 as 16,14 , and 15 . Please check.
AQ6	In sentence beginning "In Sec. IV...," please confirm that "the following section" refers to Sec. IV.
AQ7	Figures 20 and 21 were not cited in the text. We have inserted a citation in the sentence beginning "Other schematic images...." Please check and reposition if necessary.
AQ8	Please provide a brief descriptive title for the Appendix, as per AIP style.
AQ9	Please provide institution name and specify the type of thesis in Ref. 2.
AQ10	Please check the edits made in Ref. 14.
AQ11	In Ref. 16, please provide a brief description of the information available at the website.

Thank you for your assistance.

Finite-element view-factor computations for radiant energy exchanges

T. Muneer, ${ }^{1, a)}$ S. Ivanova, ${ }^{2, a)}$ Y. Kotak, ${ }^{3, b)}$ and M. Gul ${ }^{3, a)}$
${ }^{1}$ Edinburgh Napier University, 10 Colinton Road, EH10 5DT Edinburgh, United Kingdom
${ }^{2}$ University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria
${ }^{3}$ Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom

(Received 23 March 2015; accepted 3 May 2015; published online xx xx xxxx)
(Received 23 Mar

Abstract

Radiation heat transfer has very many applications within the building services

 sector. CIBSE Guide A provides the physics background and the relevant mathematical functions for radiant energy exchanges between surfaces of different AQ1 configurations in chapters 2 and 5. The aim of this article is to present procedures for inter-surface radiant energy exchange that range from the most simple (macro-) to most general formulations that are based on a micromesh, finite-element approach. The justification for such detailed procedures and their applicability within the modern building energy simulation software is also covered. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921387]
I. INTRODUCTION

In any given society buildings in general have been identified to be one of the most energy 17 consuming sector. Within the EU28, it has been reported ${ }^{1}$ that buildings are responsible for 1 over 50% of the gross energy budget. Furthermore, the bulk of the above proportion of energy use may be attributed to heating or cooling of buildings.

There has been a demand by the respective national governments to address the above issue of such large-scale energy consumption and numerous legislation related instruments were introduced to encourage energy efficiency. The building services community has responded to the above challenge and one of the positive actions undertaken was refining of building energy simulation tools. As a result, over the past few decades, the software tools have evolved from being part-physics, part-empirical to tools that use the physical laws in a more fundamental manner. Examples that may be cited here are Computational Fluid Dynamics (CFD) tools for solving air-flow problems and daylighting software such as RADIANCE.

CFD simulation software allows to predict the impact of fluid flow on any product throughout the design and manufacturing as well as during end use. It works on the phenomena like studying single or multiphase, isothermal or reacting, compressible or not by giving valuable insight into product performance.

RADIANCE software is used for the analysis and visualization of lightning design. The primary advantage of this software is there are no limitations on the geometry or to materials that may be simulated. It is used by architects and engineers to predict illumination, visual quality, and appearance of innovative design space and by researchers to evaluate new lightning and daylight technologies.

In a recent publication, the present research team has presented a case for obtaining building cooling load profile from a numerical solution of the fundamental heat conduction equation. ${ }^{2}$ Another example that may be cited here is the work of Laccarino et al. (2010) ${ }^{3}$ who developed a building energy model that coupled a CFD tool with heat transfer information from an energy simulation tool. Their intention was to produce an integrated CFD-energy1819

[^0]simulation model. Their model was then validated using data from monitored buildings in 43 California. The above report is also available at Stanford University. ${ }^{4}$

The above-mentioned, recursive and computer-intensive developments have only been possible due to the exponential rise of computing power and its cost reduction. A brief review of the latter would therefore be not out of order at this stage.

The highest performing computing machines that are currently in use hundreds of thousands of processing cores and are capable of 10^{15} (petaflop) floating point operations per second. That is a thousand times more than the most powerful machine of 2000 , which in turn were a thousand times more than a decade before that.

Researchers associated with the U.S. Government Sandia Advance Devices Technologies laboratory ${ }^{5}$ have assessed that today's (2014) desktop computing cost of $181 \mathrm{MFlops} / \$$ will drop to $18 \mathrm{GFlops} / \$$ by the year 2030 . The average current microprocessor clock speeds would also increase to 33 GHz by the year 2015 . For supercomputers the main demand for increasing computing speed is from the climate change modelling community. However, the building energy simulation would benefit from such developments. The Edinburgh-based supercomputing facility ${ }^{6}$ is forecasting an increase of computing power from today's Petflops to Exaflops by year 2020 while Sandia's researchers are predicting a performance of the order of Zettaflops $\left(10^{21}\right)$ for the year 2030.

However, there are certain challenges that lie ahead. It is being predicted that the high performance exascale computing machines will have different architectures from that which has dominated for the last decade and more. There will be an impact on software; existing software will most likely need to be rewritten. ${ }^{7}$ Therefore, in brief, due to increased computing power that is now available at ever decreasing cost there is a general trend towards the incorporation of fundamental physical laws and processes, rather than use of empiricism within building energy simulation tools. Within the CIBS Quides design charts related to radiation exchange between surfaces that are either parallel or perpendicular to each other are presented. Those charts are somewhat restrictive though and do not allow for estimation of energy exchange for surfaces facing each other at an acute or obtuse angle. Furthermore, the issue of ground-reflected radiation that is incident upon tilted solar thermal and photovoltaic (PV) collectors has not been addressed within existing literature appropriately. On occasions, there are also incidences where radiation reflected off any given building's glass façade is of interest. An interesting example that may be cited herein is that of a new London skyscraper that has been blamed for reflecting light which melted parts of a car parked on a nearby street. ${ }^{8}$ One of the present research team members was asked to provide preliminary advice regarding analysis of that problem.

To summarise, therefore, there are at least two areas of applicability of radiation energy exchange for the proposed work:
(i) sol-air temperature and building cooling load due to energy exchange from ground and neighbouring building surfaces;
(ii) energy balance of solar thermal collectors and PV modules, once again taking into account the ground-reflected solar radiation.
The aim of this article is to present procedures for inter-surface radiant energy exchange that range from the most simple (macro-) to most general formulations that are based on a micromesh, finite-element approach.

II. ANALYSIS

A. Radiation exchange between any two surfaces

For any two black surfaces, the thermal radiation exchange is given by the following equation:

$$
\begin{equation*}
Q_{1-2}=\sigma\left(T_{1}^{4}-T_{2}^{4}\right) A_{1} F_{1-2}=\sigma\left(T_{2}^{4}-T_{1}^{4}\right) A_{2} F_{2-1} \tag{1}
\end{equation*}
$$

Within heat transfer terminology the term F_{1-2} is known as "configuration factor" (CF)." 89 There are also other names for the latter such as "view factor," "geometry factor," "angle 90
factor," or "shape factor." For any two elemental surfaces such as those shown in Fig. 1, $F_{1-2} 91$ is given as follows:

$$
\begin{equation*}
F_{1-2}=\frac{1}{A_{1}} \iint_{A_{1}} \int_{A_{2}} \frac{\cos \Phi_{1} \cos \Phi_{2}}{\pi R^{2}} d A_{2} d A_{1} \tag{2}
\end{equation*}
$$

where R is the distance between both differential elements $d A_{1}$ and $d A_{2} ; A_{1}$ and A_{2} are the faces of both surfaces; ϕ_{1} and ϕ_{2} are the angles between the normal vectors to both differential elements and the line between their centres (Fig. 2). In addition to thermal radiation exchange, view factor also finds its application in the
assessment of building cooling load and the design of solar thermal collector and photovoltaic In addition to thermal radiation exchange, view factor also finds its application in the
assessment of building cooling load and the design of solar thermal collector and photovoltaic systems where the amount of incident solar energy from the sun, sky, and ground reflections sought. Within that context a differentiation is desirable between configuration and view factors. That differentiation is presented in Sec. III.

