
Model-Based Conifer Canopy Surface
Reconstruction from Photographic Imagery:
Overcoming the Occlusion, Foreshortening,

and Edge Effects
Yongwei Sheng, Peng Gong, and Gregory S. Biging

similar failures1. Current commercial packages are not de-Abstract
signed to extract canopy surfaces with high variability in theCanopy surface data are desirable in forestry, but they are
vertical direction.difficult to collect in the field. Existing surface reconstruction

Sheng et al. (2001) introduced a model-based photogram-techniques cannot adequately extract canopy surfaces, es-
metric approach to tree crown surface reconstruction. They ex-pecially for conifer stands. This paper develops an integrated
pressed the crown morphology of a tree using 3D geometricmodel-based approach to reconstruct canopy surface for
models and modeled it as a generalized 3D hemi-ellipsoid.conifer stands analytically from the crown level. To deal with
They manually established the optimal tree model from aerialdense stands, critical problems are addressed in the process
photos, and used the initial crown surface derived from theof model-based surface reconstruction. These include the
tree model to guide image matching in crown surface recon-occlusion problem in disparity (parallax) prediction from tree
struction. The potential of this model-based approach wasmodels, the edge effect of tree models on the disparity map,
demonstrated using a single tree. When reconstructing the can-and the foreshortening effect in image matching. The model-
opy surface of a dense stand of multiple trees, we need to estab-based approach was applied to recover the canopy surface of
lish optimal tree models in a more efficient manner and con-a dense redwood stand using images scanned from 1:2,400-
sider problems such as occlusion. This paper extends thescale aerial photographs. Compared with field measurements,
capability of the model-based approach from recovering thecrown radius and tree height derived from the reconstructed
crown surface of a single tree to reconstructing the canopy sur-canopy surface model have an overall accuracy of 92 percent
face of a tree stand, and further develops the model-basedand 94 percent, respectively. The results demonstrate the
method to canopy surface reconstruction for complicated treeapproach’s ability to reconstruct complicated stands.
stands. The improved method addresses the problems of occlu-
sion, foreshortening, and tree edge effects, and was applied toIntroduction reconstructing the canopy surface for a dense redwood stand.

The form of a tree crown is an indicator to species competition The reconstructed canopy surface was validated using dimen-
in a stand. A canopy surface describes the geometric shape of sional crown measurements from the field and crown profile
the canopy and indicates photosynthetic ability and biomass. pictures taken from various directions on the ground.
Information on crown form and canopy structure is an im-
portant determinant of wildlife habitat preferences for many Study Site and Data Preparation
species of birds and mammals (Biging and Gill, 1997). Data on The study area is located on the campus of the University of
canopy surface are needed to produce orthophotos and derive California at Berkeley (122.38�W, 37.62�N). The test was car-
distortion-free forest parameters. ried out in an uneven-aged redwood-dominant stand of nearly

Although canopy surfaces are important in forestry and 100 percent canopy closure using 1:2,400-scale aerial photo-
ecological studies, they are rarely measured in forest inventory graphs. The difference in ground elevation at this site is less
due to the difficulty in measuring 3D canopy surfaces from the than 10 m. The study area is about 170 m long and 120 m wide
ground and the lack of success in existing surface reconstruc- containing several oak (Quercus kelloggii) and approximately
tion techniques. Quackenbush et al. (1999) used Desktop Map- 60 redwood (Sequoia sempervirens) trees, the latter of which
ping System (DMS�) to derive tree canopy surfaces from 1-m are up to 45 m in height.
resolution aerial photographs, and pointed out that the unsuc- Bi-ocular images may be insufficient for conifer canopy
cessful canopy surface reconstruction may be due to the con- surface reconstruction due to the occlusions caused by sharp
straint of the package used. Our experiments with a number of
other commercial softcopy photogrammetry packages led to

1Sheng, Y. “Tree height derivation from stereopairs–A test,” unpub-
lished report, Department of Environmental Science, Policy, and
Management, University of California at Berkeley, May 1997, 12 p.
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crown morphology. We used tri-ocular high-resolution aerial Methods
images: one nadir view and two off-nadir views, so that most

