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where j is
√
01, K is the number of frequency com-

Fernández del RıB o, J. E., and Sarkar, T. K., Comparison ponents, and Am is the complex amplitude at fre-
between the Matrix Pencil Method and the Fourier Trans- quency fm .
form Technique for High-Resolution Spectral Estimation, The time function is sampled at N equispaced
Digital Signal Processing 6 (1996), 108–125. points, Dt apart. Hence (2.1) reduces to

The objective of this paper is to compare the perfor-
mance of the Matrix Pencil Method, particularly the Total
Forward–Backward Matrix Pencil Method, and the Fou- g ( iDt ) Å ∑

K

mÅ1

Ame j2p fmiDt ;
rier Transform Technique for high-resolution spectral esti-
mation. Performance of each of the techniques, in terms i Å 0, . . . , N 0 1. (2.2)
of bias and variance, in the presence of noise is studied
and the results are compared to those of the Cramer–Rao

The signal in (2.2) may be contaminated by noiseBound. q 1996 Academic Press, Inc.

to produce z ( iDt ) . The additive white noise w ( iDt )
is assumed to be Gaussian with zero mean and vari-

1. INTRODUCTION ance 2s2 , and it is included in our model via

In this work, the Total Forward–Backward Ma- z ( iDt ) Å g ( iDt ) / w ( iDt ) ;
trix Pencil Method (TFBMPM) is utilized for the

i Å 0, . . . , N 0 1. (2.3)high-resolution estimator and its results are com-
pared with those of the Fourier Transform Tech-

In order to simplify the notation, Eq. (2.3) will benique, which is a straightforward implementation of
rewritten asthe Fourier Transform. The root mean squared error

for both of the methods is also considered in making
a comparison in performance. zi Å gi / wi ; i Å 0, . . . , N 0 1. (2.4)

Simulation results are presented to illustrate the
performance of each of the techniques. The frequency estimation problem consists of esti-

mating K frequency components from a known set2. SIGNAL MODEL
of noise contaminated observations, zi , i Å 0, . . . ,
N 0 1.

Consider a time domain signal of the form In this paper, the frequency estimation problem
will be solved by using an extension of the Matrix

g (t ) Å ∑
K

mÅ1

Ame j2p fmt , (2.1) Pencil Method (MPM) [1] called Total Forward–
Backward Matrix Pencil Method and compared with

* Fax: (315) 443-4441. E-mail: tksarkar@mailbox.syr.edu. the results obtained from the Fourier Techniques.
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Z1f b2(N0L)1L Å F z1 z2 ??? zL01 zL

z*L01 z*L02 ??? z*1 z*0
G , (3.2)

where * denotes complex conjugate, L is called the
pencil parameter, and the transpose of zj ( j Å 0, . . . ,
L ) is defined as

zT
j Å [zj , zj/1 , . . . , zN0L/j01] ; j Å 0, . . . , L . (3.3)

The new Z0f b and Z1f b are better conditioned [2,
Appendix B] than Z0 and Z1 , which are formed for
the ordinary MPM; that is, Z0f b and Z1f b are less
sensitive than Z0 and Z1 to small changes in the
element values.

With (3.1) and (3.2) one can build the Matrix Pen-
cil, Z1f b 0 jZ0f b (j is a complex scalar), and follow
the method proposed in [1, Section II] to estimate
the frequency components, but, for noisy data, the
best strategy is to perform a Singular Value Decom-
position (SVD) [3] on the ‘‘all data’’ matrix [4]. This
matrix is given by

FIG. 1. Real and imaginary parts of an undamped cisoid formed
by two frequency components of equal power. Zf b2(N0L)1(L/1) Å F z0 z1 ??? zL01 zL

z*L z*L01 ??? z*1 z*0
G . (3.4)

In Fig. 1, a possible noiseless data record (real and
imaginary part of the signal) is shown. The function It is easy to see that Zf b contains both Z0f b and
represented was generated using Eq. (2.2) with the Z1f b :
parameters given in Table 1.

This function will be utilized in making a compari-
Zf b2(N0L)1(L/1) Å [Z0f b2(N0L)1L , cL/1] (3.5)son between the Matrix Pencil Method and the Fou-

rier Transform Technique. Zf b2(N0L)1(L/1) Å [c1 , Z1f b2(N0L)1L] ; (3.6)

3. TOTAL FORWARD–BACKWARD MATRIX here c1 and cL/1 represent, respectively, the first and
PENCIL METHOD (L / 1)th columns of Zf b .