1. Orthogonal case

 96 97 98 99 tors. That differentiation is presented in Sec. III.101
One of the most revered sources of reference for configuration factor is the text of Siegel 102 and Howell. ${ }^{10}$ It contains a catalogue of configuration factor for different geometries. The 103 cases, which find ready application with respect to building services, are two rectangular par- 104 allel surfaces and surfaces that are perpendicular to each other. The fundamental integral for 105 two rectangular surfaces A_{1} with dimensions $a \times b$ and A_{2} with dimensions $c \times d$ is as 106 follows:

$$
\begin{equation*}
F_{1-2}=\frac{1}{a b} \int_{x_{1}=0}^{a} \int_{y_{1}=0}^{b} \int_{x_{2}=0}^{c} \int_{y_{2}=0}^{d} \frac{\cos \Phi_{1} \cdot \cos \Phi_{2}}{\pi R^{2}} d y_{2} d x_{2} d y_{1} d x_{1} \tag{3}
\end{equation*}
$$

For two perpendicular rectangular surfaces with a common edge b (Fig. 3), where $\cos \Phi_{1} 108$ $=x_{2} / R$ and $\cos \Phi_{2}=x_{1} / R$ and $R=\sqrt{x_{1}{ }^{2}+x_{2}^{2}+\left(y_{1}-y_{2}\right)^{2}}$, the resulting integral is as 109 follows:

FIG. 1. Isometric view of the receiving $\left(A_{1}\right)$ and emitting $\left(A_{2}\right)$ surfaces.

FIG. 2. Defining geometry for configuration factor. ${ }^{9}$

$$
\begin{equation*}
F_{1-2}=\frac{1}{a b} \int_{x_{1}=0}^{a} \int_{y_{1}=0}^{b} \int_{x_{2}=0}^{c} \int_{y_{2}=0}^{b} \frac{x_{1} x_{2}}{\pi\left[x_{1}^{2}+x_{2}^{2}+\left(y_{1}-y_{2}\right)^{2}\right]^{2}} d y_{2} d x_{2} d y_{1} d x_{1} \tag{4}
\end{equation*}
$$

The configuration factor, solution of this integral, is as follows, where $N=c / b$ and $L=a / b$: 11
$F_{1-2}=\frac{1}{\pi L}\binom{L \tan ^{-1}\left(\frac{1}{L}\right)+N \tan ^{-1}\left(\frac{1}{N}\right)-\sqrt{N^{2}+L^{2}} \tan ^{-1}\left(\frac{1}{\sqrt{N^{2}+L^{2}}}\right)}{+\frac{1}{4}\left\{\ln \left[\frac{\left(1+L^{2}\right)\left(1+N^{2}\right)}{1+L^{2}+N^{2}}\right]+L^{2} \ln \left[\frac{L^{2}\left(1+N^{2}+L^{2}\right)}{\left(1+L^{2}\right)\left(1+N^{2}\right)}\right]+N^{2} \ln \left[\frac{N^{2}\left(1+N^{2}+L^{2}\right)}{\left(1+N^{2}\right)\left(N^{2}+L^{2}\right)}\right]\right\}}$.

2. Tilted surface

A more generalised version of the above case is however the one where the two surfaces 113 A_{1} and A_{2} are not perpendicular to each other. Rather, they are separated by any given angle $\phi 114$ that may or may not be 90°, as shown in Fig. 4.

This generalised case, once again, has a number of applications such as solar energy 116 reflected off ground and incident on a sloping roof, solar thermal water or air collectors, or 117 indeed photovoltaic modules. Note that for any given situation the ground reflected radiation may 118 emanate from a conglomeration of surfaces of disparate reflectivities such as grass ($\rho=0.24$), ${ }^{11}$

FIG. 3. Two orthogonal surfaces with one common edge.
tarmac ($\rho=0.15$), soil ($\rho=0.12-0.25$), other roof tops (0.13), pebbles ($\rho=0.14-0.56$), or water 120 bodies ($\rho=0.05-0.2$).

The integration of Eq. (2) for the case under discussion is rather involved. It does not lead to 122 an exact solution, as was provided for the special case of $\phi=90^{\circ}$-see Eq. (5). It rather leads to a 123 partial, analytically integrable, one part, and the other part that is only numerically obtained. 124

If we apply Eq. (3) to two rectangular surfaces A_{1} with dimensions $a \times b$ and A_{2} with 125 dimensions $c \times b$, with angle ϕ between them (Figs. 5 and 6), then $\beta=\pi-\phi, \cos \Phi_{1} 126$ $=x_{2} \sin \beta / R$ and $\cos \Phi_{2}=x_{1} \sin \beta / R$ and $R=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+2 x_{1} x_{2} \cos \beta+\left(y_{1}-y_{2}\right)^{2}}$ and the 127 resulting integral is as follows:

$$
\begin{equation*}
F_{1-2}=\frac{1}{a b} \int_{x_{1}=0}^{a} \int_{y_{1}=0}^{b} \int_{x_{2}=0}^{c} \int_{y_{2}=0}^{b} \frac{x_{1} x_{2} \sin ^{2} \beta}{\pi\left[x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \cos \beta+\left(y_{1}-y_{2}\right)^{2}\right]^{2}} d y_{2} d x_{2} d y_{1} d x_{1} \tag{6}
\end{equation*}
$$

The solution of this integral is as follows, where $A=c / b, \quad B=a / b, 129$ $C=A^{2}+B^{2}-2 A B \cos \Phi$, and $D=\sqrt{1+A^{2} \sin ^{2} \Phi}:^{11}$

$$
\begin{align*}
F_{1-2}= & -\frac{\sin 2 \Phi}{4 \pi B}\left[A B \sin \Phi+\left(\frac{\pi}{2}-\Phi\right)\left(A^{2}+B^{2}\right)+B^{2} \tan ^{-1}\left(\frac{A-B \cos \Phi}{B \sin \Phi}\right)+A^{2} \tan ^{-1}\left(\frac{B-A \cos \Phi}{A \sin \Phi}\right)\right] \\
& +\frac{\sin ^{2} \Phi}{4 \pi B}\left\{\left(\frac{2}{\sin ^{2} \Phi}-1\right) \ln \left[\frac{\left(1+A^{2}\right)\left(1+B^{2}\right)}{1+C}\right]+B^{2} \ln \left[\frac{B^{2}(1+C)}{C\left(1+B^{2}\right)}\right]+A^{2} \ln \left[\frac{A^{2}\left(1+A^{2}\right)^{\cos 2 \Phi}}{C(1+C)^{\cos 2 \Phi}}\right]\right\} \\
& +\frac{1}{\pi} \tan ^{-1}\left(\frac{1}{B}\right)+\frac{A}{\pi B} \tan ^{-1}\left(\frac{1}{A}\right)-\frac{\sqrt{C}}{\pi B} \tan ^{-1}\left(\frac{1}{\sqrt{C}}\right) \\
& +\frac{\sin \Phi \sin 2 \Phi}{2 \pi B} A D\left[\tan ^{-1}\left(\frac{A \cos \Phi}{D}\right)+\tan ^{-1}\left(\frac{B-A \cos \Phi}{D}\right)\right] \\
& +\frac{\cos \Phi}{\pi B} \int_{0}^{B} \sqrt{1+z^{2} \sin ^{2} \Phi}\left[\tan ^{-1}\left(\frac{z \cos \Phi}{\sqrt{1+z^{2} \sin ^{2} \Phi}}\right)+\tan ^{-1}\left(\frac{A-z \cos \Phi}{\left.\left.\sqrt{1+z^{2} \sin ^{2} \Phi}\right)\right] d z .}\right.\right. \tag{7}
\end{align*}
$$

The last part of Eq. (7) is unsolvable integral. This explains why a complete analytical so- 131 lution of Eq. (6) does not exist. The view factor F_{1-2} can be estimated partially analytically, 132 partially, numerically.

