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Abstract:  A promising method to incorporate tissue structural information 
into the reconstruction of diffusion-based fluorescence imaging is 
introduced.  The method regularizes the inversion problem with a 
Laplacian-type matrix, which inherently smoothes pre-defined tissue, but 
allows discontinuities between adjacent regions.  The technique is most 
appropriately used when fluorescence tomography is combined with 
structural imaging systems.  Phantom and simulation studies were used to 
illustrate significant improvements in quantitative imaging and linearity of 
response with the new algorithm.  Images of an inclusion containing the 
fluorophore Lutetium Texaphyrin (Lutex) embedded in a cylindrical 
phantom are more accurate than in situations where no structural 
information is available, and edge artifacts which are normally prevalent 
were almost entirely suppressed.  Most importantly, spatial priors provided 
a higher degree of sensitivity and accuracy to fluorophore concentration, 
though both techniques suffer from image bias caused by excitation signal 
leakage. The use of spatial priors becomes essential for accurate recovery of 
fluorophore distributions in complex tissue volumes.  Simulation studies 
revealed an inability of the “no-priors” imaging algorithm to recover Lutex 
fluorescence yield in domains derived from T1 weighted images of a human 
breast.  The same domains were reconstructed accurately to within 75% of 
the true values using prior knowledge of the internal tissue structure.  This 
algorithmic approach will be implemented in an MR-coupled fluorescence 
spectroscopic tomography system, using the MR images for the structural 
template and the fluorescence data for region quantification.  
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______________________________________________________________________________________________ 

1.  Introduction 

Imaging the spatial distribution of fluorescence activity at depth in tissue is a challenging 
problem that has yet to impact clinical practice.  The most popular approach is diffuse optical 
fluorescence tomography (DOFT), a model-based method which approximates photon 
propagation as a diffuse field and computationally matches model parameters to measured 
boundary data.  The theoretical framework is well established [1-5]  and feasibility studies 
have demonstrated fluorescence yield imaging in various phantom geometries [6-9].  Much of 
the most recent research has focused on high-throughput, full body imaging of small animals 
[10, 11] but no human images have been published to date.  DOFT produces low resolution 
images compared to standard clinical modalities such as x-ray CT and MRI due to the highly 
scattered photon fields and relatively sparse measurement sampling of the tissue volume.  The 
reconstruction problem is ill-posed and underdetermined and large heterogeneity in tissue 
optical properties caused by complex tissue morphology further challenges the imaging 
algorithm.  Sensitivity drops with increasing depth resulting in a non-linear responsivity 
across the imaging field, making it more difficult to image larger tissue volumes.  
Experiments in larger volumes that more closely resemble a human breast typically consider 
unrealistically high fluorophore contrasts and simple geometries [9, 12].  Though these studies 
are important for advancing the understanding of the modality, improving image resolution 
and contrast sensitivity is critical for identifying a clinical role for DOFT.   

DOFT is an extension of the more widely studied diffuse optical tomography (DOT) 
which suffers similarly from low resolution and depth-dependent contrast sensitivity in the 
absence of spatial or spectral prior information to guide the solution.  However, methods to 
incorporate highly-resolved anatomical data obtained from standard clinical modalities have 
improved the quantification of the optically derived images [13-15].  These hybrid approaches 
lead to a conceptually new application of optical tomography, one in which the highly 
resolved imaging system provides a structural template upon which volumetric optical 
spectroscopic images are constructed.  This framework may be applied to either absorption 
and scatter spectroscopy, or fluorescence spectroscopy.  Additional challenges specific to the 
fluorescence case include lower signal intensity, excitation source contamination of the 
fluorescence emission measurements due to filter leakage, and tissue optical property effects 
on both the excitation and emission photon propagation.  Applying spatial guidance 
techniques to the more complicated DOFT problem may yield even larger gains in imaging 
capability.   