On the other hand, the SVD of Zf b is

The estimation of frequencies in the presence of
Zf b2(N0L)1(L/1)noise is considered by the TFBMPM. When the com-

plex exponentials in (2.2) (so-called cisoids) are un- Å U2(N0L )12(N0L )S2(N0L )1 (L/1)V H
(L/1)1 (L/1) , (3.7)

damped1 (which is the case in this work), to improve
the estimation accuracy we consider the matrices
Z0f b and Z1f b as defined by

TABLE 1

Input Data Considered in Fig. 1
Z0f b2(N0L)1L Å F z0 z1 ??? zL01 zL01

z*L z*L01 ??? z*2 z*1
G (3.1)

64 samples (N Å 64)
Sampling period 0.25 ms (Dt Å 1/4000 s)

2 frequency components (K Å 2)1 Note that the Matrix Pencil Method can solve a more general
A1 Å 1e j2.7(p/180)

problem [1], the pole estimation, pm , for damped cisoids (pm Å
A2 Å 1 e j0

e (0s
m
/jv

m
)Dt

, sm § 0, m Å 1, . . . , K ) and the undamped cisoids are f1 Å 580 Hz
a particular case of the damped exponentials (in that it is enough f2 Å 200 Hz
to set sm to zero for all m ) .
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where the superscript H denotes complex conjugate and right multiplying (3.19) by ZO /0f b , the resulting
eigenproblem can be expressed astranspose of a matrix and U , S, and V are given by

qH (ZO 1f bZO /0f b 0 jI ) Å 0H , (3.20)S Å diag{s1 , s2 , . . . , sp } ;

p Å min{2(N 0 L ) , L / 1} (3.8)
where ZO /0f b is the Moore–Penrose pseudoinverse [3]
of Ẑ0f b and it can be written ass1 § s2 § rrr § sp § 0 (3.9)

U Å [u1 , u2 , . . . , u2(N0L ) ] ; ZO /0f b Å (VO H
0 )/SO 01UO

/ . (3.21)
Z H

f bui Å sivi , i Å 1, . . . , p (3.10)
Substituting (3.17) and (3.21) into (3.20), theV Å [v1 , v2 , . . . , vL/1] ;

equivalent generalized eigen-problem becomes
Zf bvi Å siui , i Å 1, . . . , p (3.11)

qH (VO H
1 0 jVO H

0 ) Å 0H . (3.22)UHU Å I , V HV Å I . (3.12)

It can be shown that (3.22) is equivalent tosi are the singular values of Zf b and the vectors ui

and vi are, respectively, the ith left singular vector
qH (VO H

1 VO 0 0 jVO H
0 VO 0) Å 0H , (3.23)and the ith right singular vector.

The problem can be computationally improved by
which is a generalized eigenproblem of dimension Kapplying the singular value filtering, which consists
1 K .of [1] using the K largest singular values of Zf b , i.e.,

Using the values of the generalized eigenvalues,
j, of (3.23), the frequency components can be esti-ZO f b2(N0L)1(L/1) Å UO 2(N0L )1KSO K1KVO H

K1 (L/1) , (3.13)
mated.

In the following, the algorithm applied to estimate
where the frequencies is summarized as:

Step 1: Construct the matrix Zf b , (3.4), with the
SO Å diag{s1 , s2 , . . . , sK } (3.14) corrupted samples, where zT

j ( j Å 0, . . . , L ) is de-
fined as in (3.3), and L has to satisfy

has the K largest singular values of S and the col-
umns of Û and V̂ are formed by extracting the singu- K £ L £ N 0 K . (3.24)
lar vectors corresponding to those K singular values.

Eq. (3.13) can be rewritten as Step 2: Realize the SVD of Zf b , (3.7), and, from
its singular values, estimate K (number of frequency

ZO f b Å UO SO VO H Å UO SO [t1 , t2 , . . . , tL/1] components). This problem is equivalent to solving
the eigenproblem Z H

f bZf b; i.e., it can be proved thatÅ [UO SO t1ÉUO SO t2 rrr UO SO tLÉUO SO tL/1] . (3.15)
the singular values of Zf b , si , are the nonnegative
square roots of hi , where hi are the eigenvalues of

Comparing (3.5), (3.6), and (3.15), the equations the eigenproblem

ZO 0f b Å UO SO VO H
0 (3.16) (Z H

f bZf b 0 hi I )ri Å 0 . (3.25)
ZO 1f b Å UO SO VO H

1 (3.17)
Step 3: Extract V̂0 and V̂1 from V̂ , (3.18), where

V̂ is the K-truncation of V ( (3.7) to (3.14)) .can be established, where V̂0 and V̂1 are obtained
Step 4: Estimate the K frequencies using the Kfrom V̂ , deleting, respectively, its (L/ 1)th and first

generalized eigenvalues, jm , of (3.23), such thatcolumns, i.e.,
those eigenvalues can be expressed as

VO Å [VO 0 , vL/1] , VO Å [v1 , VO 1] . (3.18)
jm Å Real(jm ) / j Imag(jm ) ;

By considering the matrix pencil m Å 1, . . . , K , (3.26)

where Real(jm ) and Imag(jm ) are, respectively, theZO 1f b 0 jZO 0f b (3.19)
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real and imaginary parts of jm , but those eigenval-
i Å 0, . . . , N 0 1, (4.2.1)

ues are related to the frequencies as

has been followed, where
jm É e j2p fmDt ; m Å 1, . . . , K . (3.27)

Am Å ÉAmÉe jum ; m Å 1, . . . , K (4.2.2)
And, from (3.26) and (3.27),

vm Å 2pfm; m Å 1, . . . , K . (4.2.3)

For the noisy data problem it is enough to considerfm É
1

2pDt
tan01SImag(jm )

Real(jm ) D;
(2.4), which, in vectorial notation, can be denoted
as

m Å 1, . . . , K . (3.28)

z Å g / w , (4.2.4)