The object of this article is to present a mathematical formulation for the differential ele- 134 ments shown in Fig. 1. By numerically integrating the elemental view factor, it is then possible 135 to obtain Ground View Factor $(G V F)$ for surface A_{1}. Note that a fragmented set of reflectivity 136

FIG. 4. Two rectangular surfaces with one common edge and included angle of ϕ.

FIG. 5. Projection of A_{1} and A_{2} surfaces on the $\mathrm{X}_{2} / \mathrm{Y}$ and $\mathrm{X}_{2} / \mathrm{Z}$ planes.
data for the foreground (surface A_{2}) can be easily handled in this approach, an example of 137 which is presented towards the end of thus article. Furthermore, a Visual Basic for Application 138 (VBA) code is presented that would enable the reader to obtain the GVF for any given geome- 139 try and choice of reflectivities for the foreground (surface A_{2}).

B. Comparison and difference between configuration factor and view factor

$\boldsymbol{C F}$: The configuration factor F_{i-j} is defined as the fraction of diffusely radiated energy 142 leaving surface A_{i} that is incident on surface A_{j}. It is estimated with Eq. (2).

The configuration factor F_{i-j} participates in the product $A_{i} \cdot F_{i-j} \cdot I_{i}$ that reflects the energy flux 144 uniformly emitted from surface A_{i} to surface A_{j}. There I_{i} is the value of the emitted irradiance from surface i. From the view point of surface A_{j}, the product $A_{j} \cdot F_{j-i} \cdot I_{i}$ is the energy flux received by sur- 14 face A_{j} from uniformly emitting surface A_{i}. Even from different viewpoints, both expressions esti- 147 mate the same flux of energy and this easily leads to a reciprocity relation between both factors.

By above definition F_{i-j} means that surface A_{i} is emitting, surface A_{j} is receiving, thus the 14 configuration factor F_{i-j} is "viewing" from the position of the emitting surface A_{i}. In other words, ${ }^{150}$ F_{i-j} represents how well the surface A_{i} sees surface A_{j} and explains why F_{i-j} is not equal to F_{j-i}.

In building facade energy exchange we usually need "viewing" from the position of the receiving surface. This is why the definitions and values of the configuration factor and from other side Sky View Factor (SVF) and GVF are different.

FIG. 6. Detail of projection X_{2} / Z plane.

000000-7
Muneer et al.
$S V F$: By definition, $S V F$ is the ratio of the sky radiation received by a surface A to the radia- 155 tion emitted by the entire sky hemispheric environment. In other words, $S V F$ represents how well 156 the surface sees the sky hemisphere. The approach presumes that the sky hemisphere is uniformly 157 emitting. The concept is applied in the estimation of the background diffuse irradiance on a sur- 158 face, although the diffuse radiance actually has an anisotropic nature. On the other hand, the 159 approach is suitable to be used in the estimation of building heat loss through radiation to the sky 160 hemisphere. The relationship between $S V F$ and $C F$ is given by the following equation: 161

$$
\begin{equation*}
S V F=C F\left(A R E A_{\text {emitting }} / A R E A_{\text {receiving }}\right) \tag{8}
\end{equation*}
$$

GVF is the ratio of the reflected ground radiation received by a planar surface to radiation 162 emitted by the entire hemispheric ground environment. The widely used isotropic constant 163 model (ICM) of Liu and Jordan ${ }^{12}$ for estimation of the reflected irradiance assumes a constant 164 albedo and needs a $G V F$, which we can estimate from the value of $C F$ as follows:

$$
\begin{equation*}
G V F=C F\left(A R E A_{\text {emitting }} / A R E A_{\text {receiving }}\right) \tag{9}
\end{equation*}
$$

The reflected irradiance I_{i} depends on the global horizontal irradiance $I_{G H}$ and the albedo 166 ρ-as follows:

$$
\begin{equation*}
I_{i}=\rho I_{G H} \tag{10}
\end{equation*}
$$

The total reflected radiation R_{R} received by the surface A_{j} from the uniform reflecting sur- 168 face A_{i} is estimated with the following equation:

$$
\begin{equation*}
R_{R}=\rho I_{G H} A_{i} F_{i-j}=\rho I_{G H} A_{j} F_{j-i}=\rho I_{G H} A_{j} G V F \tag{11}
\end{equation*}
$$

If we need to study the 2D-variations in the incident irradiance, it is better to use the third 170 variant of this equation: $R_{R}=\rho I_{G H} A_{j} G V F$.

C. View factor algebra

The view factor algebra is a combination of basic configuration factors between surfaces 173 with different geometries and some fundamental relations between them: ${ }^{9} 174$

- Superposition rules: Two superposition rules could be defined for the view factors to surfaces. 175 They help to estimate the view factors which cannot be evaluated directly. 176
Rule 1: The product of the view factor $\boldsymbol{F}_{\boldsymbol{i - j}}$ from a surface \boldsymbol{i} to surface \boldsymbol{j} and the area $\boldsymbol{A}_{\boldsymbol{i}}$ of sur- 177 face \boldsymbol{i} is equal to the sum of the products of the view factors from the parts of surface \boldsymbol{i} to sur- 178 face \boldsymbol{j} and their areas

$$
\begin{equation*}
F_{i-j} A_{i}=\sum_{k=1}^{N} F_{i_{k}-j} A_{i_{k}} \tag{12}
\end{equation*}
$$

Rule 2: The view factor $\boldsymbol{F}_{\boldsymbol{i}-\boldsymbol{j}}$ from a surface \boldsymbol{i} to surface \boldsymbol{j} is equal to the sum of the view fac- 180 tors from the surface \boldsymbol{i} to the parts of the surface \boldsymbol{j}

$$
\begin{equation*}
F_{i-j}=\sum_{k=1}^{N} F_{i-j_{k}} \tag{13}
\end{equation*}
$$

- Summation rule: The sum of the view factors from a given surface in an enclosure, including 182 the possible self-view factor for concave surfaces, is 1.
- Reciprocity relation: A reciprocity relation between two opposite view factors of two isotropic 184 emitting/receiving surfaces exists and allows the calculation of a view factor from the knowl- 185 edge of its reciprocal

$$
\begin{equation*}
A_{i} F_{i-j}=A_{j} F_{j-i} \tag{14}
\end{equation*}
$$

- Bounding: View factors are bounded to $0 \leq F_{i-j} \leq 1$ by definition.

New derivative view factors can be computed from a set of known factors with the help of 188 the mentioned fundamental relations. Let us check this possibility with some exemplary 189 configurations.