Geometric Modeling of Trees and Optimal Tree Model Developmentparts of a crown surface are visible on at least two images.
Geometric models were used in tree modeling for their simplic-1:2,400-scale vertical aerial photographs were taken on 23
ity in parameterization. On the basis of Horn’s 2D (Horn, 1971)May 1994 with a camera whose focal length was 152.8 mm.
and Pollock’s 3D (Pollock, 1996) geometric crown models,Most of the stand is visible on three overlapping photographs,
Sheng et al. (2001) extended the 3D crown model to a 3D treelabeled as #2, #1 (the nadir view), and #0, respectively, from
model for the purpose of applying the tree model to crown sur-left to right. The adjacent photos have about 60 percent overlap,
face reconstruction. This tree model uses a generalized hemi-and the pair of #2 and #0 has about 20 percent overlap. These
ellipsoid crown model, and is described by three location pa-photographs were scanned at 250 DPI (dots per inch), making
rameters: ground coordinates of the treetop (Xtop , Ytop , Ztop);the pixel resolution approximately 24 cm on the ground. The
and three parameters on crown dimensions: crown depth (ch),camera station locations and camera attitudes of the three pho-
crown radius (cr), and an adjusting coefficient for crown curva-tos were solved through photogrammetric orientation proce-
ture (cc). Once these parameters are known, the tree model isdures. Three overlapping photos form three stereo pairs. The
fixed and the ground coordinates (X, Y, Z ) of any point on theoriginal photos were resampled according to the epipolar ge-
crown surface can be modeled byometry to generate three stereo pairs covering the study area:

the 2-1 pair, the 2-0 pair, and the 1-0 pair.
Field measurements were collected in October 1999. (Z � ch � Ztop)cc

chcc �
((X � Xtop)2 � (Y � Ytop)2)cc/2

crcc � 1 (1)
Though there is a 5-year time lag between the field measure-
ments and aerial photographs, most trees in the stand are ma-
ture and are not expected to grow much (e.g., several meters) where Ztop � ch � Z � Ztop .
during this period. We first delineated individual trees on the To make the model-based approach practical in canopy
nadir view image (i.e., #1) by visual interpretation, and made a surface reconstruction of forest stands, optimal tree models
sampling map (Figure 1) to guide our fieldwork. Tree height and need to be established efficiently from the aerial images for in-
crown radii from four perpendicular directions (i.e., south, dividual trees. Sheng (2000) discussed both the automatic and
west, north, and east) were measured for 38 trees using clinom- semiautomatic scenarios for tree model development. The au-
eters and tapes. Some ground pictures were taken from various tomatic scheme is computationally intensive, and it often fails
directions to record crown profiles. These field measurements for complicated stands. As an alternative, a model-based 3D tree
and pictures were used to validate the reconstructed canopy interpreter was built with a semiautomatic approach to opti-
surface. mal tree model development (Gong et al., 2002). The conju-

gated treetops of a tree are sampled interactively on the 2-0
photo pair to obtain the ground coordinates (Xtop , Ytop , Ztop) of
the treetop, and the dimensional parameters of the crown are
determined semiautomatically on informative images. The 3D
tree interpreter is able to establish reliable tree models for com-
plicated tree stands efficiently.

In addition to the optimal tree models, a background DEM
(digital elevation model) is another product of the 3D tree inter-
preter. During tree interpretation, the elevations of some visible
tree bases and ground points were sampled on the photos, and
a DEM was interpolated from these sampled points.

Occlusion Removal in Disparity Prediction
Disparity, also known as parallax, is the coordinate difference of
a point imaged on two photos taken from different angles. The
disparity between the two conjugated pixels in the photos can be
used to reconstruct the elevation value of the point in object
space. Disparity is usually derived using image matching. Be-
cause the background DEM and the optimal tree models were
produced at the tree interpretation stage, we can use them to pre-
dict the initial disparity map, and then use the initial disparity
map to guide subsequent image matching. The ground coordi-
nates of each point on a tree crown surface can be calculated
from its tree model using Equation 1. The disparity of a point on
a crown surface or on the ground surface can be predicted using
the collinearity equations in photogrammetry. However, dispar-
ity prediction from tree models can be problematic for dense
stands, and occlusion has to be taken into account. Z-buffer tech-
niques, which are one of the general techniques in computer
graphics for hidden surface removal (Pokorny and Gerald, 1989),
were used to address this problem. They are based on the fact
that foreground objects occlude background objects, and they
use a depth buffer (Z-buffer) to record depth information, which

Figure 1. The sampling map. It was generated by visually is critical to determine which object occludes others.
delineating individual trees on the nadir view image. Thirty- The Z-buffer algorithm for occlusion removal in disparity
eight trees were measured in the field using this map as prediction is shown in Figure 2. The buffer here records the dis-
a guide. tance between the camera station and surface point being

imaged.
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Figure 2. The Z-buffer algorithm for occlusion removal in
disparity prediction.