4. LIMITS OF TFBMPM FOR FREQUENCIES
whereESTIMATION

zT Å [z0 , z1 , . . . , zN01] (4.2.5)
4.1. The Frequency Estimation Problem gT Å [g0 , g1 , . . . , gN01] (4.2.6)

The frequency estimation problem consists of [5,
wT Å [w0 , w1 , . . . , wN01] (4.2.7)Chapter 6] determining the frequency components

of a signal, which obeys the mathematical model of
and those vectors could be briefly described as fol-Section 2, from a set of noisy samples.
lows:Any estimate of the frequency parameter evalu-

g is formed by the noise free samples, (4.2.1). Thisated from a set of samples involves a random process
vector may be seen like a deterministic unknownand, thus, it is necessary to consider the estimate as
magnitude. The deterministic model for g is useda random variable. Consequently, it is not correct to
when K (number of frequency components) and thespeak of a particular value of an estimate, but it is
number of snapshots (in this work just one snapshotnecessary to know its statistical distribution if the
or ‘‘picture’’ is considered) are small [9].accuracy of the estimate is analyzed.

w represents the complex white Gaussian noise,An efficient estimate has to be as near as possible
with the characteristicsto the true value of the parameter to be estimated

[6, Chapter 32]. This idea of ‘‘concentration’’ or ‘‘dis-
zero mean: E [w ] Å 0 (4.2.8)persion’’ about the true value may be measured us-

ing several statistical magnitudes (variance, mean
uncorrelated, with variance 2s2 :

squared error, etc.) .
One of the first works concerned with the applica- Rw Å 2s2IN1N , (4.2.9)

tion of the Estimation Theory by Fisher and Cramer
to the problem of estimating signal parameters is where E [r] means expected value, Rw is the correla-
that of Slepian [7]; later, in [8], the statistical the- tion matrix of the noise, and IN1N is the identity
ory is applied to the estimation of the Direction of matrix.
Arrival of a plane wave impinging on a linear phased z is the vector containing the observed data. Ob-
array. viously, from its definition, (4.2.4 ) , it is a random

In this work, the limits of TFBMPM for frequency vector.
estimation will be pointed out and the variance of In order to define the CRB it is first necessary
this method will be compared with that of the to introduce the joint probability density function
Cramer–Rao Bound (CRB) [6, Chapter 32]. ( jpdf) . The jpdf of a complex Gaussian random vec-

tor of N components, x , is defined [5, p. 478] as
4.2. The Cramer–Rao Bound

In this section, the notation
fx (x ) Å 1

pNdet(Rx )
e0 (x0E[x ] )HR01

x (x0E[x ] ) , (4.2.10)

gi Å ∑
K

mÅ1

ÉAmÉe jume jvmiDt ;
where det(r) means determinant of a matrix, H de-
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notes complex conjugate transpose, and01 indicates are almost unbiased3 in the region where the
TFBMPM works.the inverse of a matrix.

Therefore, the jpdf of w can be evaluated by using For unbiased estimates, the CRB states that if aP
(4.2.8) – (4.2.10): is an unbiased estimate of a , the variance of each

element, aP l ( l Å 1, . . . , 3K ) , of aP can be no smaller
than the corresponding diagonal term in the inverse

fw (w ) Å 1
(2ps2)N e01/2s2(N01

iÅ0 ÉwiÉ
2
. (4.2.11) of the Fisher Information Matrix

var(aP l ) § [F01]ll , (4.2.17)The jpdf of z can be obtained from (4.2.11) by
taking into account the relationship [10, p. 61] be-
tween z and w , which is given by (4.2.4), where aP l is the estimate of the parameter al ( l Å 1,

. . . , 3K ) , [F01]ll is the lth diagonal element of the
inverse of F , and F3K13K is the Fisher Information

fzÉa(zÉa) Å 1
(2ps2)N e01/2s2(N01

iÅ0 Ézi0giÉ
2
, (4.2.12) Matrix.

The (m , n )th element of F is defined as

where Éa denotes that the jpdf is conditioned to
an unknown vector parameter, a , and gi is given [F ]mn Å EF Ì ln fzÉa(zÉa)

Ìam
r

Ì ln fzÉa(zÉa)
Ìan

G ;
in (4.2.1 ) .

From (4.2.12) one can deduce that z is a Gaussian
random vector with m , n Å 1, . . . , 3K . (4.2.18)

E [z ] Å g (4.2.13) The last equation, using (4.2.12), can be rewritten
[1] asRz Å 2s2IN1N . (4.2.14)

Also, a is the vector formed by the parameters
[F ]mn Å

1
2s2 ∑

N01

iÅ0

2 RealF Ìgi

Ìam
r

Ìg*i
Ìan

G ;to be estimated. In this work the complex ampli-
tudes of the signals, Am , 2 and the variable vm in
(4.2.1 ) will be chosen as unknown parameters. m , n Å 1, . . . , 3K , (4.2.19)
Note that Am is given by (4.2.2 ) and, therefore,
each Am corresponds to two parameters, ÉAmÉ and

where Real[r] denotes the real part.
um . On the other hand, vm is related to the frequen-