Configuration 1: Let us have two rectangular surfaces i and j with a common edge and 191 each of them have two rectangular parts: $A_{i}=A_{i_{1}}+A_{i_{2}}$ and $A_{j}=A_{j_{1}}+A_{j_{2}}$ (Fig. 7). Let us 192 apply View Factor Analysis (VFA) to estimate $F_{i-j l}$-the VF from the horizontal rectangle i to 193 the left part j_{1} of the inclined surface j

$$
\begin{align*}
& F_{i_{2}-j_{1}}=\frac{1}{b c} \int_{x_{2}=0}^{c} \int_{y_{2}=0}^{b} \int_{x_{1}=0}^{a} \int_{y_{1}=-e}^{0} \frac{\cos \theta_{i} \cdot \cos \theta_{j}}{\pi R^{2}} d y_{1} d x_{1} d y_{2} d x_{2} \tag{15}\\
& F_{i_{1}-j_{2}}=\frac{1}{e c} \int_{x_{2}=0}^{c} \int_{y_{1}=-e}^{0} \int_{x_{1}=0}^{a} \int_{y_{2}=0}^{b} \frac{\cos \theta_{i} \cdot \cos \theta_{j}}{\pi R^{2}} d y_{2} d x_{1} d y_{1} d x_{2} \tag{16}
\end{align*}
$$

If we compare last two Eqs. (15) and (16), we could see the relationship between these 195 view factors-as follows:

$$
\begin{equation*}
\text { b. } F_{i_{2}-j_{1}}=e . F_{i_{1}-j_{2}} \tag{17}
\end{equation*}
$$

This relationship, added to the other relationships between the view factors, can help us to 197 compute derivative view factors like $F_{i-j l}$

$$
\begin{equation*}
F_{i-j_{1}}=\frac{1}{2}\left(F_{i-j}+\frac{e}{e+b} F_{i_{1}-j_{1}}-\frac{b}{e+b} F_{i_{2}-j_{2}}\right) . \tag{18}
\end{equation*}
$$

Note: $F_{\mathrm{i}-\mathrm{j}}$ is $F_{\mathrm{i} 1, \mathrm{i} 2-\mathrm{j} 1, \mathrm{j} 2}$.
Configuration 2: Let us have two rectangular surfaces i and j with a common edge and let 200 each of them have three rectangular parts: $A_{i}=A_{i_{1}}+A_{i_{2}}+A_{i_{3}}$ and $A_{j}=A_{j_{1}}+A_{j_{2}}+A_{j_{3}}$ (Fig. 8). 201 Let us apply VFA to estimate $F_{i-j 2}$.

If we apply the Eq. (18) to the surfaces in our configuration 2, where $d=e+b+f$, we can 203 express the derivative view factors $F_{i-j 1}, F_{i-j 2}$, and $F_{i-j 3}$ with the help of the basic view factors

$$
\begin{equation*}
F_{i-j 1}=\frac{1}{2}\left(F_{i-j}+\frac{e}{d} F_{i 1-j 1}-\frac{b+f}{d} F_{i 2+3-j 2+3}\right) \tag{19}
\end{equation*}
$$

FIG. 7. Configuration 1-two rectangular surfaces i and j with one common edge. The VF of the parts of the surface $i\left(i_{1}\right.$ and i_{2}) to the opposite parts (j_{2} and j_{1}) of the surface j are in a relationship-Eq. (17).

FIG. 8. Configuration 2-two rectangular surfaces i and j with one common edge. The $V F$ of the part j_{2} of the surface j to the whole surface i can be estimated with the help of view factor algebra-Eq. (22).

$$
\begin{gather*}
F_{i-j 3}=\frac{1}{2}\left(F_{i-j}+\frac{f}{d} F_{i 3-j 3}-\frac{e+b}{d} F_{i 1+2-j 1+2}\right), \tag{20}\\
F_{i-j 2}=\frac{1}{2 d}\left[(e+b) F_{i 1+2-j 1+2}+(b+f) F_{i 2+3-j 2+3}-f F_{i 3-j 3}-e F_{i 1-j 1}\right] . \tag{21}
\end{gather*}
$$

If j_{2} is the receiving surface, the derivative view factor $F_{j 2-i}$ is more useful

$$
\begin{equation*}
F_{j 2-i}=\frac{1}{2 b}\left[(e+b) F_{j 1+2-i 1+2}+(b+f) F_{j 2+3-i 2+3}-f F_{j 3-i 3}-e F_{j 1-i 1}\right] \tag{22}
\end{equation*}
$$

Configuration 3: Let us have two rectangular surfaces with a common edge, separated 206 by given angle ϕ, and let each of them have six rectangular parts: $A_{123456}=A_{1}+A_{2}+A_{3}+A_{4} 207$ $+A_{5}+A_{6}$ and $A_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime}}=A_{1^{\prime}}+A_{2^{\prime}}+A_{3^{\prime}}+A_{4^{\prime}}+A_{5^{\prime}}+A_{6^{\prime}}$ (Fig. 9). We applied the resulting 208 equations from configurations 1 and 2 and view factor algebra and proved the Eq. (23) for the esti- 209 mation of derivative view factor $F_{1-3^{\prime}}$ for inclined receiving surface, but the proof will be omitted 210 here because of its length. This equation is presented in Ref. 13 for two perpendicular surfaces

$$
A_{1} F_{1-3^{\prime}}=\frac{1}{2}\left(\begin{array}{l}
K_{(123456)^{2}}-K_{(1256)^{2}}-K_{(2345)^{2}}+K_{(25)^{2}}-K_{(4,5,6)-\left(1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime}\right)}+K_{(56)-\left(1^{\prime} 2^{\prime} 5^{\prime} 6^{\prime}\right)} \tag{23}\\
+K_{(45)-\left(2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime}\right)}-K_{5-\left(2^{\prime} 5^{\prime}\right)}-K_{(123456)-\left(4^{\prime} 5^{\prime} 6^{\prime}\right)}+K_{(1256)-\left(5^{\prime} 6^{\prime}\right)}+K_{(2345)-\left(4^{\prime} 5^{\prime}\right)} \\
-K_{(25)-5^{\prime}}+K_{(4,5,6)^{2}}-K_{(56)^{2}}-K_{(45)^{2}}+K_{5^{2}}
\end{array}\right)
$$

The K terms are defined by $K_{m-n}=A_{m} F_{m-n}$ and $K_{(m)^{2}}=A_{m} F_{m-m^{\prime}}$.

FIG. 9. Configuration 3-generalized inclined-rectangle arrangement. The $V F$ of part 1 of surface A_{123456} to part 3^{\prime} of surface $A_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime}}$ can be estimated with the help of view factor algebra. The coordinates $a_{1 \mathrm{~L}}, a_{1 \mathrm{U}}$ are along the x_{1} axis, the coordinates $c_{3^{\prime} \mathrm{L}}, c_{3^{\prime} \mathrm{U}}$ are along the x_{2} axis, the coordinates $b_{1 \mathrm{~L}}, b_{1 \mathrm{U}}, d_{3^{\prime} \mathrm{L}}, d_{3^{\prime} \mathrm{U}}$ are along the $y_{1}=y_{2}$ axes.

FIG. 10. The reflecting and receiving surfaces are divided in two directions to receive a regular perpendicular grid: (a) both surfaces have one common edge and (b) both surfaces are non-intersecting.

D. Derivation of a numerically integrable, general purpose GVF

If we consider the rectangular surfaces A_{i} and A_{j} with a common edge b as composed of 214 many very small rectangular areas (Fig. 10(a)), we could use numeric integration to receive the 215 same result with a small loss of accuracy

$$
\begin{equation*}
F_{j-i}=\frac{\sin ^{2} \Phi}{\pi \cdot N a \cdot N b} \sum_{j_{1}=1}^{N a} \sum_{j_{2}=1}^{N b} \sum_{i_{1}=1}^{N c} \sum_{i_{2}=1}^{N b} \frac{x_{i} x_{j}}{\left[x_{i}^{2}+x_{j}^{2}-2 x_{i} x_{j} \cos \Phi+\left(y_{i}-y_{j}\right)^{2}\right]^{2}} \Delta c \Delta b \tag{24}
\end{equation*}
$$

where $\Delta a=a / N a, \Delta b=b / N b, \Delta c=c / N c$, and $N a, N b, N c$ are the numbers of intervals for the 217 numeric integration in each dimension. The coordinates of each fragment's center are: for surface 218 $i-x_{i}=\left(i_{l}-0.5\right) \Delta c ; y_{i}=\left(i_{2}-0.5\right) \Delta b$; for surface $j-x_{j}=\left(j_{1}-0.5\right) \Delta a$; and $y_{j}=\left(j_{2}-0.5\right) \Delta b$. Such 219 solution has one main significant advantage-it easily can be adapted for any disposition of both 220 rectangular surfaces (Fig. 10(b)), but also has two serious disadvantages-it gives an approximate 221 result and to avoid this with large numbers of intervals, it needs a lot of computing time. 222