Tree-Edge Effect Reduction in Disparity Map
The predicted disparity map from tree models has a distinctive
contrast at the perimeter of tree canopies. However, the edges
of tree canopies are usually “fuzzy” due to extended branches;
thus, the sharp tree-edge effect should be reduced in the pre-
dicted disparity map.

Figure 3 illustrates the process of edge-effect reduction. We
Figure 3. An illustration of the process of tree-edge effectfirst generated an edge map from the tree models. The map con-
reduction. (a) Tree edge and background edge of a tree. (b)tains both tree edges and background edges, and the back-
Predicted disparity map of the tree. (c) and (d) A zoom-inground can either be the ground or tree canopies. A tree edge is
window of (a) and (b). (e) and (f) Left and right aerial imagesa 1-cell-wide edge consisting of the tree cells next to back-
of the zoom-in window. (g) Disparity map after tree-edgeground cells, while a background edge is the one containing
effect reduction.the background cells next to tree cells. The edge map in Figure

3a shows the tree edge in white and the background edge in
black around a tree. When the optimal tree model is not perfect,
some cells on the tree edge could in fact be background-edge
cells, and some cells on the background edge could be tree-edge this cell with that of a nearby background cell, and vice versa.

Comparing the edge map with the left image (Figure 3e), wecells. Figure 3b shows a typical disparity map predicted from a
tree model. Figures 3c and 3d zoom into the portion within the can see that the tree-edge cell at (row 5, column 4) marked by B

should be a background cell, and that the background-edge cellgrid in Figures 3a and 3b so that individual cells are visible. If
a cell on the tree edge is actually from the background, then we at (6, 4) marked by T should be a tree cell.

We use the left and right aerial images (Figures 3e and 3f) toneed to modify the disparity map by replacing the disparity of
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assist decision making about the replacement. We determine pose the range of disparity between the left and right images is
[�D, D] (unit: pixels). As illustrated in Figure 5, the correlationwhether an edge cell needs to be switched using the correlation

coefficients between the templates around this cell on the left calculation produces a similarity space, a 3D correlation cube of
2D � 1 depth containing the correlation coefficients (Chen andand right images. Suppose the template in the left image around

this cell is M1. When the disparity of this cell is known, its posi- Medioni, 1999). The voxel (volume element) at location (i, j, d )
in the cube records the correlation coefficient between a tem-tion in the right image and the template around this position

can be determined. If the disparity is taken from a tree cell, let plate around pixel (i, j ) in the left image and a template of the
same size around the pixel (i, j � d ) in the right image. The cor-the template in the right image be M2t. Similarly, if the disparity

is from a nearby background cell, let the template be M2b. Let relation coefficient however is vulnerable to the foreshorten-
ing effect.the correlation coefficient be Rt between M1 and M2t, and be Rb

between M1 and M2b. If Rb � Rt, then this cell should be A surface patch will appear foreshortened unless it is
viewed from its normal direction (Klaus and Horn, 1986). Thisswitched to the background cell and take the background dis-

parity; otherwise, the tree disparity should be kept. As illus- is the so-called “foreshortening effect.” The resulting problem
of the foreshortening effect in stereo matching is that the sur-trated in Figures 3e and 3f, two positions T1 and T2 in the right

image of cell T are determined using the tree disparity and the face patches in the two templates, with which an image match-
ing algorithm intends to match, are not of the same size. Thebackground disparity, respectively. The correlation between

the templates around T and T1 is higher than that between T foreshortening effect in canopy surface reconstruction is very
serious due to the steep tree crown surfaces, and is one of theand T2; therefore, cell T takes the tree disparity. Similarly, cell