This paper introduces a method to dramatically improve fluorescence imaging at depth in 
tissue by coupling MRI and fluorescence tomography.  Tissue structural information 
determined from standard T1 and T2 MR images is encoded as a spatial filter in the DOFT 
reconstruction algorithm and used to guide the recovery of fluorescence activity.  In this 
implementation, reconstruction parameters are loosely grouped into regions based on tissue-
type determined from the MR images but are permitted to update independently, giving rise to 
the term “soft” spatial priors [16].  The algorithm is tested with phantom data of Lutetium 
Texaphyrin, a near-infrared photosensitizer shown to accumulate preferential in a variety of 
malignancies [17-20], recorded from a newly developed MR-coupled spectroscopy-based 
fluorescence tomography system.  A simulation study based on realistic geometries generated 
from MR images of a normal human breast serves as an initial illustration of expected 
improvements provided by the spatial priors approach in complex domains.     
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2.  Theory 

Assuming highly diffuse media, the transport of light at a given modulation frequency ω in 
the presence of fluorescence generated by an external source at the excitation wavelength (λx) 
of the fluorescing agent, is modeled by two diffusion equations, where the solution of the first 
equation provides the driving source term of the second [5]: 
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where subscripts x and m represent the excitation and emission fluence at wavelengths λx and 

λm, respectively. The intrinsic optical parameters 
mxa ,
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,mxsμ  are the absorption and 

reduced scattering coefficients respectively, ),(0 ωrq  is an isotropic source and 
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)(3

1
',

,, mxmx sa
mx μμ

κ
+

=  and c(r) is the speed of light in the medium at any point, defined 

by co/n(r), where n(r) is the index of refraction at the same location and co is the speed of light 
in vacuum. The fluorescence parameters are the lifetime )(rτ  and the fluorescence yield 

)(r
faημ , the latter a product of the fluorophore’s quantum efficiency η and its absorption 

coefficient )(r
faμ . 

The most appropriate description of the air-tissue boundary is derived with an index-
mismatched type III condition (also known as Robin or mixed), in which some fraction of the 
fluence at the external boundary of the tissue exits and does not return.  The flux leaving the 
external boundary is equal to the fluence rate at the boundary weighted by a factor that 
accounts for the internal reflection of light back into the tissue.  This relationship is described 
in the following equation: 
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where ξ  is a point on the external boundary, and A depends upon the relative refractive index 

(RI) mismatch between tissue Ω  and air.  A can be derived from Fresnel’s law: 
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2.1 Finite element implementation: 

When the refractive index is homogenous (assumed to be 1.33 [21]), the finite element 
discretization of a volume Ω can be obtained by subdividing the domain into D elements 

joined at V vertex nodes.  In the finite element method (FEM), )(, rmxΦ  is approximated by 
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the piecewise continuous polynomial function ∑ ΩΦ=Φ V
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to have limited support. The problem of solving for h
mx,Φ  becomes one of sparse matrix 

inversion, and in this work, a bi-conjugate gradient stabilized solver is used. As developed 
previously [22, 23], the coupled diffusion Eqs. (1) and (2) in the FEM framework can be 
expressed as a system of linear algebraic equations: 

02

1
)

)(
()( QF

Arc

i
CK xxxaxx =Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++ ωμκ                               (5) 

mmmmamm QF
Arc

i
CK −=Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++

2

1
)

)(
()(

ωμκ                            (6) 

where the matrices Kx,m(κ), Cx,m )
)(

(
rc

i
a

ωμ + , and Fx,m have entries given by: 

rdrururK n
jimxmx ij ∫

Ω

∇∇= )().()(,, κ                                           (7) 

rdruru
rc

i
rC n

jiamx mxij ∫
Ω

+= )()()
)(

)((
,,

ωμ                                      (8) 

rdruruF n
jimx ij

1
, )()( −

Ω∂
∫=                                                   (9) 

and the source vector Q0 has terms 

rdrqruQ n
ii ∫

Ω

= )()( 00                                                   (10) 

The source term is defined as a Gaussian distribution, matching the intensity profile at the tip 
of the optical fiber.  Because the source is assumed spherically isotropic, modeling is more 
accurate when it is centered one scattering distance within the outer boundary. The source 
vector Qm for fluorescence re-emission is expressed as 
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and is distributed throughout the domain. 

2.2 The inverse model 

2.2.1 No spatial priors 

In the inverse problem, the goal is the recovery of optical properties at each FEM node using 
surface measurements of light fluence at both the excitation and emission wavelength 
sequentially (assuming the use of two externally applied sources, one at each wavelength), 
followed by fluorescence yield reconstruction at the emission wavelength.  The computational 

approach is to minimize the difference between measured fluence, Meas
mx,Φ , at the tissue 

surface and calculated data, C
mx,Φ , from the model Eqs. (1) and (2) by adjusting the spatial 

distribution of the unknown parameters through minimization of the ‘objective’ function.  The 
objective function for recovering the optical properties at the excitation 

wavelength, ( )xax x
κμμ ,= , is given as                          
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where NM is the total number of measurements given by the imaging system, NN is the 
number of parameters representing the optical property distribution which corresponds to the 
number of nodes in the reconstruction mesh, and I is an NN × NN identity matrix.  In general, 