In case of non-uniform reflectivities of the reflecting surface (Fig. 11), such approach is 223 irreplaceable. Let us divide the non-uniform reflecting rectangular surface in an orthogonal grid 224 and to estimate the average albedo value for each cell of this grid. The GVF from surface A_{j} to 225 ground surface A_{i}, corrected with the albedo values, is given by the following equation: 226

$$
\begin{equation*}
F_{j-i}^{\prime}=\frac{\sin ^{2} \Phi}{\pi a b} \sum_{j_{1}=1}^{N a} \sum_{j_{2}=1}^{N b} \sum_{i_{1}=1}^{N c} \sum_{i_{2}=1}^{N d} \frac{x_{i} x_{j} \rho_{i}}{\left[x_{i}{ }^{2}+x_{j}^{2}-2 x_{i} x_{j} \cos \Phi+\left(y_{i}-y_{j}\right)^{2}\right]^{2}} \Delta a \Delta b \Delta c \Delta d \tag{25}
\end{equation*}
$$

Two interesting studies by Walton ${ }^{14,15}$ are dedicated to the numerical calculation of radia- 227 tion view factors between plane convex polygons with obstructions. In the first work, ${ }^{14}$ he 228 found that Gaussian integration (quadrature) improves the accuracy of the numerical integration. 229 This means that the function is evaluated at specially selected points instead of uniformly dis- 230 tributed points. Such non-uniform spacing can also be used in evaluating area integrals. In Sec. 231

FIG. 11. Case with a non-uniform reflecting surface: (a) both surfaces have one common edge and (b) both surfaces are non-intersecting.

FIG. 12. A non-uniform grid, where cell sizes increase in arithmetic progression, could be applied on: (a) two rectangular surfaces with one common edge and (b) two non-intersecting rectangular surfaces that are inclined to each other.

III, we will describe our experience and results with improved accuracy when a non-uniform 232 spacing is used for numerical contour integration.

III. COMPUTATIONAL TOOL DEVELOPMENT

In the present work, using Eqs. (24) and (25), four sets of numerically integrating codes 235 were developed to obtain $G V F$. These four codes represent the evolution of the present work 236 and demonstrate the code architecture from being simple-most and yet of low efficiency to 237 highly efficient but more complex. Those cases are:

A. Uniform grid

A uniform grid, where all cells within the emitting plane are of same dimension and aspect 240 ratio, is applied on the reflecting surface. Likewise, the cells within the receiving plane have 241 similar properties. The lengths of cells within the emitting and receiving planes may or may 242 not be equal. Square grids for both surfaces show better accuracy in the estimating of VF. This 243 approach can be easily applied as on a combination of two surfaces with one common edge 244 (Fig. 10(a)), as on a combination of two non-intersecting rectangular surfaces that are inclined 245 to each other (Fig. 10(b)). For square cells the total number of cells on the receiving surface is 246 $N_{\text {receiving_cells }}=(b / a) . N_{a}{ }^{2}$, and the total number of iterations is $N_{\text {receiving_cells }} . N_{\text {emitting_cells. }}$ This 247 approach does not allow to reach a high accuracy for surfaces, where size a is 10 or more times 248 less than sizes b and c. On the other hand, it is easy to be expanded to deal with a non-uniform 249 reflectivity.

B. Arithmetic progression

A non-uniform grid in which the cell dimensions increase in an arithmetic progression as 252 one moves from the common edge (Fig. 12). This development was undertaken once the nature 253 of influence of cells receding from the common edge was systematically studied within the 254 present work. The shape of each cell is as close as possible to a square. This is especially im- 255 portant for the cells in the rows that are closer to the common line, because any other propor- 256 tion of these cells generates significant errors in the result. The size of the cell in the first row 257 of both surfaces is equal to the step in the arithmetic progression. The algorithm is the same 258 for a composition of two surfaces with common edge (Fig. 12(a)) and for a composition of 259 non-intersecting rectangular surfaces that are inclined to each other (Fig. 12(b)). The number of 260 square cells on the receiving surface as on Fig. 12(a) is $N_{\text {receiving_cells }}=(b / a) \cdot N_{a} \cdot\left(N_{a}+1\right) \cdot(1+1 / 261$ $\left.2+1 / 3+\cdots+1 / N_{a}\right) / 2$, the number of square cells on the receiving surface as on Fig. 12(b) is 262 $N_{\text {receiving_cells }}=\left(b / a_{2}\right) \cdot N_{a} \cdot\left(N_{a}+1\right) \cdot\left(1+1 / 2+1 / 3+\cdots+1 / N_{a}\right) / 2$. The number of square cells on 263 the emitting surface can be estimated by analogy. The total number of iterations is 264 $N_{\text {receiving_cells. }} . N_{\text {emitting_cells. }}$. While this approach gives very accurate results for the first composi- 265 tion, its accuracy for the second composition is not good enough, regardless the high number of 266 iterations. This leads us to another version of this approach.

C. Proportional arithmetic progression

The analysis of the accuracy for the previous approach for non-intersecting rectangular surfa- 269 ces shows that cell size and number of cells in a row have to be in relation to the distance from the 270 common line of both planes and to increase slowly. It is suitable the size of cells in first row to be 271 equal to the step in the arithmetic progression only when the surface is adjoining to the common 272 edge (Figs. 13(a) and 13(b)), else the cells in the first row need to have bigger size, proportional to 273 its distance from the common line of both planes (Figs. 13(c) and 13(d)). The first step is to esti- 274 mate the number of virtual rows $N_{\mathrm{a} 0}$ in the interval between the common line of both planes and 275 the lower edge of the receiving surface. The number of square cells on a receiving surface as on 276 Fig. 13(a) is the same as for the previous approach. The number of square cells on the receiving 277 surface on Fig. 13(c) is $N_{\text {receiving_cells }}=\left[b /\left(a_{1}+a_{2}\right)\right] .\left(N_{\mathrm{a}}+N_{\mathrm{a} 0}\right) \cdot\left(N_{\mathrm{a}}+N_{\mathrm{a} 0}+1\right) \cdot\left[1 /\left(N_{\mathrm{a} 0}+1\right)+1 / 278\right.$ $\left.\left(N_{\mathrm{a} 0}+2\right)+\cdots+1 /\left(N_{\mathrm{a} 0}+N_{\mathrm{a}}\right)\right] / 2$. The number of square cells on the emitting surface can be esti- 279 mated by analogy. The total number of iterations is $N_{\text {receiving_cells. }} \cdot N_{\text {emitting_cells. }}$. 280

It is interesting to see that this approach with lower number of considered cells and itera- 281 tions gives better results than the previous approach. The conclusion is the bigger numbers of 282 cells (iterations) does not always mean better accuracy. It is important where the grid is more 283 close-meshed and how much in comparison with other parts of the surface. Last two approaches 284 are especially better in comparison with uniform grid approach for surfaces, where size a is 10285 or more times less than sizes b and c.

More details and a pictorial comparison of last two algorithms are given on Figs. 14 and 287 15 with a flow-diagram for the cell generation. In Sec. IV, the above three procedures for cell generation shall be validated using data and examples presented by earlier researchers.

D. Combined approach

The proportional-arithmetic-progression approach is suitable to be applied on a receiving sur- 291 face. On other hand, sometimes it is difficult to be applied on the non-uniform emitting surface, 292 where the regular grid is more convenient. A combined approach can unite the advantages of both 293 approaches (high accuracy and easy preparing of the foreground albedo matrix) and to decrease their 294

FIG. 13. A non-uniform grid, where cells increase in a proportional arithmetic progression, could be applied on (a) two rectangular surfaces with one common edge; (b) grid for receiving surface with $N_{\mathrm{a}}=20$ rows of cells; (c) two non-intersecting rectangular surfaces that are inclined to each other; and (d) grid for receiving surface with $N_{\mathrm{a}}=10$ rows of cells.