B takes the background disparity. The resulting disparity map major causes of reconstruction failures.
We use the matching-on-orthoimage approach to mitigateis shown in Figure 3g. Using this procedure, we can mitigate the

edge effect introduced by imperfect tree models. Figure 4 the foreshortening effect (Norvelle, 1992; Schenk and Toth,
1992; Norvelle, 1996). Figure 6 compares how the image tem-shows the adjusted disparity map, in which the tree edges ap-

pear less regular and the occlusion problem was properly ad- plates are matched for a point on a crown surface before and
after the foreshortening effect is addressed. Figures 6a and 6bdressed. For the portion of trees extending beyond the study

area, the edge effect was not adjusted because no background show the portion of the original left and right images con-
taining a redwood tree (i.e., Tree #1). Due to the foreshorteningDEM was available.
effect, the right side of the tree crown in the right image is al-
most three times as long as that in the left image. The two tem-Foreshortening Effect Mitigation in Stereo Matching
plates (outlined by the white boxes) do not match for the sameAn image matching (or correspondence finding) algorithm is
surface patch; thus, the correlation measure between them isthe core of photogrammetric surface reconstruction. Correla-
not reliable. This effect is mitigated by matching on orthoim-tion-based image matching approaches are widely used. Sup-
ages. Figures 6c and 6d show the left and right orthoimages of
the same area in Figures 6a and 6b. The two templates are virtu-
ally of the same patch, and the foreshortening effect disturbs
the correlation measure between the templates to a much less

Figure 5. The 3D correlation cube. The correlation computa-
tion in image matching generates a 3D correlation cube.
The voxel at location (i, j, d ) in the cube records the correla-
tion coefficient between a template around pixel (i, j ) in the
left image and a template of the same size around the pixel
(i, j � d ) in the right image. The dynamic programming
image-matching algorithm determines the disparity map by
searching in the 3D correlation cube for the maximum p-
ordered smooth surface. The parameter D specifies the dis-Figure 4. The disparity map after tree-edge effect reduction.

This map was predicted from the background DEM and the parity range and determines the depth of the correlation
cube, while p controls the smoothness of the surface tooptimal tree models. The occlusion problem was properly

addressed, and the tree-edge effect was reduced. be found.
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Matching Control and Iteration
The disparity limit D and the surface order p play an important
role in image matching by dynamic programming. When the
dynamic programming algorithm searches for the disparity sur-
face in the correlation cube, surface order p can be set to vari-
ous values between 0 and D. The selection of D and p depends
on the confidence in the optimal tree models. If these tree mod-
els perfectly describe the crown surfaces, then both D and p are
set to zero, meaning no adjustment is needed. If the tree models
are only a rough approximation of the true crown surfaces, then
both D and p need to be increased, and this will introduce more
variations into the reconstructed canopy surface.

The geometric form of individual trees in a stand may vary.
Some trees may be well described by their tree models, while
others may not. Small D and p are desirable for regular-shaped
trees, but may generate a regular surface for irregular-shaped
trees. This makes it difficult to choose universal values of D and
p. We can mitigate this problem by iterating the matching proc-
ess. The approach discussed here can be implemented as an it-
erative procedure. Even when the knowledge about tree shape
is poor, the initial values for D and p can be set to small values.
The output from the first round model-based matching can be
used as the initial condition in the next round model-based
matching, enabling gradual adjustments to the derived surface.
This procedure could be repeated until the results are satisfac-
tory. With such an iterative approach, regular-shaped trees are
more likely to find their matches in earlier rounds, while irreg-Figure 6. Matching windows for reduction of the foreshort-
ular-shaped trees may find theirs in later rounds.ening effect. (a) Left perspective image; (b) Right perspective

image. (c) Left orthoimage. (d) Right orthoimage. Due to
Sophisticated Model-Based Canopy Surface Reconstruction Schemeforeshortening, the right side of the tree crown in the right
With the problems of occlusion, foreshortening, and edge ef-image in (b) is almost three times as long as that in the left
fects considered, a sophisticated model-based canopy surfaceimage in (a). The two templates (outlined by the white boxes)
reconstruction scheme is illustrated in Figure 7. After the opti-do not match for the same surface patch; thus, the correla-
mal tree models and the background DEM have been developedtion measure between them is not reliable. When matching
in 3D tree interpretation, we use them to predict an initial dis-on orthoimages in (c) and (d), the two templates are virtually
parity map and to compose the initial digital surface modelof the same patch, and the foreshortening disturbs the
(DSM). The disparity map is then processed for tree-edge effecttemplate matching at a largely reduced level.
reduction. Orthoimages are produced using the DSM to reduce
the foreshortening effect in the correlation cube. The value of
each cell in the generated disparity map may be adjusted by a
number of pixels in the disparity range [�D, D]. For each adjust-
ment within the range, the corresponding locations in the leftextent. In such a way, we incorporate the reduction of the fore-