2χ  will not equal zero, but the values of xμ  for which 
xμ

χ
∂
∂ 2

 is close to zero can be 

determined, based on an initial estimate of xμ .  Following the Taylor series method for 

deriving Newton’s method, 
xμ

χ
∂
∂ 2

 is evaluated at xμ  based on an expansion around some 

nearby point
0xμ , where the second and higher order terms are ignored, leading to the 

iterative update equation: 
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x
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x JIJJ Φ−Φ+=Δ −1λμ                                      (13) 

where J is the Jacobian matrix, here calculated using the Adjoint method [24]. Equation (13) 
is known as the Moore-Penrose generalized inverse and is found to be suitable for problems 
where the number of unknowns to be recovered is much larger than the amount of information 
(measurements) available.  In standard practice, I is an identity matrix, and in this work λ is 
some fixed fraction multiplied by the maximum value on the diagonal of the Hessian matrix 

JJ T , and is therefore updated at each iteration.  To recover the optical properties at the 

emission wavelength, ( )mam m
κμμ ,= , the externally applied illuminating source is changed 

to one at the emission wavelength and the formulation presented in Eq. (13) is used.   
The recovered optical properties are used in the fluorescence yield reconstruction which 

also adheres to the minimization formulation presented in Eq. (12).  The unknown parameter 

in Eq. (13) becomes )(r
faημ , and the Jacobian can be calculated by similar Adjoint 

properties described above and in Ref. [5]. 

2.2.2 Spatial priors 

Spatial prior information is incorporated by assuming a ‘generalized Tikhonov’ penalty term 
which is similar in structure to Eq. (12) except that the identity matrix is replaced with a 
Laplacian-type matrix, presented here for the excitation field: 
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where NN is the number of unknowns in the model [16, 25, 26]. The constant, β , balances 
the effect of the parameters with the model-data mismatch in the same manner as λ in Eq. 
(13).  The dimensionless ‘filter’ matrix, L, is generated using MRI-derived priors and its 
construction is flexible.  In this application, each node in the FEM mesh is labeled according 
to the region, or tissue type, with which it is associated (in the MR image).  The L-matrix 
represents a Laplacian-type structure, the diagonal of which is Li,i=1 where i is the nodal 
index.  When nodes i and j are in the same region containing n nodes, Li,j=-1/n, otherwise 
Li,j=0.  This effectively relaxes the smoothness constraints at the interface between different 
tissues, in directions normal to their common boundary.  The effect on image quality is similar 
to that achieved through total variation minimization schemes [27] but easily encodes internal 
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boundary information from MR images. Following the same procedure as in the no-priors 
case, the parameter update is given by 

      [ ] ( )C
x

Meas
x

TTT
x JLLJJ Φ−Φ+=Δ −1βμ                                  (15) 

where much like λ in Eq. (12), β is a fixed fraction multiplied by the maximum value on the 

diagonal of JJ T .  This update formulation is also used to recover the optical properties at the 
emission wavelength as well as the fluorescence yield, as described in Section 2.2.1.   

2.2.3 Reconstruction basis 

A number of different strategies for defining the reconstruction basis are possible, including 
second mesh and pixel basis [28, 29]. The choice of reconstruction basis allows for 
computational efficiency which serves to reduce the number of unknowns in the algorithm. 
The problem at hand is twofold: The forward problem requires that the volume of interest is 
subdivided into adequate number of sub-domains which allow for an accurate description of 
the calculated fields, whereas a reduction in the number of unknowns improves the ill-
posedness of the problem in the reconstruction algorithm. This is addressed by defining a 
separate reconstruction basis (different from the meshes used in the FEM implementation), 
upon which the unknowns are updated in Eqs. (13) and (15) [23].  In cases where no prior 
structural information is available, a pixel basis which defines a set of regularly spaced pixels 
for the update of the quantities of interest is used.  However, when spatial priors are involved, 
it is crucial to ensure that enough pixels are used to adequately define small structural regions.  
In this case, a set of regular pixel bases are introduced in each region of interest, which 
account for the region’s individual shape and size.  A semi-adaptive method which allows the 
number of pixels in each region to be selected was used in the studies presented here.  The 
same region-based pixel basis is used throughout the iterative reconstruction process.   