FIG. 14. Schematic image for example 1.
disadvantages (Fig. 16). The resulting number of iterations and corresponding computer time will be 295 lower than for the previous two approaches, based only on irregular grids.

E. Example 1

Consider the front row of a solar PV farm. The length of the row is 10 m and the modules are 298 inclined at an angle of 45° from the horizontal; the height of the modules is 2 m . The bottom edge 299 of the modules is 1 m from the ground, measured along the plane of the module. To enhance 300 ground-reflected radiation, white pebbles $(\rho=0.6)$ are laid out in-between the rows and in front of 301 the first row from a distance of $1-5 \mathrm{~m}$ from the common edge, the rest of the horizon being grass 302 ($\rho=0.24$). Using the analysis presented in this article, calculate the ground-reflected radiation that 303 is incident upon the PV modules. Considering only the first 20 m of the horizon for your analysis, 304 obtain the relative reflected-energy contribution from each of the two grass and pebble-bed surfa- 305 ces (Fig. 14). The horizontal irradiation is given as $800 \mathrm{~W} / \mathrm{m}^{2}$.

1. Solution

We shall deal with this analysis, considering the three parts of the foreground: Part I being 308 the grass rectangle that extends from 0 to 1 m from common edge, then the pebble bed that lies 309 between 1 and 5 m and finally the rest of the grass from 5 to 20 m . 310

Part I:
Step 1 Refer to Fig. 9. We can readily identify the following coordinates for the analysis: 312
For first (near-to-PV modules) grass rectangle $a_{1 \mathrm{~L}}=1, a_{1 \mathrm{U}}=3, \mathrm{~b}_{1 \mathrm{~L}}=0, b_{1 \mathrm{U}}=10, c_{1 \mathrm{~L}}=0,313$ $c_{1 \mathrm{U}}=1, d_{1 \mathrm{~L}}=0$, and $d_{1 \mathrm{U}}=10$. Then using Eq. (25) and setting up the mesh with $N a=10$, the algo- 314 rithm shown in Figs. 17 and 18 may be used to generate the PV module mesh. Likewise, with 315 $N c=10$ the albedo matrix for the emitting surface (foreground) can be created easily. The above 316 procedure is executed through the macro "Step1_GVF" which is part of the software provided in 317 Dropbox: ${ }^{16}$ https://www.dropbox.com/sh/8eehqf5szu1u68x/AAD4z7GFYkztzf-VgUqvHg7ea?dl=0 318 Step 2 Next, the emitting surface (foreground) mesh is generated by running the macro 319 "Step2_generatecells." 320
Step 3 Finally, the ground-reflected radiation is computed by running the third macro 321 "Step3_GVF."

Note that the above three steps are repeated for, respectively, obtaining ground-reflected 323 radiation from pebble-bed and the farther grass field by repeating the above three steps. The rel- 324 evant parametric details are provided below:

FIG. 15. Schematic images: (a) test case for Table I (surfaces split along "a," "b," "c," and "d"), angle 90° and 50 iterations; (b) test case for Table II (surfaces split along "b" and "d"), angle 90° and 50 iterations; and (c) test case for Table III.

(a)

FIG. 16. A combination of non-uniform grid for the receiving surface and a uniform grid for the emitting surface with nonuniform reflectivity: (a) two rectangular surfaces with one common edge and (b) two non-intersecting rectangular surfaces that are inclined to each other.

Part II: For pebble-bed $a_{1 \mathrm{~L}}=1, a_{1 \mathrm{U}}=3, \mathrm{~b}_{1 \mathrm{~L}}=0, b_{1 \mathrm{U}}=10, c_{1 \mathrm{~L}}=1, c_{1 \mathrm{U}}=5, d_{1 \mathrm{~L}}=0$, and 326 $d_{1 \mathrm{U}}=10$.
Part III: For the second (farthest) grass rectangle $a_{1 \mathrm{~L}}=1, a_{1 \mathrm{U}}=3, \mathrm{~b}_{1 \mathrm{~L}}=0, b_{1 \mathrm{U}}=10, c_{1 \mathrm{~L}}=5$, $c_{1 \mathrm{U}}=20, d_{1 \mathrm{~L}}=0$, and $d_{1 \mathrm{U}}=10$.

The user ought to obtain the following answers:
Part I: Ground-reflected radiation from the first grass rectangle $=3 \mathrm{~W} / \mathrm{m}^{2}$ of PV module ($\mathrm{GVF}=0.004$).
Part II: Ground-reflected radiation from pebble-bed $=22 \mathrm{~W} / \mathrm{m}^{2}$ of PV module ($\mathrm{GVF}=0.028$).
Part III: Ground-reflected radiation from the second grass rectangle $=4 \mathrm{~W} / \mathrm{m}^{2}$ of PV module ($\mathrm{GVF}=0.005$).

The total reflected radiation is thus $29 \mathrm{~W} / \mathrm{m}^{2}$ of which 76% is contributed by the pebble 336 bed of 4 m length.

IV. RESULTS, VALIDATION, AND DISCUSSION

Hamilton and Morgan ${ }^{17}$ were the first team to present, among other cases, view factor anal- 339 ysis for surfaces that share a common edge and are at an angle to each other. The latter work 34 was then further improved in terms of accuracy by Feingold ${ }^{18}$ who also presented tables for 34

FIG. 17. Pictorial view of the grids, generated by the two algorithms-arithmetic-progression and proportional-arithmeticprogression, for two non-intersecting rectangular surfaces. See Fig. 18 for algorithmic details.

Proportional-Arithmetic-Progression algorithm for grid generation

The first step is to find out the number $N_{\mathrm{a} 0}$ of virtual rows of the area that lie between the common line between the two planes and the given lower edge of the receiving rectangle (under the horizontal line in the left hand image given below):

The RHS is image of the resulting grid of the receiving surface between the lower and upper edges.
In the case shown above, the given number of rows in the receiving surface is $N_{\mathrm{a}}=10$. To estimate $N_{\mathrm{a} 0}$ we use this double equality:

$$
\Delta X_{\text {first_row }}=\frac{2\left(a_{1}+a_{2}\right)}{\left(N_{a 0}+N_{a}\right)\left(N_{a 0}+N_{a}+1\right)}=\frac{2 a_{1}}{N_{a 0}\left(N_{a 0}+1\right)}
$$

where $a_{1}=a_{1 \nu} \cdot a_{2}=a_{1 U}-a_{1 \nu} ; a=a_{1}+a_{2}$. This leads to a quadratic equation for $N_{\mathrm{a} 0}$:
$a_{2} N_{a 0}^{2}+\left(a_{2}-2 a_{1} N_{a}\right) N_{a 0}-a_{1} N_{a}\left(N_{a 0}+1\right)=0$
We take the larger root which is usually not an integer, so we need to compensate this within the last row of cells. The resulting value of $N_{\mathrm{a} 0}$ for this example is 10 .

$$
\begin{aligned}
& \Delta X_{\text {frist_row }}=\frac{2\left(a_{1}+a_{2}\right)}{\left(N_{a 0}+N_{a}\right)\left(N_{a 0}+N_{a}+1\right)} \\
& \Delta X_{\text {next_row }}=\Delta X_{\text {previous_row }}+\Delta X_{\text {frrst_row }}
\end{aligned}
$$

The x-coordinate for all rows, but the first and last rows is given thus,

$$
X_{\text {row }_{-} i}=X_{\text {row }_{-} i-1}+\left(\Delta X_{\text {row }_{-} i-1}+\Delta X_{\text {row }_{-} i}\right) / 2
$$