shortening effect in the correlation cube generation. and right orthoimages can be calculated, and a correlation
measure is computed using the templates from orthoimages atAn image-matching algorithm is needed to find correspon-

dence based on the correlation cube. We adopted a dynamic pro- the locations found. In such a way, the correlation cube is gener-
ated using orthoimages rather than the perspective images,gramming algorithm for the image matching scheme because it

simultaneously uses many important constraints such as those thus is less vulnerable to the foreshortening effect. A new DSM
is reconstructed by searching for the maximum disparity sur-of epipolar planes, photometric compatibility, uniqueness, dis-

parity continuity, and disparity limit (Marr, 1982; Sun, 1999). face in the correlation cube using the dynamic programming
technique. If the DSM is satisfactory, then it is the final canopyThe dynamic programming algorithm is a global matching

method, and determines the disparity map by searching in the model; otherwise, the process is repeated using the new DSM as
the initial DSM until the final DSM is satisfactory.3D correlation cube (Figure 5) for the maximum smooth surface

characterized by surface order p (Sun, 2002). That is, the neigh-
bors of a voxel on the p-ordered surface are within p voxels in Surface Reconstruction for the Redwood Stand

The proposed model-based approach is built on top of conven-the vertical dimension, and the sum of the correlation meas-
ures of all voxels on the surface reaches the maximum. As illus- tional image matching algorithms. Both the conventional im-

age matching and the model-based approach were imple-trated in Figure 5, D specifies the disparity range and deter-
mines the depth of the correlation cube, while p controls the mented and applied to the redwood stand for a comparison.

The 1-0 stereo pair was used as the primary pair for canopy sur-smoothness of the surface to be found. Dynamic programming
using smaller p searches for a smoother disparity surface in the face reconstruction because more parts of the trees are visible

in this pair. Other pairs were used for the areas occluded in thecube, and generates a smoother surface model for the canopy.
The model-predicted disparities serve as a guide to corre- primary pair.

spondence finding. They can be considered as the general
trend, and only the detailed local variations need to be ex- Conventional Surface Reconstruction

We first applied the dynamic programming algorithm to thetracted. Therefore the search for the p-order surface can be usu-
ally limited to a small disparity range [�D, D] around the pre- conventional surface reconstruction without using tree mod-

els. Taking into consideration the large disparities caused bydicted disparities. When the range is large, the dynamic
programming algorithm is implemented under the pyramidal trees, the disparity range was estimated as [�84, 38] (unit: pix-

els) for the primary stereo pair (1-0). For such a large disparityimage-matching scheme for both efficiency and reliability.
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range, the dynamic programming algorithm was implemented
under the pyramidal matching scheme. For pyramidal match-
ing efficiency, the disparity range was centralized to [�61, 61]
with a 23-pixel shift, and the right image was also shifted by the
same amount of pixels. As a result, we used [�61, 61] (i.e., D
� 61) as the disparity range in the surface reconstruction, re-
sulting in a four-level pyramid. The results of the pyramidal
surface reconstruction using p � 2 are shown in Figure 8. The
original left image (i.e., #1) is shown in Figure 8a as a reference.
Figure 8b is the correlation strength map of the final level
matching, showing that the ground (white areas) possesses
good matching while the correlation measures over trees are
low. Figure 8c shows the reconstructed surface model. The
white margins in the surface model are noise induced by pyra-
midal resampling. The following can be observed from the sur-
face model. The building on the right is clearly identifiable; the
ground is reconstructed as a smooth surface; the stand surface
is raised and rugged, but individual trees are not visible.
Though having taken many constraints into consideration, the
conventional matching scheme is sufficient for the ground sur-
face, but it does not work well for the canopy surface. There-
fore, it is necessary to introduce the model-based approach.