3.  Methods  

3.1 Simulation studies 

Test domains for simulation studies were derived from a T1 weighted MR image of a human 
breast which measured approximately 10.5 cm in diameter.  A 2-D slice of the breast volume 
was discretized into a mesh of approximately 2000 nodes and MR image intensity thresholds 
were used to assign adipose and fibro-glandular tissue volumes into mesh regions.  Figure 1 
shows the original MR breast image and its associated discretized, region-labeled mesh.  The 
MR image originated from a clinical exam with our MR coupled frequency domain NIR 
system and therefore reveals an irregularly shaped breast boundary caused by the fiber optic 
array slightly compressing the breast at the contact positions.  A cancerous tumor region was 
added as a target anomaly or region of interest for these studies and is depicted in the figure.   
A second test case with a tumor region located near the center of the domain was used to 
explore the nonlinear sensitivity of diffuse optical tomographic techniques.  The source-
detector positions were determined directly from the MR image and represent 16 optical fibers 
circumscribing the breast domain in a single plane.  Light is detected at all non-source fiber 
positions providing a total of 240 measurements of intensity and phase per wavelength.  This 
simulated configuration matches our experimental fluorescence tomography system. 
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Fig. 1.  An axial T1 weighted MR slice of a human breast is shown in (a), from which the test 
domain for simulation studies was derived.  Darker regions indicate fibro-glandular tissue 
imbedded in adipose tissue indicated by lighter values.  The image was acquired during a 
clinical exam with one of our MR-coupled NIR tomography systems and shows the 
indentations caused by the fiber optic probes.  The test domain (b) was a discretization of the 
MR image thresholded into regions.  The yellow anomaly was added to simulate a targeted 
cancerous tumor.  

 
In this set of studies, regions were assigned values in terms of biologically relevant optical 

absorbing (HbO, dHb, Water, Lutetium Texaphyrin) as well as scattering parameters (Mie 
scattering amplitude and power).  These values, provided in Table 1, represent typical known 
in vivo levels of endogenous chromophores and are consistent with previous clinical work 
[30, 31].  Though it is unknown exactly how Lutetium Texaphyrin (LuTex) will distribute in a 
human breast, the concentrations used are similar to those reported in ex vivo studies [17] and 
at least represent a reasonably complex distribution for demonstrating recovery of 
fluorescence yield.  Tissue chromophore concentrations were used to calculate total optical 
absorption and scattering values at the excitation and emission wavelengths based on 
experimentally determined values of molar extinction coefficients.  Simulated noisy data was 
generated based on these optical properties in the following manner:  1) frequency domain 
data for a light source at the excitation wavelength, 2) frequency domain data for a light 
source at the emission wavelength, and, 3) Continuous Wave (CW) fluorescence emission 
data at the emission wavelength.  This represents a total of 3 data sets for a given imaging 
session:  two frequency domain data sets for determining background optical properties and 
one CW fluorescence emission data set.  CW fluorescence emission data was used to match 
the capabilities of our experimental system and results in a simplification of Eq. (2) which can 
be  handled by setting ω = 0.  

 
Table 1.  Chromophore concentrations and scattering parameter values assigned to the mesh regions in the simulation 
studies 

 Oxy-
hemoglobin 

(μM) 

Deoxy-
hemoglobin 

(μM) 

 
Water  
(%) 

Lutetium 
Texaphyrin 

(μM) 

 
Scattering 
Amplitude 

 
Scattering 

Power 
Adipose 10 10 50 0.3 1.0 1.0 
Fibro-
glandular 

15 15 60 0.5 1.1 1.1 

Tumor 20 18 90 1.0 1.2 1.15 
 

Given the modest Stoke’s shift of LuTex, depicted in Fig. 2, the choice of excitation 
wavelength has practical implications for experimental work.  The difficulty in filtering the 
excitation signal precludes the use of Lutex’s NIR absorption peak (about 735 nm) to excite 

(a) (b)(a) (b)

#78716 - $15.00 USD Received 4 January 2007; revised 22 February 2007; accepted 13 March 2007

(C) 2007 OSA 2 April 2007 / Vol. 15,  No. 7 / OPTICS EXPRESS  4073



the fluorophore.  In this study, a 690 nm excitation wavelength was used for both simulated 
and experimental data acquisition.  In addition to normally distributed random noise added to 
the frequency domain data (5% amplitude and 1 degree phase) and CW fluorescence emission 
(10% intensity), excitation signal leakage through the filter was added to the CW fluorescence 
emission intensity to simulate a typical 7 OD rejection of the excitation intensity.  This 
number comes directly from experimentally measured rejection estimates for the filters in the 
tomography system used in the experiments performed here. 
 