It can be proved [11] that F01 may be decomposedcies through (4.2.3 ) .
asConsequently, the vector a can be written as

F01
3K13K Å s2S3K13KP01

3K13KS3K13K , (4.2.20)aT Å [a1 , a2 , a3 , . . . , a3K02 , a3K01 , a3K ] , (4.2.15)

wherewhere

S3K13Ka3m02 Å vm Å 2pfm; a3m01 Å ÉAmÉ;

Å diag{[S1]313 , [S2]313 , . . . , [SK ]313} (4.2.21)a3m Å um; m Å 1, . . . , K . (4.2.16)

[Sm ]313 Å diag{ÉAmÉ
01 , 1, ÉAmÉ

01} ;
The CRB provides the goodness of any estimate of

m Å 1, . . . , K (4.2.22)a random parameter. The estimates of this work
have been computed via the TFBMPM, and it will
be pointed out, through simulation results, that they P3K13K Å F [P11]313 ??? [P1K ]313

: ??? :

[PK1]313 ??? [PKK ]313

G (4.2.23)

2 In order to estimate the complex amplitudes, Am , using the
results obtained from the TFBMPM for the frequency compo-
nents, one may solve a least-squares problem z É Ea , where z
are the corrupted samples, a contains the complex amplitudes 3 An estimate aP of the vector parameter a is unbiased if E [aP ]

Å a .Am , and E is the matrix which applied to a gives g .
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Pmn Å

(Dt )2 ∑
N01

iÅ0

i2cos D( i , m , n ) 0Dt ∑
N01

iÅ0

i sin D( i , m , n ) Dt ∑
N01

iÅ0

i cos D( i , m , n )

Dt ∑
N01

iÅ0

i sin D( i , m , n ) ∑
N01

iÅ0

cos D( i , m , n ) ∑
N01

iÅ0

sin D( i , m , n )

Dt ∑
N01

iÅ0

i cos D( i , m , n ) 0 ∑
N01

iÅ0

sin D( i , m , n ) ∑
N01

iÅ0

cos D( i , m , n )

(4.2.24)

r2i ( i Å 0, . . . , N 0 1), are obtained to construct theD( i , m , n ) Å i (vm 0 vn )Dt / um 0 un;
complex sequence

i Å 0, . . . , N 0 1; m , n Å 1, . . . , K . (4.2.25)

xi Å r1i / jr2i ; i Å 0, . . . , N 0 1. (4.3.1.1)4.3. Simulation Results
4.3.1. Input Data. In this section several graphs

Taking into account that the variance of the com-are presented and discussed in order to facilitate a
plex noise, wi , was defined as 2s2 , it is easy to de-better understanding of the TFBMPM and its esti-
duce the relationshipmation limits.

The methodology followed to obtain the different
plots has been to generate a set of N complex sam-

wi Å
√
2s2xi ; i Å 0, . . . , N 0 1. (4.3.1.2)ples, using ((4.2.1) to (4.2.4)) and then to apply the

TFBMPM as proposed in the algorithm of Section 3.
The SNR, for each frequency component, has beenThis algorithm was iterated several times when the

defined asvariance of the frequency estimate was numerically
computed.

The input data may be described as follows:
SNRm Å 10 log10

ÉAmÉ
2

2s2 ;
(1) Observation interval

8 samples have been considered (N Å 8). m Å 1, . . . , K . (4.3.1.3)
The sampling period was normalized

(Dt Å 1 s) .
(4) TFBMPM remarks (see Section 3)(2) Description of the signal
The first step in the TFBMPM consists of choosing2 frequency components have been chosen

a value for the pencil parameter, L , in order to form(K Å 2) .
the Zf b matrix.ÉA1É Å ÉA2É Å 1: Two components of equal

The best choice for L is [2]power.
u1 , u2 : A deterministic model has been as-

sumed for the phases of the frequency components. N
3
£ L £ 2N

3
, (4.3.1.4)The difference u1 0 u2 is taken from values in [07,

1807 ) . TFBMPM performance depending on u1 0 u2

is shown in the next section.
but, at the same time, L has to satisfy (3.24).f1 Å 0.200 Hz.

To numerically compute the variance of the fre-f2 : The second frequency varies between
quencies the algorithm proposed in Section 3 has0.270 and 0.290 Hz and, therefore, the value of D f
been iterated 500 times (trials) . For each trial, astudied is in the interval [0.070 Hz, 0.090 Hz],
different vector w was randomly taken.where D f Å f2 0 f1 .

(3) Statistical considerations for the noise (see 4.3.2. Performance of the TFBMPM as a function
of u1 0 u2 . The accuracy in the frequencies estima-Section 4.2)

The noise was generated by using ISML [12] FOR- tion, using the TFBMPM, depends strongly on the
difference of phases between the components of theTRAN subroutine GGNML. This subroutine is a

Gaussian (0, 1) pseudo-random number generator. signal. It has been proved [2] that the inverse of the
variance of the frequencies estimates,With GGNML two sets of N real numbers, r1i and
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FIG. 2. Inverse of the variance of the first frequency estimate, as a function of the difference of phases of the two frequency components
and the difference of frequencies. SNR Å 17 dB and the pencil parameter for the TFBMPM is L Å 5.

have been explained in Section 4.3.1. SNR is 17 dB
10 log10

1
var( fO m )

; m Å 1, . . . , K , (4.3.2.1) and L Å 5. In Fig. 3 the same input data are taken,
and the CRB for the variance of f̂ 1 is shown. To
obtain this 3D plot, the method in Section 4.2 hasreaches a maximum if
been followed, determining the CRB for the variance
of vP 1 and applying the relationship in (4.2.3) to cal-(vm 0 vn ) (N 0 1)Dt / 2(um 0 un )
culate the CRB for f̂ 1 .