Model-Based Surface Reconstruction
We applied the proposed model-based scheme to reconstruct-
ing the canopy surface for the redwood stand. The initial values
of D and p were set to D � 3, p � 1, and a smooth canopy surface
was generated. The algorithm adjusts disparities around the
predicted ones within a range of �3 pixels and has �1-pixel
flexibility in controlling the smoothness of the disparity sur-
face. With the configuration of the stereo pair 1-0, the disparity
difference of 1 pixel corresponds to approximately a 0.4-mFigure 7. The sophisticated model-based canopy surface
change in elevation in the ground coordinate system. Greaterreconstruction scheme. This scheme incorporates occlu-
variation can be introduced to the surface by using larger D andsion removal, disparity prediction, edge-effect reduction,
p in the reconstruction. Larger D and p give the dynamic pro-foreshortening effect mitigation, and iterative implemen-
gramming algorithm more freedom in disparity search, andtation.
thus allow greater variation in the reconstructed canopy sur-
face. They may lead to more realistic results for the trees that
are not well defined by their optimal tree model (e.g., Tree #32),

Figure 8. Results obtained with conventional image matching. (a) Left image. (b) Correlation map. (c) Reconstructed surface
model.
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TABLE 1. DISPARITY ADJUSTMENT UNDER DIFFERENT MATCHING CONTROLS

Tree Properties Iteration with D � 3, p � 1

Tree-ID Species Tree shape Tree model Iteration 1 Iteration 2 Non-Iteration D � 6, p � 2

1 Redwood Regular Adequate 1.69* 1.01 2.96
32 Pine Irregular Inadequate 2.34 1.44 3.83

*Unit: pixels

but may corrupt the surface of the trees with an adequate tree pictures were collected on the ground. These dimensional pa-
rameters are used to check the size of reconstructed crowns,model (e.g., Tree #1).

To achieve better results, the process was iterated twice us- while the crown profile pictures are used to validate the recon-
structed surface with detailed crown structures.ing relatively small D and p (i.e., D � 3 and p � 1). Table 1 com-

pares the degree of adjustment of the iterative and non-iterative Crown radius and tree height were interactively extracted
for individual trees from the reconstructed surface model inimplementation. The iterative reconstruction with smaller D

and p regresses to the true surface gradually, while the non-iter- Figure 9c. In an interactive computer program, we place a circle
on the surface model to surround a tree (i.e., a round objectative one with larger D and p makes a larger adjustment for all

trees at one time. The surface derived for irregular-shaped trees higher than its background in the surface model), and move the
circle and resize it to make it fit the perimeter of the tree can-(e.g., Tree #32) is adjusted more than that for regular-shaped

ones (e.g., Tree #1). For trees with an adequate tree model, a ma- opy. The DSM cells around the circle are crucial in determining
the fitness. The inner circle edge consists of the DSM cellsjor adjustment is made in the first round iteration, followed by a

minor adjustment (about 1 pixel) in the second round. The iter- touching the circle from the inner side, and corresponds to the
crown margin. Similarly, the outer circle edge contains theative results are shown in Figure 9. Figures 9a and 9b show the

final disparity map and the correlation strength map. Com- DSM cells touching the circle from the outside. When the con-
trast reaches the maximum between the averaged height (H0) ofpared to the surface recovered from the conventional photo-

grammetric approach (Figure 8c), the one obtained from the the outer circle edge and that of the inner edge, the circle is con-
sidered as the boundary between the tree and the background.model-based approach (Figure 9c) clearly shows individual

trees. We used the iteratively reconstructed surface in the sub- The radius of the circle is considered as the crown radius, and
the tree height is calculated as the difference between the max-sequent validation analysis.
imum height of the cells within the circle and H0.

The tree parameters extracted from the reconstructed sur-Field Validation
Because it is difficult to directly measure canopy surface on the face model and the ground measurements are listed in Table 2

for a comparison. We calculated the difference �H (or �R) be-ground, we have to use alternatives to validate the recon-
structed surface. Measurements of dimensional crown parame- tween the DSM-derived parameters and ground measurements,

and the ratio �H% (or �R%) of �H (or �R) to the ground meas-ters such as tree height and crown radius, and crown profile

Figure 9. Results obtained with the iterative model-based canopy surface reconstruction. (a) Disparity map. (b) Correlation map.
(c) Reconstructed surface model.
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TABLE 2. GROUND VALIDATION FOR THE DIMENSIONAL CROWN PARAMETERS