 
Fig. 2.  The normalized absorbance and fluorescence emission spectra of Lutetium Texaphyrin 
are shown.   

 
The general image reconstruction protocol was as follows:   

1) Reconstruct for optical properties at the excitation wavelength, μax and μsx’, with 
frequency domain data,  

2) Reconstruct for optical properties at the emission wavelength, μam and μsm’, with 
frequency domain data collected using a laser source at the emission wavelength,  

3) Use the reconstructed optical properties and fluorescence intensity data to recover 
fluorescence yield.   

The same reconstruction algorithm was used to determine background optical properties in 
steps (1) and (2) and is based on previously reported work [32, 33].  Initial estimates for all 
parameters were generated using homogenous fitting algorithms which enforce a single value 
for all nodes.  The Jacobian matrix was calculated on a fine mesh of approximately 2000 
nodes and interpolated onto a course reconstruction pixel basis for inversion.  A 30 by 30 
pixel reconstruction basis was used for the no-priors case.  The spatial priors reconstruction 
used a newly developed semi-adaptive pixel basis that redistributes the pixels based on the 
region information, as described in section 2.2.3.  This method ensures that each region 
contains an adequate number of nodes to approximate the internal structure of the domain.  
Convergence was defined as less than a 2% change in projection error between successive 
iterations for the frequency domain optical properties algorithm and less than a 1% change in 
projection error between iterations for the fluorescence yield reconstruction.  Similar 
algorithmic parameters were used for the phantom studies and are described in further detail 
below. 

3.2 Phantom studies 

A spectrometer based tomographic imaging system which couples directly into a Philips 3T 
MRI magnet was used to acquire fluorescence emission spectra.  The system, depicted in Fig. 
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3, is composed of 16 spectrometers with low noise CCD cameras cooled to -70 C.  Sixteen 13 
meter long silica fiber bundles circumscribe the imaging domain in contact mode and couple 
into the spectrometers via custom designed input optics with a six position automated filter 
wheel.  Fluorescence emission signals are processed with long pass interference filters before 
entering the spectrometer.  Each fiber bundle contains eight 400 μm fibers, seven of which 
directly couple the tissue surface to the spectrometer input while the eighth couples the tissue 
surface to the light source.  This detector configuration minimizes coupling losses and 
provides parallel detection of full spectra for each source position.  Inter-fiber tissue coupling 
calibration factors were determined prior to imaging using a cylindrical homogenous phantom 
with a centrally located source/detector.  The custom manufactured input optics were designed 
to optimize filtering and maximize the light detection efficiency of the spectrometers.  Camera 
exposure times can be adjusted to the detected light level to maximize the signal to noise ratio.  
With 15 detectors per 16 source positions, a total of 240 measurements are recorded for a 
given acquisition.   

 

 
Fig. 3.  The experimental spectrometer-based system depicted at left couples directly into the 
MR via 13 meter fiber optic bundles.  Sixteen spectrometers are computer controlled for rapid 
image acquisition (left photograph).  An animal interface (right photograph) is composed of a 
rodent MR coil custom built by Philips Research Hamburg to accommodate the optical fiber 
array for simultaneous MR and NIR fluorescence imaging.    
 

Lutetium Texaphyrin provided by Pharamcyclics was diluted in water and used as the 
imaging fluorophore.  The test domain was a solid 5.5 cm diameter hardened epoxy phantom 
with scatterer and absorbers created by titanium dioxide powder and India ink, respectively 
[34, 35].  The phantom had a 14 mm hole located approximately 12 mm from the phantom 
center.  The background optical properties were μax = 0.005 and μsx’ = 1.0 mm-1, measured 
with a frequency domain system near the excitation wavelength.  Unlike the simulation 
experiments, the optical properties were assumed constant throughout the domain in this 
experiment.  These values were also used as the optical properties at the emission wavelength.  
The hole was filled with a solution of 1% Intralipid to match the scattering value of the 
background, and varying concentrations of Lutex (0.3125 μM to 5 μM) were added.  This 
represents a simple test case for investigating the imaging response to varying concentrations 
of fluorophore.  The excitation source was a 690 nm laser diode which matches the 
wavelength used in the simulation studies.  Total acquisition time for the fluorescence 
emission was less than 4 minutes (total of 240 data points).   