Finally, the compensated last row cells are obtained thus,

FIG. 18. Computational flow diagram for generating the grid using proportional-arithmetic-progression procedure.
view factors for surfaces with a common edge and inclined to each other at various angles. The 342 above two works of reference have been catalogued by Siegel and Howell ${ }^{10}$ who also provide 343 software for obtaining view factor. The limitation however with the latter is that the solution 344 can only be obtained for inclined planes that meet at a common edge. Furthermore, the solution 345 is obtained through an analytical route, thus limiting its use when an irregular horizon with 346 varying reflectivity is provided. In the present work, a numerical solution is obtained using a 347 finite-element grid which is capable of handling an irregular horizon. The reflectivity data may 348 be provided via a two-dimensional table (see the example file provided on this web address ${ }^{16}$). 349 Also presented in this work is the analytical solution for view factor between two non- 350 intersecting surfaces that are inclined to each other (see Eq. (23) and Fig. 9). 351

With the view to validate the present software, developed within the MS-Excel environ- 352 ment using a VBA tool, Tables I-III have been prepared. The estimated values with our 353

TABLE I. Evaluation and validation of the numerical model with combined grid: Test case 1—Fig. 15(a)—surfaces split along "a," "b," "c," and "d," $N a=50, N c=50, N d=50$, angle 90°. Sub-cases $1,3,5$, and 7 are based on ${ }^{17}$ and compared with the results there.

Number	Sub case	GVF numeric	GVF analytic	No. of iterations	Error (\%)	Time ${ }^{\mathrm{a}(\mathrm{s})}$
1	$\mathrm{~F}_{2-4,6}$	0.12279722	0.12277560	43102500	0.018	59
2	$\mathrm{~F}_{1-4,6}$	0.07002322	0.07001912	8552500	0.006	12
3	$\mathrm{~F}_{2-3,4,6}$	0.29747763	0.29740258	43102500	0.025	59
4	$\mathrm{~F}_{1,5-3}$	0.01586171	0.01586182	12790000	-0.001	17
5	$\mathrm{~F}_{1,5,2-3,4,6}$	0.16921932	0.16917600	17282500	0.026	24
6	$\mathrm{~F}_{5-6}$	0.00763796	0.00763791	4305000	0.001	7
7	$\mathrm{~F}_{2-3} \mathrm{a}$	0.17470547	0.17462698	43102500	0.045	59
8	$\mathrm{~F}_{2-3} \mathrm{~b}$	0.17470547	0.17462698	43102500	0.001	62

${ }^{\text {a }}$ Time for execution on a laptop with 5 GB RAM and 2.67 GHz Intel Core I5 processor.
${ }^{\mathrm{b}}$ Time for execution on a desktop with 4 GB RAM and 3 GHz Intel Core Duo processor.
numerical approach were compared with values, received with the analytical approach, 354 described in Secs. II A-II C and validated with calculated data, published by Holman, ${ }^{13}$ Siegel 355 and Howell, ${ }^{10}$ Hamilton and Morgan, ${ }^{17}$ Feingold, ${ }^{18}$ and Suryanarayana. ${ }^{19} 356$

The chosen view factors are to demonstrate the flexibility of the software to handle inte- 357 grated- or split surfaces with equal ease. Examples of the former (integrated) case that may be 358 cited are the radiant energy exchange between two walls that have a common edge, or a solar 359 collector (thermal or PV module) that receives ground-reflected energy. An example of the lat- 360 ter (split surface) may be a window within a room that is exchanging energy with walls or 361 ceiling.

Note that in all cases presented within Tables I and II the difference between the analytical 363 and numerical solution is under $\mathbf{0 . 0 5 5} \%$. The accuracy figures for Table III exceed $\mathbf{9 9 . 9 \%}$. If, 364 however, a higher accuracy is required then the number of iterations may be increased. Note 365 also that for surfaces that are at an acute angle to each other (see case 1 within Table III), a 366 slightly higher grid resolution is required to achieve appropriate accuracy.

The structure of the software is of a general nature and it thus enables incorporation of 368 other cases for planer radiant view factor evaluation.

Refer to Table IV which has been prepared to inter-compare the performance of four cur- 370 rently developed cell-generation algorithms. In the top half of this table, the accuracy of three 371 algorithms is presented. To enable a direct comparison between the algorithms a scoring system 372 has been presently developed. This scoring system, referred as Time-Error-Product (TEP), ena- 373 bles algorithmic evaluation, i.e., a low score is sought. The "Combined" algorithm outperforms 374 the "Uniform" and "Arithmetic Progression" algorithms, respectively, by factors of 22 and 5. 375 Note that for any given geometry when a common edge is shared between the emitting and 376 receiving surfaces the two algorithms, i.e., "Arithmetic Progression" and "Proportional 377 Arithmetic Progression" converge and hence the top half of Table IV only contains the three 378 given algorithms. The lower half of Table IV also presents a comparison of all four algorithms, 379

TABLE II. Evaluation and validation of the numerical model with combined grid: Test case 2—Fig. 15(b)—surfaces split along "b" and "d," $N a=50, N c=50, N d=50$, angle 90°. All sub-cases are based on Ref. 17 and compared with the results there.

Number	Sub-case	GVF numeric	GVF analytic	No. of iterations	Error (\%)	Time (s)
1	$\mathrm{~F}_{1,2-3,4}$	0.21117310	0.21116258	14412500	0.005	20
2	$\mathrm{~F}_{1-4}$	0.17025320	0.17027844	8672500	-0.015	12
3	$\mathrm{~F}_{2-3}$	0.13803786	0.13809616	5810000	-0.042	8
4	$\mathrm{~F}_{1-3}$	0.04482170	0.04479754	8672500	0.054	12
5	$\mathrm{~F}_{2-4}$	0.06722647	0.06719631	5810000	0.045	8

TABLE III. Evaluation and validation of the numerical model with combined grid for view factor F_{1-2} : Test case 3—Fig. 15 (c), $a=b=c=1, N a=50, N c=50, N d=50$.

Number	Angle, Φ°	GVF numeric	GVF analytic	No. of iterations	Error (\%)	Time (s)
1	30	0.61937934	0.61902833	14410000	0.057	20
2	45	0.48352731	0.48334770	14410000	0.037	20
3	60	0.37100758	0.37090532	14410000	0.028	20
4	90	0.20006725	0.20004378	14410000	0.012	19
5	120	0.08661359	0.08661500	14410000	-0.002	20
6	135	0.04830608	0.04830945	14410000	-0.007	20
7	150	0.02134296	0.02134533	14410000	-0.011	20

TABLE IV. Comparison of four mesh generation algorithms with respect to fragments, accuracy for common computer processor time. ${ }^{\text {a }}$

Case	Algorithm	Angle, Φ°	GVF numeric	GVF analytic	No. of iterations	Error (\%)	Time (s)	TEP ${ }^{\text {b }}$
Table III, Number 2	Arithmetic progression	45	0.4838968388	0.4833476997	208022929	0.1136	296	0.3363
	Uniform	45	0.500111873	0.4833476997	33223696	3.4683	45	1.5607
	Combined	45	0.4834285373	0.4833476997	83307248	0.0006	120	0.0696
Table I F ${ }_{5-6}$	Proportional arithmetic progression	135	0.0024743491	0.0024743546	16996540	-0.0002	24	0.00005
	Arithmetic progression	135	0.0024743400	0.0024743547	96978400	-0.0006	140	0.00083
	Uniform	135	0.0024743649	0.0024743547	24010000	0.0004	33	0.00014
	Combined	135	0.0024743508	0.0024743547	16459100	-0.0002	24	0.00004

${ }^{\text {a }}$ Time for execution on a laptop with 5 GB RAM and 2.67 GHz Intel Core I5 processor.
${ }^{\mathrm{b}}$ Time-Error-Product (this scoring system enables algorithmic evaluation, i.e., a low score is sought).
(

FIG. 19. Schematic images of different surface arrangements that fit our approach. Receiving $\left(A_{1}\right)$ and reflecting $\left(A_{2}\right)$ surfaces are represented with thick solid line, included angle of $\phi<\pi$.
but for the two surfaces being split, i.e., without a common edge. In this case the performance of "Combined" and "Proportional Arithmetic Progression" algorithms nearly converge. They are both, however, much more efficient than the "Uniform" and "Arithmetic Progression" models outperforming them by a factor of 5 and 20, respectively (see the final column that provides the TEP figures).