Field Measurements DSM-Derived Comparison

Tree-ID Species Height(m) R* (m) Height (m) R (m) �H+ (m) �H%X �R (m) �R%

1 Redwood 27.7 4.9 25.2 4.9 �2.6 �9.2 0.0 0.4
2 Redwood 28.0 7.1 36.2 7.8 8.2 29.1 0.7 9.7
3 Redwood 33.2 6.7 28.3 5.7 �5.0 �14.9 �1.0 �15.0
4 Redwood 33.2 5.0 30.1 5.2 �3.2 �9.5 0.3 5.5
5 Redwood 36.3 5.8 33.6 6.1 �2.7 �7.5 0.3 5.8
6 Redwood 36.3 5.5 36.6 5.0 0.3 0.9 �0.4 �7.9
7 Redwood 34.7 6.6 34.1 6.0 �0.7 �1.9 �0.6 �8.7
8 Redwood 31.1 5.6 31.5 5.4 0.4 1.4 �0.1 �2.3
9 Redwood 31.1 3.1 30.3 2.7 �0.8 �2.7 �0.4 �14.0

10 Redwood 18.3 3.4 16.9 3.6 �1.3 �7.4 0.2 6.3
11 Redwood 25.9 2.8 25.2 3.3 �0.7 �2.8 0.5 16.2
12 Redwood 33.8 2.5 30.5 3.6 �3.3 �9.7 1.0 41.0
13 Redwood 32.3 2.7 34.0 2.7 1.7 5.4 0.0 0.0
14 Redwood 31.1 2.7 27.7 2.9 �3.4 �10.8 0.2 8.3
15 Redwood 35.4 4.2 35.3 4.3 �0.1 �0.2 0.1 2.8
16 Redwood 33.8 4.5 30.4 4.6 �3.4 �10.1 0.1 2.9
17 Redwood 33.2 3.9 27.7 3.8 �5.6 �16.7 �0.1 �1.4
18 Redwood 38.4 4.8 39.0 4.6 0.6 1.5 �0.2 �4.7
19 Redwood 34.4 4.7 34.0 4.8 �0.5 �1.3 0.1 2.7
20 Redwood 36.0 4.2 30.0 3.8 �5.9 �16.5 �0.4 �9.6
21 Redwood 39.9 5.5 37.8 5.3 �2.1 �5.2 �0.2 �3.6
22 Redwood 42.4 3.7 42.6 4.0 0.2 0.4 0.3 8.6
23 Redwood 32.0 3.6 37.7 3.2 5.7 17.7 �0.5 �13.1
24 Redwood 31.7 2.5 32.3 2.6 0.6 1.9 0.2 6.7
25 Redwood 29.9 4.3 29.7 4.7 �0.2 �0.6 0.4 10.2
26 Redwood 30.5 2.4 29.3 2.5 �1.2 �4.0 0.2 6.4
27 Redwood 32.3 3.2 32.3 3.4 0.0 0.1 0.2 7.8
28 Redwood 36.6 4.8 35.8 5.0 �0.7 �2.0 0.2 4.5
29 Redwood 28.3 3.0 28.7 3.2 0.4 1.3 0.2 8.3
30 Redwood 29.3 2.9 27.8 3.1 �1.5 �5.1 0.3 9.1
31 Redwood 27.7 4.1 27.7 4.5 �0.1 �0.2 0.5 11.1
32 Pine 30.5 6.8 31.7 8.2 1.2 4.0 1.4 20.1
33 Redwood 18.9 5.7 18.5 6.0 �0.4 �2.3 0.3 5.0
34 Redwood 29.3 4.7 28.7 4.6 �0.6 �2.0 �0.1 �1.3
35 Redwood 26.5 4.3 25.3 4.3 �1.2 �4.6 0.0 0.7
36 Redwood 21.3 4.3 21.1 4.3 �0.2 �0.9 0.0 0.9
37 Oak 11.0 5.5 11.5 5.3 0.5 4.8 �0.1 �2.3
38 Oak 7.3 5.7 9.4 5.2 2.1 28.3 �0.4 �7.7
Average �0.67 �1.4 0.08 2.9
Mean absolute error$ 1.8 6.4 0.3 7.7
Overall accuracy# 93.6 92.3

*R is the average of the four perpendicular crown radius readings in the field.
��H is the difference between the DSM-derived tree height and the height measured in the field. �R is the difference of crown radius between
photo measured and field measured.
��H% is the ratio (in percentage) of �H to the tree height measured in the field. �R% is similarly defined for crown radius.
$The mean absolute error of �H (or �H%, �R and �R%) is defined as the average of the absolute values of �H (or �H%, �R and �R%) for all trees.
#The overall accuracy of tree height (or crown radius) is defined as 100 � mean absolute �H% (or �R%).