Even after processing the collected light with a 720 nm long pass interference filter 
(Omega Optics) which provides 7 OD rejection of the excitation light as well as the filtering 
offered by the spectrograph grating, emission spectra recorded by the detector are composed 
of a sum of the pure fluorescence signal and excitation bleed-through. In order to decouple 
these signals, previously recorded “basis spectra” of the bleed-through signal and the pure 
fluorescence signal are fit to the data.  The process is illustrated in Fig. 4 for one measurement 

#78716 - $15.00 USD Received 4 January 2007; revised 22 February 2007; accepted 13 March 2007

(C) 2007 OSA 2 April 2007 / Vol. 15,  No. 7 / OPTICS EXPRESS  4075



at a single detector. A linear least squares algorithm operating on the basis spectra quantifies 
the amount of excitation bleed-through and true fluorescence signal that exists in each spectral 
recording, further reducing the effect of excitation bleed-through.  This is accomplished by 
minimizing the summation 

( )[ ]∑
=

+−=
N

i
iii bGaFyS

1

2)()( λλ                                    (16) 

with respect to a and b, where yi is the measured intensity at a given wavelength pixel, F and 
G are the excitation and fluorescence basis spectra, a and b are the coefficients recovered in 
the minimization procedure, and N is the number of wavelength pixels per spectrum.  Once 
fit, the fluorescence signal is integrated and becomes the fluorescence emission intensity data 
for the reconstruction algorithm. 
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Fig. 4.  An example of a pair of basis spectra for the excitation and fluorescence light (in 
counts/s as a function of CCD pixel number) is shown in (b).   These spectra are recorded for 
each detector prior to imaging.  In practice, the basis spectra are used to perform a least squares 
fit (a) to the spectrum measured for each source-detector pair to determine the relative 
contribution of the fluorescence and excitation light to the measured response. 

 
To investigate the improved imaging capability of reconstructing data with spatial priors, 

each data set was reconstructed with and without spatial “soft” priors.  Since the domain was 
easily characterized geometrically, spatial prior information was determined by direct manual 
measurement of the phantom.  This information was encoded in the fine mesh used for 
reconstruction.  Since background optical properties were previously determined with our 
frequency domain system, they were assumed known for image reconstruction.  Convergence 
was defined as less than a 1 % change in projection error between iterations.  All images were 
reconstructed using a 2GHz Centrino Duo laptop with 2GB RAM running Windows XP. 

4.  Results    

4.1 Simulation results 

Figures 5 and 6 display the target values of the two test cases along with images reconstructed 
using no priors and spatial soft prior information.  Qualitatively, image recovery using spatial 
priors produces significantly more accurate images. Spatial priors preserve the general 
internal structure of the Lutex distribution, detail that is lost almost entirely in the no-priors 
case.  Images of fluorescence yield show the most dramatic difference between the spatial 
priors and no priors reconstructions.  Without spatial priors, the algorithm appears to have no 
ability to recover “cancer” regions of elevated fluorescence yield for these complicated cases.  
However, incorporating spatial priors results in images that qualitatively appear accurate and 
quantitatively are reasonably close to the true values.  Figure 7 provides 1-D cross-sections 
near the y-axis of each domain.  These plots confirm an inability of the no-priors imaging 
algorithm to recover the simulated fluorescent tumor in either test field.  Alternatively, the 
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spatial prior-based imaging algorithm not only picks out the objects of interest, but provides 
fairly accurate reproductions of the complicated structure of simulated fibro-glandular layers.  
Mean values for the simulated cancer region near the domain center are 79% and 51% of the 
true values for the spatial priors and no-priors reconstructions, respectively.  These numbers 
change to 75% and 45% for the case with the cancer region closer to the edge of the domain.  
They represent a significant improvement in imaging performance; however, they alone do 
not illustrate the full impact of incorporating spatial priors.  The cross-sectional plots indicate 
that the no-priors images contain virtually no spatial discrimination of the cancer regions.  
Regional contrasts are depicted in Table 2 and further illustrate a dramatic overall 
improvement in cancer region quantification with spatial priors.   