Å (2l )p (4.3.2.2) Comparing Fig. 2 to Fig. 3 one can deduce that
the CRB is reached by the estimate obtained using

and a minimum if TFBMPM when f2 0 f1 is close to 0.090 Hz or, in the
entire interval [0.070 Hz, 0.090 Hz], when u1 0 u2

(vm 0 vn ) (N 0 1)Dt / 2(um 0 un ) is far from the worst case.
4.3.3. Estimating the number of frequency compo-Å lp. (4.3.2.3)

nents from the singular values of Zf b . As was ex-
plained in Section 3, to estimate the number of fre-In both Eqs. (4.3.2.2) and (4.3.2.3), m , n , and l
quency components K the eigenvalues of Z H

f bZf b willhave to satisfy
be used. This idea will be followed in this section for
both the ideal sampling (neglecting the noise) andfor all m x n; m , n Å 1, . . . , K;
the corrupted samples.

l integer. (4.3.2.4) Figures 4 to 11 show the normalized magnitude,
in dB, of the eigenvalues, jn (n Å 1, . . . , L / 1), of

We will call, respectively, best case and worst case Z H
f bZf b . This normalized magnitude is given by

to (4.3.2.2) and (4.3.2.3). The meaning is simple; when
(4.3.2.2) is given, (4.3.2.1) reaches a maximum and
thus the variance takes its minimum value. In other

10 log10
jn

jmax
; n Å 1, . . . , L / 1, (4.3.3.1)words, the distribution of the estimates reaches its

maximum of concentration around the true value of
the vector parameter being estimated. The explana-
tion for the worst case is analogous. where L is the pencil parameter and jmax is the

largest eigenvalue.In Fig. 2 that dependence is shown. The input data
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FIG. 3. Inverse of the CRB of the first frequency estimate, as a function of the difference of phases of the two frequency components
and the difference of frequencies. SNR Å 17 dB.

The input data for SNR, L , f2 0 f1 , and u1 0 u2 are number of signals is estimated from the K largest
eigenvalues of Z H

f bZf b ) . This gap is much greater forgiven in Table 2.
Comparing the noiseless case (Figs. 4 to 7) to the the noiseless samples than for the samples in noise,

as was expected. In fact, the noise is the ‘‘culprit’’ ofcorrupted samples (Figs. 8 to 11) one can see that
the main difference is the ‘‘gap’’ between the second the gap reduction.

To enhance this gap, for the noisy data case, digi-eigenvalue and the third one (note that two fre-
quency components are being considered and the tal filtering techniques in the original set of samples,

zi , can be applied [13].

FIG. 5. Normalized magnitude of the eigenvalues of Z H
f bZf b . TheFIG. 4. Normalized magnitude of the eigenvalues of Z H

f bZf b . In-
put data: N Å 8, K Å 2, ÉA1É Å ÉA2É Å 1, u1 0 u2 Å 88.27 (worst same input data as in Fig. 4, but u1 0 u2 Å 113.47 (worst case)

and f2 Å 0.290 Hz.case), f2 Å 0.270 Hz, f1 Å 0.200 Hz, SNR Å ` (noiseless), L Å 3.
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FIG. 6. Normalized magnitude of the eigenvalues of Z H
f bZf b . The FIG. 8. Normalized magnitude of the eigenvalues of Z H

f bZf b . The
same input data as in Fig. 4, but u1 0 u2 Å 178.27 (best case) and same input data as in Fig. 4, but SNR Å 20 dB.
L Å 6.

ance of f̂ 1 is referred to the CRB, which means that4.3.4. TFBMPM for frequencies estimation in
the (SNR) – ( f20 f1) plane represents the CRB. Bothpresence of noise. In this section the number of fre-
figures demonstrate that the TFBMPM works be-quency components, K , is assumed to be known and
yond a certain threshold of SNR.equal to 2.

Consequently, the threshold is an indicator of theFigures 12 and 13 show the TFBMPM perfor-
estimation limits. For example, for the worst case,mance as a function of SNR and f2 0 f1 . Figure 12
and for f2 0 f1 Å 0.070 Hz, the threshold is betweenhas been obtained for the worst case of u1 0 u2 ac-
17 and 19 dB, as is shown in Fig. 12; therefore thiscording to (4.3.2.3), while Fig. 13 corresponds to the
is the SNR lower limit in order for the TFBMPM tobest case estimation, (4.3.2.2). Note that the vari-
provide reasonable results.