urement in percentage. The mean absolute error of tree height explained by the five-year time lag between the field measure-
ments and the aerial photos, and the fact that the sharp tips of(or crown radius) is defined as the average of the absolute val-

ues of �H (or �R) for all trees. The overall accuracy of tree height conifers may not be captured in the images. In general, the di-
mensional parameters derived from the reconstructed surface(or crown radius) is defined as 100 � mean absolute �H% (or

�R%). model are quite close to the field measurements.
To examine the quality of the surface reconstructed for treeWe compared the derived crown radius with the average of

the four ground radius readings. The overall accuracy is esti- crowns of different levels of shape regularity, three trees were
selected for a detailed validation using their profile pictures: amated as 92.3 percent, and the mean absolute error is 0.3 m. The

derived crown radius of 87 percent trees is within an error of regular-shaped redwood (Tree #1), an intermediately regular-
shaped oak tree (Tree #37), and an irregular-shaped pine tree0.5 m. For tree height, the mean absolute error is 1.8 m, and the

overall accuracy is estimated as 93.6 percent. Seventy-six per- (Tree #32).
The redwood tree is in a regular conic shape (with fourcent trees have an error of less than 3 m in tree height, and 79

percent trees have their height estimated with an accuracy of crown radius readings of 4.8 m, 5.0 m, 5.0 m, and 4.9 m) as
shown in the ground picture taken from the west direction (Fig-better than 90 percent. The worst case is Tree #2, the height of

which is overestimated by 8.2 m. The discrepancy is caused by ure 10a). The north-south profiles of the reconstructed crown
surface shown in Figure 10b are consistent with the ground ob-the inadequacy of the tree model. It was difficult to locate the

treetop of Tree #2 on the photos during its model establish- servations. The extended branches marked by A in the picture
from the west view (Figure 10a) are also visible in the profilesment. The DSM-derived parameter underestimates tree height

by 0.67 m on average, and more trees (25 out of 38) were under- (marker A in Figure 10b).
The four radius readings for the oak tree are 4.0 m, 4.4 m,estimated than overestimated in height. This may be partially
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created from the reconstructed surface (Figures 11b and 11d)
generally match the outlines shown in the ground pictures, and
the surface features (marked by A and B) on the pictured pro-
files are also found in the reconstructed profiles.

The four ground crown radius readings of 11.2 m, 6.1 m,
2.0 m, and 8.0 m indicate that the pine tree is rather irregular in
shape. Its ground picture and the reconstructed profiles are
shown in Figure 12. Comparing the ground picture taken from
the south (Figure 12a) with the corresponding profiles (Figure
12b) from the reconstructed surface, it is apparent that the gen-
eral outline matches, but disagreements are also observable.

Discussions and Conclusions
From the experiments described in this paper, it has been dem-
onstrated that canopy surface reconstruction can be consider-
ably improved after tree models are introduced into the con-
ventional image matching algorithm. However, a number of

Figure 10. Ground truthing of Tree #1. (a) West view photo. limitations remain:
(b) North-south profiles. This is the case of a regular-shaped

● Limitations of the symmetric tree model: Though the symmetricredwood tree. tree model used in this paper can describe most conifers well,
it may not adequately describe irregular ones. The symmetric
tree model used in this paper needs to be upgraded for irregular-
shaped trees.

● Surface sensitivity to tree models: Because the model-based
5.6 m, and 7.9 m. It was measured 11.0 m tall on the ground, matching algorithm is guided by tree models, the reconstructed
and the reconstructed height is 11.5 m. Figures 11a and 11c surface is sensitive to these tree models. Adequate tree models
show the ground pictures of the tree taken from the west and are critical to the success of high-quality canopy surface recon-

struction. If a model approximates the true surface with an offsetnortheast directions, respectively. The corresponding profiles

Figure 11. Ground truthing of Tree #37. (a) West view photo. (b) North-south profiles. (c) Northeast view
photo. (d) Southeast-northwest profile. This is the case of an intermediately regular-shaped oak tree.
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redwood stand, the following critical problems were addressed
in the model-based canopy surface reconstruction process:

● occlusion in disparity prediction from tree models,
● integration of the predicted disparities into image matching,
● the tree-edge effect on the disparity map, and
● the foreshortening effect in image matching, which is very seri-

ous for conifer crown surfaces.

Solutions to the above problems are necessary for success-
ful canopy surface reconstruction.
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