 
Fig. 5.  Target and recovered values of μa,x, μ/

s,x, μa,m, μ/
s,m, and fluorescence yield, ημaf , for 

reconstruction implementations using no prior information and with spatial prior information.  
In this case, the simulated cancer region is near the edge, which is known to be easier to 
recover without spatial priors.  The image scales are at right.   
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Fig. 6.  Target and recovered values of μa,x, μ/

s,x, μa,m, μ/
s,m, and fluorescence yield, ημaf , for 

reconstruction implementations using no priors and spatial priors.  In this case, the simulated 
tumor region is near the center of the imaging domain, which is known to be more difficult to 
recover accurately.  Image scales are at right.   
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Table 2.  Target and recovered fluorescence yield regional contrasts for the images in Figs. 4 and 5. 

Shallow tumor Target Contrast No spatial priors Spatial “soft” priors 
Tumor : fibro-
glandular 

2.0 : 1 1.1 : 1 1.6 : 1 

Tumor : adipose 3.3 : 1 1.3 : 1 2.3 : 1 

 
Deep tumor Target Contrast No spatial priors Spatial “soft” priors 
Tumor : fibro-
glandular 

2.0 : 1 1.2 : 1 1.8 : 1 

Tumor : adipose 3.3 : 1 1.4 : 1 2.4 : 1 
Reported ratios were calculated using the mean values in each region. 
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Fig. 7.  Cross sectional plots of fluorescence yield are shown for the simulated imaging 
domains in (a) the case with an object near the edge and (b) the case with an object near the 
center.  In both cases, the cross section is in the y-direction just off center from x = 0.  The 
solid line represents the target value, the small dotted line the recovered value using a no-priors 
based algorithm, and the dashed line the recovered value using spatially guided reconstruction.    

 
In addition to improved qualitative and quantitative accuracy, the spatial prior algorithm 

reduced the reconstruction time significantly.  The full reconstruction time for the no-priors 
case, including background optical property estimation, was just under 9 minutes for both the 
central and superficial tumor cases.  These times were reduced to less than 3 minutes and 90 
seconds using spatial priors.  In both cases, structural information guided the algorithm to a 
convergent solution in far fewer iterations than the no-priors cases.   

4.2 Phantom results 

Figure 8 shows fluorescence yield images recovered from phantom data using both no-prior 
and spatial prior image reconstruction approaches.  A qualitative assessment of the images 
reveals a dramatic benefit of the spatial prior on image formation.  The fluorescent object’s 
borders are more clearly defined for all concentrations of Lutex when using spatial priors.  
Furthermore, the values of fluorescence yield throughout the region of interest are more 
homogeneous, and therefore, more similar to the actual distribution for spatially guided 
reconstructions.  Incorporating spatial priors also suppresses edge artifacts significantly.  This 
is most apparent in images of phantoms with low Lutex concentration.  Figure 9 shows a full 
scale image of the 0.3125 μM phantom.  Artifacts near the boundary virtually dominate the 
no-priors image and represent the largest fluorescent yield values in that imaging domain.  
None of these artifacts exist in the spatially guided image generated from the same 
fluorescence emission data.  The spatially guided image also includes an easily discernable 
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fluorescent object at the correct location which is difficult to define in the no-priors case.  
These results indicate that for low fluorophore concentrations in this imaging domain, the 
correct fluorescent object would be identified only if prior structural information were 
incorporated in the reconstruction.   
 

 
Fig. 8.  Recovered images of fluorescence yield are shown for varying concentrations of Lutex.  
The 14 mm diameter fluorescent inclusion was embedded in a 55 mm diameter solid epoxy 
tissue simulating phantom. Images were generated from the same data using algorithms based 
on no-priors and spatial soft prior implementations.   
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Fig. 9.  A narrower colorbar-scale version of the 0.3125 μM Lutex phantom images shown in 
Fig. 8 further illustrates the improvement in image accuracy for the spatially guided algorithm. 

 
Both techniques suffer from a bias in the recovered fluorescence yield which results in a 

positive value in the region of interest for the case with no fluorophore.  This is most likely 
caused by bleed-through of the excitation light in the emission measurements coupled with an 
imperfect spectral fitting technique which results in positive values for fluorescence emission 
intensity even in phantoms containing no Lutex fluorophore.  Incorporating additional 
filtering, such as band-pass source filtering, and optimizing the spectral fitting routine should 
address the bias signal and decrease the potential for incorrect quantification.   