FIG. 7. Normalized magnitude of the eigenvalues of Z H
f bZf b . The

same input data as in Fig. 4, but u1 0 u2 Å 23.47 (best case), f2 FIG. 9. Normalized magnitude of the eigenvalues of Z H
f bZf b . The

same input data as in Fig. 5, but SNR Å 20 dB.Å 0.290 Hz, and L Å 6.
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TABLE 2

Input Data Considered for Figs. 4 to 11

Figure SNR (dB) L f2–f1 (Hz) u1–u2 (7)

4 ` (noiseless) 3 0.070 88.2 (worst case)
5 ` (noiseless) 3 0.090 113.4 (worst case)
6 ` (noiseless) 6 0.070 178.2 (best case)
7 ` (noiseless) 6 0.090 23.4 (best case)
8 20 3 0.070 88.2 (worst case)
9 20 3 0.090 113.4 (worst case)

10 20 6 0.070 178.2 (best case)
11 20 6 0.090 23.4 (best case)

For the best estimate, and f2 0 f1 Å 0.070 Hz, the 5. THE FOURIER TRANSFORM ESTIMATOR
lower limit is between 5 and 6 dB, as is shown in
Fig. 13.

Figures 14 and 15 have been extracted from the 5.1. The Periodogram
data used in Figs. 2 and 3 and thus correspond to a The Fourier Transform Estimator (FTE) for fre-
SNR of 17 dB. Also 0.070 Hz is the designated value quency components estimation considered in this
for f2 0 f1 in Fig. 14 and 0.090 Hz is the value in work is based on the classic periodogram. The esti-
Fig. 15. mates of the frequencies, f̂ m (m Å 1, . . . , K ) , will

In Fig. 14 the CRB is reached for all u1 0 u2 be the values of the variable f ( frequency) which
except in the interval (707, 1057 ) , approximately, maximize (local maxima) the periodogram, ( f ) .
where the TFBMPM is not performing well. The The periodogram is an estimate of the power density
reason can be found in Fig. 12, obtained for the spectrum and can be defined [14] as
worst case of u1 0 u2 , where one can see that for f2

0 f1Å 0.070 Hz, a SNR of 17 dB is below the thresh-
( f ) Å 1

NDt
ÉZ ( f )É2 , (5.1.1)old and, by definition, the estimator ceases func-

tioning. Nevertheless, the CRB is always reached
in Fig. 15 because 17 dB is above the threshold
for all u1 0 u2 ( for the worst case estimation the where Z ( f ) is the Discrete-Time Fourier Transform
threshold for f2 0 f1 Å 0.090 Hz is between 13 and (DTFT) of the noise samples,
14 dB, as is shown in Fig. 12) .

FIG. 10. Normalized magnitude of the eigenvalues of Z H
f bZf b . FIG. 11. Normalized magnitude of the eigenvalues of Z H

f bZf b .
The same input data as in Fig. 7, but SNR Å 20 dB.The same input data as in Fig. 6, but SNR Å 20 dB.
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FIG. 12. Variance of fO 1 compared to the CRB for the worst case estimation. The peaks show the threshold of the TFBMPM.

z ( iDt ) Å zoriginal ( iDt )rh ( iDt ) ,
Z ( f ) Å Dt ∑

N01

iÅ0

zi e0j2p fiDt , 0 1
2Dt

£ f £ 1
2Dt

.
i Å 0, 1, . . . , N 0 1 (5.2.2)

(5.1.2)
h ( iDt ) Å H1, 0 £ iDt £ (N 0 1)Dt

0, otherwise.
(5.2.3)

Figure 16 shows the normalized periodogram for
the complex signal of Fig. 1. Note that the SNR as-
sumed for this example is ` (noiseless samples).

In terms of the DTFT the finite record is periodi-The two main peaks correspond to the two frequency
cally extended, in the time domain, with periodcomponents of the signal.
NDt . If this period does not match the natural
period of the signal, discontinuities appear at the5.2. Consequences of the Leakage Effect for boundaries of the record. These discontinuities

Frequencies Estimation [16 ] are the cause of the leakage. The function of
It is well known [15, pp. 136–144] that side lobes a window is to reduce them. For this reason it is

(see Fig. 16) appear in the DTFT of a finite length required that a window go to zero smoothly at its
sequence, zi ( i Å 0, . . . , N 0 1). This phenomenon, boundaries.
called leakage, becomes more evident when the fre- Even if an appropriate window can reduce the
quencies move closer or when one frequency compo- bias of the frequency estimate, the application of
nent is much stronger than the rest. a window has a disadvantage as it decreases the

In order to mitigate the leakage effect, windows spectral resolution. Consequently, one has to
(weighting functions) are used. An observation in- make a trade-off between the spectral resolution
terval, NDt , is equivalent to a rectangular window, desired and the reduction of the side lobes. In any
h ( iDt ) , applied to the original signal, resulting in a case, the spectral resolution, in Hz, is limited [15,
finite set of samples, z ( iDt ) : pp. 46–49] to the reciprocal of the observation

time, (NDt )01 . Therefore, frequency components
separated by a distance less than (NDt )01 will notzoriginal ( iDt ) defined for
be distinguished by the FTE, that is, the case of
simulations carried out in Section 4.3, wherei Å 0` , . . . , 01, 0, 1, . . . , /` (5.2.1)
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FIG. 13. Variance of fO 1 compared to the CRB for the best case estimation. The peaks show the threshold of the TFBMPM.