The present set of numerical algorithms can easily handle radiation exchange problems 38 where the emitting surface has a non-uniform grid of reflectivities. Many examples of non- 386 uniform horizon of solar energy collection systems may be cited. In this respect, the following 387 web links will illustrate the point under discussion. ${ }^{20-24}$ Example 1 presented in Sec. IIIE is an 388 illustration of the latter subject. Other schematic images of different surface arrangements that 389 fit our approach are presented on Figs. 19-21. Many of them could be related with different 390 reflecting and receiving surfaces in urban canyons

APPENDIX:
Case (a) Sloping surface of infinite width facing an infinite uniform
horizon - the main equation for the analytic estimation of $G V F_{1-2}$ is
Eq. (A1). Input data is the included angle ϕ.
(A1)
GVF $=(1+\cos \Phi) / 2$
 horizon. The main equation for the analytic estimation of $G V F_{1-2}$ is given as Eq. (7) in section 2.1.2

Input data are: a, b, c and included angle ϕ.

Scheme A4. Defining geometry for case (c)

Scheme A5. Defining geometry for case (d)

Case (d) View factor for generalized inclined-rectangle arrangement. The analytic estimation of $G V F_{1-3}$ is based on Eqs. (7) and (23).

Input data are: $a_{1 L}, a_{1 u}, c_{3^{\prime} L}, c_{3^{\prime} \cup}, b_{1 L}, b_{1 U}, d_{3^{\prime} L}, d_{3^{\prime} U}$ and included angle ϕ.
,

FIG. 20. The description of VBA code for analytic estimation of VF includes brief information for each of the given case, its main equation and a figure of the defining geometry (schemes A1-A5).
Case (e) Sloping surface of finite width facing a finite uniform
horizon, with a common line. The main equation for the numeric
estimation of GVF ${ }_{1-2}$ with uniform grid is Eq. (24) in section 2.4.

FIG. 21. The description of VBA code for analytic estimation of VF includes brief information for each of the given case, its main equation and a figure of the defining geometry (schemes A6-A11).
${ }^{1}$ A. Hirsch, S. Pless, R. Guglielmetti, and P. A. Torcellini, The Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework, see http://www.nrel.gov/sustainable_nrel/pdfs/49067.pdf
${ }^{2}$ S. C. M. Hui, Energy performance of air-conditioned buildings in Hong Kong, thesis, 1996, Chap. 6: Building Energy Simulation Methods, available at http://web.hku.hk/~cmhui/thesis/chp6.pdf
${ }^{3}$ G. Laccarino, M. Fischer, and E. Hult, Towards Improved Energy Simulation Tools for Buildings: Improving Airflow 398 Parameterizations Within Energy Simulation Using CFD and Building Measurements, June 22 2010, see http://www.ies- 399 ve.com/content/mediaassets/pdf/p135final-long.pdf
${ }^{4}$ G. Iaccarino, M. Fischer, and E. Hult, Towards Improved Energy Simulation Tools for Buildings. Improving Airflow Parameterizations Within Energy Simulation Using CFD and Building Measurements, see http://www.stanford.edu/
${ }^{5}$ See http://intelligence.org/2014/04/03/erik-debenedictis/ for Erik DeBenedictis on supercomputing.
${ }^{6}$ See http://www.planethpc.eu/index.php?option=com_content\&view=article\&id=48 for High Performance Computing FAQ.
${ }^{7}$ The Future of Computing Performance: Game Over or Next Level?, Committee on Sustaining Growth in Computing 407 Performance, edited by S. H. Fuller and L. I. Millett (National Research Council, Washington DC, 2011).
${ }^{8}$ See http://www.bbc.com/news/uk-england-london-23930675 for BBC NEWS London: "Walkie-Talkie" skyscraper melts 409 Jaguar car parts.
${ }^{9}$ J. R. Howell, A Catalog of Radiation Heat Transfer - Configuration Factors, Introduction, see http://www.thermalradiation.net/intro.html
${ }^{10}$ R. Siegel and J. Howell, Thermal Radiation and Heat Transfer, 4th ed. (Taylor \& Francis, New York, 2002).
${ }^{11}$ J. R. Howell, A Catalog of Radiation Heat Transfer - Configuration Factors, C-16: Two Rectangles With One Common 414 Edge and Included Angle of Φ, see http://www.thermalradiation.net/sectionc/C-16.html
${ }^{12}$ B. Y. H. Liu and R. C. Jordan, "The long term average performance of flat plate solar energy collectors," Sol. Energy 7, 53-74 (1963).
${ }^{13}$ J. P. Holman, Heat Transfer, 7th ed. (McGraw-Hill, New York, 1992).
${ }^{14}$ G. N. Walton, Algorithms for Calculating Radiation View Factors Between Plane Convex Polygons With Obstructions, 419 National Bureau of Standards (NBSIR 86-3463), 1987 - shortened report in Fundamentals and Applications of Radiation 42 Heat Transfer (American Society of Mechanical Engineers, 1986), HTD-Vol. 72.
${ }^{15}$ G. N. Walton, "Calculation of obstructed view factors by adaptive integration," Technical Report No. NISTIR-6925, ${ }^{16}$ National Institute of Standards and Technology (NIST), Gaithersburg, MD, 2002.
${ }^{17}$ D. C. Hamilton and W. R. Morgan, "Radiant Interchange Configuration Factors," Technical Note 2836, National 42 Advisory Committee for Aeronautics, Washington D.C., 1952.
${ }^{18}$ A. Feingold, "Radiant interchange configuration factors between various selected plane surfaces," Proc. R. Soc. London, Ser. A 292(1428), 51-60 (1966).
${ }^{19}$ N. V. Suryanarayana, Engineering Heat Transfer (West Publishing Company, New York, 1995). 429
${ }^{20}$ See http://www.photon.info/photon_news_detail_en.photon?id=87696 for solar's economics ensure it will be an essential 430 part of the world's future energy mix, Citigroup, August, 2014.
${ }^{21}$ D. Roberts, Energy Democracy: Three Ways to Bring Solar Power to the Masses, 2012, see http://www.motherearth- 43 news.com/renewable-energy/community-solar-energy-zwfz1209zhun.aspx\#axzz3AIMMkbgS
${ }^{22}$ D. Chiras, More Affordable Solar Power, 2012, see http://www.motherearthnews.com/renewable-energy/solar-power- 434 zm0z12aszphe.aspx\#axzz3AIMMkbgS 435
${ }^{23} \mathrm{~A}$. Light, PV soundless-world record "along the highway"-A PV sound barrier with 500 KWp and ceramic based PV 436 modules, 2009, see http://www.asilin org/2009/11/pv-soundless-world-record-along-highway.html
${ }^{24}$ See http://www.fhwa.dot.gov/real_estate/publications/alternative_uses_of_highway_right-of-way/rep03.cfm for Alternative 438 Uses of Highway Right-of-Way.

[^0]: ${ }^{\text {a) }}$ T. Muneer, S. Ivanova, and M. Gul contributed equally to this work.
 ${ }^{\text {b) }}$ Author to whom correspondence should be addressed. Electronic mail: yk78@hw.ac.uk.