In addition to improving image quality and fluorescence yield quantification, spatial prior-
based reconstructions converged in substantially less time than the no-priors algorithms.  
Reconstruction times ranged from 50 – 90 seconds when not using spatial priors and 
approximately 22 seconds for spatially guided reconstructions, marking an improvement of 
just over 75% in some cases.  These numbers represent only the fluorescence yield 
reconstructions and not the recovery of background optical properties since μa and μs’ were 
assumed known from prior measurements.  In cases requiring the recovery of background 
optical properties, the improvement in reconstruction time will be similar to that previously 
quoted in the simulation results.   

5.  Discussion 

This study introduced an effective method to incorporate MR-derived tissue morphology for 
imaging fluorescence yield at depth in tissue.  The conceptual assertion is that diffuse 
tomography will be more successful as an imaging modality when combined with pre-existing 
imaging systems which have higher spatial resolution, such as MRI.  Simulation and phantom 
studies were used here to validate the method prior to implementation as a full scale system.  
Using Lutex phantom data, the soft spatial prior implementation improved qualitative and 
quantitative imaging response of fluorescence yield.  Prior information also suppressed image 
artifacts and more accurately represented the internal distribution of fluorophore.  In the no-
priors case, edge artifacts dominate the image for lower concentrations of fluorophore, and 
provide a misleading interpretation of the internal distribution of the fluorescent agent.  The 
phantom studies represented simple distributions of optical properties and fluorophore 
concentration and improvements in image quality were still substantial.  It is expected that 
soft prior implementations will benefit imaging performance to an even greater extent in 
complex tissue domains, an assertion born out in the simulation studies.    

A simulated breast mesh derived directly from an MR image of a human breast served as 
the test bed for a complex tissue domain.  The simulations demonstrated no ability to recover 
the internal distribution of the complicated domain without the use of spatially guided 
reconstructions.  Qualitatively, fluorescence yield images generated without spatial priors had 
little resemblance to the target domain and completely disregarded the 18mm simulated 
cancer region, as evidenced by 1-D cross-sectional plots of fluorescence yield.  Breakdown of 
the images in the no-priors case is likely due to poorly recovered background optical 
properties as well as the complexity of the fluorescence yield distribution itself.  Certainly, 
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part of the improvement in fluorescence yield image accuracy can be attributed to improved 
images of background optical properties.   

In these studies, it was assumed that the fluorophore distribution correlates directly to the 
fatty, fibro-glandular, and tumor tissue layers, which themselves exhibit no significant intra-
region heterogeneity, in a given imaging domain.  While this assumption appears reasonable 
based upon the biology of the tissue for endogenous chromophores [30, 31], further studies of 
the uptake of Lutex in-vivo are required to determine a correlation between tissue type and 
fluorophore localization.  Should this assumption prove to be unrealistic, the “soft” spatial 
prior approach offers some latitude in terms of correctly identifying structural prior 
information.  The algorithmic implementation groups tissue regions together in a region-
specific regularization and allows individual nodes in those regions to update independently.  
As opposed to “hard” prior approaches where nodal values in a given region are assumed 
homogenous, a soft prior technique may recover positive fluorescent objects not directly 
encoded in the spatial prior information.  This is a subject of further investigation.   

The experimental system introduced here couples directly into a Philips 3T MRI to 
provide simultaneous MR and NIR fluorescence imaging.  Simultaneous imaging simplifies 
co-registration of the MR image with the NIR reconstruction domains and reduces overall 
acquisition time.  Optimization of this system for in vivo imaging is underway for both small 
animal and human breast imaging.   

6.  Conclusion 

A spatially guided image reconstruction implementation based on prior knowledge of tissue 
morphology was shown to provide significant improvements in fluorescence yield recovery in 
complicated tissue volumes and to be highly beneficial for simple domains.  Specifically, both 
phantom and simulation results demonstrated dramatic improvements in recovery and 
quantification of features in the fluorescence distribution.  Structural guidance also reduced 
image reconstruction time substantially.  A newly developed experimental system couples 
full-volume deep-tissue fluorescence spectroscopy capabilities directly into the MR bore for 
simultaneous MR-NIR fluorescence image acquisition.  The results presented here show 
promise for this approach in all cases and tissue volumes considered.  Extensions of this study 
are underway to determine the effect of incorrectly identifying the structural prior, especially 
in cases where the MR images produce false negative or false positive readings.  A full 
characterization of the imaging limits of the experimental system will further complement the 
results presented here.  It is clear that incorporating anatomical features derived from MR 
images in DOFT image reconstruction will improve sensitivity to lower concentrations of 
fluorophore, qualitative accuracy, and fluorescence yield quantification in-vivo.     
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