(NDt )01 is 0.125 Hz and the maximum D f studied In Figs. 17 and 18 the windows are shown in both
time and frequency domains. The number of samplesis 0.090 Hz and, in consequence, the FTE does not

work under those conditions. has been taken as 12 and the sampling period is 0.25
ms. The main difference among these windows is theThree windows have been considered in this work:

Rectangular window reduction in the side lobes. The Standard window
achieves the largest reduction of the bias, but it does
so at the expense of broadening the main lobe, whichhi Å H1, 0 £ i £ N 0 1

0, otherwise;
(5.2.4)

results in a loss of spectral resolution.
The window in the time domain is applied by

weighting the input samples, zi , with the windowStandard window [11]
coefficients, hi , by modifying Eq. (5.1.2) in the fol-
lowing way:

hi Å
1
3

∑
3

kÅ0

akcosS2pik
N D , 0 £ i £ N 0 1

0, otherwise;
Z ( f ) Å Dt ∑

N01

iÅ0

zihi e0j2p fiDt , 0 1
2Dt

£ f £ 1
2Dt

.

(5.2.5) (5.2.7)

with a0 Å 1, a1 Å 01.43596, a2 Å 0.497536, a3 Å
Eq. (5.2.7) is simply the DTFT of the weighted00.061576.

samples, zihi , and it will be used, jointly withKaiser window [17, p. 232]
(5.1.1), to estimate the frequency components.

5.3. Comparison between the FTE and the
hi Å

I0[br
√
1 0 ( ( i 0 N /2) /N /2)2]

I0[b]
,

TFBMPM
0 £ i £ N 0 1 The frequency component estimation using the

0, otherwise; Fourier Transform has been widely studied by
Rife and Boorstyn in [11] . Figure 19 provides the(5.2.6)
comparison between various windows and the
TFBMPM.here I0[r] is the modified Bessel function of the first

kind and order zero and b is a parameter, and in The input data for Fig. 19 are given by Fig. 1,
and the SNR, which is defined in (4.3.1.3), variesthis work it has been chosen according to Table 3.
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reduction of the bias but at the expense of increasing
the variance of the estimate.

The bias shown in Fig. 20 was computed according
to

bias( fO 1) Å E [ fO 1] 0 f1 , (5.3.3)

and one can see that for SNR below 10 dB the FTE
with the Standard window offers less bias than the
TFBMPM. Nevertheless, the rmse obtained with the
TFBMPM is less than the one computed using the
Standard window as seen in Fig. 19. This is because
the Standard window reduces the bias but at the
same time increases the variance. On the other
hand, the use of the Rectangular window makes a
FTE biased even for high SNR.

In Fig. 21 the behavior of the estimator as the
number of samples increases is shown. The input
data are the same as in Fig. 19, but a Du of worst
case was taken for each N , and SNR Å 0 dB. The
FTE uses the Kaiser window for this simulation and

FIG. 14. Comparison between the inverse of the variance and it can be seen that for long data record the FTEthe CRB for the first frequency estimate. f2 0 f1 Å 0.070 Hz and
reaches the CRB.SNR Å 17 dB. The TFBMPM produces inaccurate results in u1 0

u2 √ (707, 1057 ) because the SNR is below the threshold. Figure 22 shows a comparative study of the rmse
as a function of the difference of frequencies f1 0 f2

for two components of equal power when the SNR is
between 0 and 40 dB. The values corresponding to 20 dB. As in Fig. 19 the sampling period is 0.25
the CRB (dark squares in Fig. 19) have been com- ms but the number of samples has been drastically
puted by the square root of the corresponding diago-
nal term in the inverse of the Fisher Information
Matrix (4.2.20) and the pencil parameter, L , for the
TFBMPM has been taken as 22. The statistical mag-
nitude represented in Fig. 19 is the root mean
squared error (rmse), defined as

rmse( fO 1) Å
√
E [ ( fO 1 0 f1)2] , (5.3.1)

where E [r] means expected value, f̂ 1 is the parame-
ter being estimated, and f1 is the true value of the
parameter. The rmse is related to the variance
through the bias, i.e.,

rmse2( fO 1) Å bias2( fO 1) / var( fO 1) , (5.3.2)

and, evidently, for unbiased estimators the rmse be-
comes the square root of the variance. The rmse was
computed using 200 trials for each algorithm.

From Fig. 19 one can see that the TFBMPM is
performing better than the FTE in all the SNR
range. On the other hand, and in spite of the smaller
bias presented by the Standard window (see Fig.

FIG. 15. Comparison between the inverse of the variance and20), the Kaiser window provides better results than
the CRB for the first DOA estimate. f2 0 f1 Å 0.090 Hz and SNR

the Standard window for SNR below 30 dB. The rea- Å 17 dB. The TFBMPM reaches the CRB for all u1 0 u2 because
the SNR is above the threshold.son for this is that the Standard window achieves a

120

6204$$0256 04-18-96 17:38:26 dspas AP: DSP



FIG. 16. Normalized periodogram of the undamped cisoid of Fig. 1. A Rectangular window was used to weight the samples in the time
domain.

reduced from 64 to 12 samples. The pencil parameter The last simulation included in this paper is
shown in Figs. 24 to 28. While in the previous simu-for the TFBMPM is L Å 7, f2 is 200 Hz, and Du

(worst case) is assumed according to (5.3.2.3). Two lations the two frequency components had the same
power, in Figs. 24 to 28, the first frequency compo-main conclusions can be drawn from Fig. 22; on the

one hand the FTE does not work for D f below 460 nent has 10 times more power than the second one,
Hz ((NDt )01 is 333 Hz) while TFBMPM still per-
forms well up to 180 Hz and, on the other hand, the
TFBMPM performs better than the FTE even when
FTE works, i.e., for D f greater than 460 Hz.

In Fig. 23 the accuracy of the estimators de-
pending on the number of samples, N , is shown. A
SNR of 15 dB for two frequency components of equal
power at, respectively, 1300 and 1000 Hz was consid-
ered. Also a Dt of 0.25 ms and a Du of worst case
for each N were taken. Similar conclusions to the
ones for Fig. 22 can be derived.

TABLE 3

b Values for the Kaiser Window

Figure b Value

17, 18, 19, 20, 21, 22 6
FIG. 17. The three windows used in this work for the Fourier23 5.5
Transform Estimator (FTE). The graph shows 12 samples for24, 25, 26, 27 5
each of them in the time domain.
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FIG. 20. Bias for the estimate of Fig. 19. In spite of the fact
FIG. 18. Comparative spectrum of the windows. The Discrete that the Standard window offers less bias than the TFBMPM for
Time Fourier Transform (DTFT) was used to obtain H ( f ) . SNR below 10 dB, its rmse performance is worse because the

Standard window increases the variance.

i.e., ÉA1É
2 Å 10 ÉA2É

2 , which supposes that SNR1

ter used in the TFBMPM is 6, f2 Å 400 Hz, SNR2 Å(dB) Å 10 dB / SNR2 (dB). On the other hand, 0.25
10 dB, and Du of worst case for each D f is chosen.ms for the sampling period and 12 samples charac-
From Figs. 24 and 25 one can see the better perfor-terize the observation interval. The pencil parame-
mance of the TFBMPM for both f̂ 1 and f̂ 2 estimates
and also a larger spectral resolution for this estima-
tor. At this point it is important to indicate that the

FIG. 19. A first comparison between the TFBMPM and the FTE.
Several SNR were considered for the signal of Fig. 1. A better
performance of the TFBMPM is observed in the entire SNR range FIG. 21. The signal of Fig. 1 was contaminated with a SNR Å

0 dB. For long data records the FTE reaches the CRB.under study.
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FIG. 22. The signal was built with two components of equal FIG. 24. rmse of the first estimate, fO 1 , for a signal composed by
power and SNR Å 20 dB. The observation interval is character- two frequency components. The first component has 10 times
ized by 12 samples and Dt Å 0.25 ms. Better performance and more power than the second one. SNR2 Å 10 dB.
higher spectral resolution are observed for the TFBMPM.

27, where the main lobe, centered in 1000 Hz ( f1) ,
criterion applied to consider whether an estimate is is masking the lobe corresponding to the second fre-
valid, when the FTE is used, has consisted of being quency component, f2 , at 400 Hz. The Rectangular
able to distinguish the two frequency components. window was not considered in this simulation be-
This idea is reflected in Fig. 26, where the Kaiser cause, for some frequencies, the smaller frequency
window is used for the FTE, f1 is 1400 Hz, f2 is 400 component, f2 , was hidden for side lobes, as is shown
Hz, and Du Å 457. The opposite case is shown in Fig. in Fig. 28. The two frequency components of the sig-

nal for that example are f1 Å 1860 Hz and f2 Å 400
Hz, and Du Å 177.37.

FIG. 23. A dual behavior to the one of Fig. 21 is derived. A SNR
of 15 dB was chosen for two components of equal power and 300 FIG. 25. The same input data as in Fig. 23 but the estimate

evaluated is fO 2 .Hz apart.
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FIG. 28. For some difference of frequencies, the second mainFIG. 26. The two main lobes centered, respectively, at 1400 and
lobe is hidden by side lobes when the Rectangular window is400 Hz, can be distinguished from each other. The first main lobe
applied and, consequently, the FTE will not work.has 10 times more power than the second one.

6. CONCLUSIONS the expense of spectral resolution. The Rectangular,
Standard, and Kaiser windows have been chosen as
the representatives for numerical simulation. It has

The objective of this paper has been to present the been shown that when TFBMPM works beyond a
TFBMPM and the Fourier Transform Technique for certain threshold of SNR, it provides better variance
the estimation of undamped cisoids in white estimates than the Fourier techniques, although the
Gaussian noise. The accuracy of TFBMPM has been bias may be large. However, the root mean squared
brought out in the presence of noise and its variance error is less for the TFBMPM than for the Fourier
compared to that of the Cramer–Rao Bound. Techniques with various windows.

It has been shown that applying windowing in the
Fourier Transform provides unbiased estimates at
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