
Shallow-Fusion End-to-End Contextual Biasing

Ding Zhao, Tara N. Sainath, David Rybach, Pat Rondon, Deepti Bhatia, Bo Li, Ruoming Pang

Google, Inc., USA
{dingzhao,tsainath,rybach,rondon,bhatiad,boboli,rpang}@google.com

Abstract
Contextual biasing to a specific domain, including a user’s song
names, app names and contact names, is an important component
of any production-level automatic speech recognition (ASR)
system. Contextual biasing is particularly challenging in end-to-
end models because these models keep a small list of candidates
during beam search, and also do poorly on proper nouns, which
is the main source of biasing phrases. In this paper, we present
various algorithmic and training improvements to shallow-fusion-
based biasing for end-to-end models. We will show that the
proposed approach obtains better performance than a state-of-
the-art conventional model across a variety of tasks, the first time
this has been demonstrated.

1. Introduction
Incorporating contextual information is critical to improving the
performance of ASR systems [1]. Contextual information could
include a user’s favorite songs, contacts, apps or current location.
Typically, this information is represented by an independently-
trained contextual n-gram language model, represented as a
weighted finite state transducer (FST). Traditional ASR systems,
consisting of separate acoustic, pronunciation, and language
models (AM, PM, LM), bias the recognition process towards a
specific context by merging the contextual and ASR LMs [1].

End-to-end (E2E) systems combine the AM, PM, and LM
as a single neural network. Incorporating contextual knowledge
in E2E models is challenging for a variety of reasons. First,
E2E models use far less text data during training compared to
conventional LMs, which decreases their exposure to context-
specific data. Thus, we find E2E models making more errors in
rare, context-dependent words and phrases, like proper nouns,
compared to conventional models. Second, for efficient decoding
E2E models must prune to a small number of candidates (∼
4− 10) at each step of the beam search. Hence rare words and
phrases, like context-dependent n-grams, are likely to fall off the
beam.

Past work explored incorporating an independent contextual
n-gram LM into the E2E framework [2] for contextual modeling,
also known as shallow fusion [3]. However, their methods do
poorly on proper nouns. With their methods, proper nouns
are usually pruned during beam search before biasing can be
applied, as biasing happens at the end of a word (rather than the
grapheme/wordpiece units the E2E model predicts).

[4] showed that it is more effective to perform biasing within
the E2E model, in keeping with the theme of all-neural optimiza-
tion. However, one of the concerns with all-neural biasing is
that word error rate (WER) degrades when scaling up to a large
number of n-grams. Another concern is that because contextual
biasing may always be active, the ASR performance should not
degrade on utterances we do not want to bias, which we will
refer to as “anti-context”. Anti-context results were not shown
in [4].

In this work, we explore various improvements to shallow
fusion to address some of the challenges in E2E modeling and
concerns with all-neural biasing. First, to address early pruning
of contextual n-grams, we explore biasing at the sub-word unit
level (grapheme, wordpiece) rather than the word-level. Second,
we explore applying the contextual FST before beam pruning
rather than after. Third, because contextual n-grams are typically
used with a common set of prefixes (“call”, “text”), we inves-
tigate incorporating these prefixes into shallow fusion, similar
to conventional models [2]. We find this helps tremendously
to avoid degradation for anti-context while maintaining biasing
gains. Fourth, to help with modeling proper nouns, we explore
various techniques to leverage a larger corpus of text-only data.
Specifically, we compare performance by (1) creating a large
number of proper noun text-only queries, and synthesizing corre-
sponding speech (2) leveraging a large amount of unsupervised
audio-text data, filtered to keep data with proper nouns and (3)
fuzzing training data transcripts to create more proper nouns.

We report results across four different contextual test sets.
We find our proposed changes to the contextual FST construc-
tion lead to significant improvements in shallow-fusion based
biasing compared to past work [2, 4]. In addition, we observe
that, by improving proper noun modeling by training with a
large amount of unsupervised data, we can improve performance
further. Overall, we are able to develop an end-to-end biasing
solution that outperforms a conventional context-independent
phoneme based CTC model with PM and LM [5] by 20-40%
relative across almost all test sets.

2. End-to-End Biasing Improvements
2.1. Shallow Fusion Biasing

Traditional ASR systems (with separate AM, PM, and LMs), per-
form contextual biasing by representing a list of biasing phrases
as an n-gram finite state transducer (FST) and composing it with
the ASR LM during decoding [6]. This helps increase the prob-
ability of the n-grams in the contextual FST, and reduce WER
in certain scenarios. We will use a similar technique to build a
contextual FST, and then incorporate it into the E2E decoding
framework.

Given a set of acoustic observations x = (x1, . . . ,xK),
E2E models provide posterior probabilities for a set of sub-
word units y = (y1, . . . ,yL) given these observations, that is,
P (y|x). Shallow fusion interpolates the score from the E2E
model with an external contextual LM during beam-search de-
coding, given by (1).

y∗ = argmax
y

logP (y|x) + λ logPC(y) (1)

Here, PC(y) is the score from the contextual LM and λ is
a tunable hyperparameter controlling how much the contextual
LM influences the overall model score during beam search.

To construct the contextual LM for E2E models, we assume

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-12091418

that a set of word-level biasing phrases are known ahead of
time, and compile them into an n-gram weighted finite state
transducer (WFST) [7]. This word-level WFST, G, is then left-
composed with a “speller” FST, S, which transduces a sequence
of graphemes/wordpieces into the corresponding word. Simi-
lar to [3], we obtain the subword FST as the contextual LM,
min(det(S ◦G)).

2.2. Previous Work

Biasing of E2E models with shallow fusion has been explored
previously in [2], in which the contextual LM was applied only
at word boundaries, similar to biasing with traditional systems
[6]. This approach was not found to be effective when the list
of contextual phrases contains proper nouns (e.g., song names
or contacts). Because E2E models predict sub-word unit labels
y (graphemes, wordpieces) during the beam search, applying a
contextual LM at word boundaries will not work if the words to
be biased are not present in the beam.

To address this issue, [4] looked at pushing the weights of
the subword FST to each subword unit. To make the subword
FST deterministic, the authors use the same weight for every
subword unit. To avoid artificially giving weight to the candi-
dates that match the prefixes but not the entire phrase, they also
included failure arcs, which we show for illustrative purposes
in Figure 1. Unlike the n-gram FST, whose failure arcs do not
carry weights [6], the subword FST contains failure arcs that
negates the weights that have been added before reaching the
current state. Biasing per subword unit was found to be more
effective than biasing at the end of each word, as it helps keeping
the biasing candidates in the beam. However, the authors only
explored the idea using grapheme subword units. In addition, the
authors never explored results with “anti-context”, to ensure that
biasing does not affect recognition quality if all biasing phrases
are not relevant. The following sections introduce improvements
to shallow-fusion E2E biasing to address theses concerns.

0

1
c:c/-0.25

ε:ε/0.25

2

a:a/-0.25

ε:ε/0.5

3

t:t/-0.25
ε:ε/0.75

4<space>:<space>/-0.25

Figure 1: Contextual FST for the word “cat”, represented at the
subword unit level with backoff arcs.

2.3. Shallow Fusion Improvements

2.3.1. Biasing Before Beam Pruning
All previous biasing work, for both conventional and E2E models
[2, 4, 6], combines scores from the contextual LM and the base
model (ASR LM or E2E model) on the word or subword lattice,
a concept known as on-the-fly lattice rescoring [8]. E2E mod-
els are decoded with tight beam thresholds resulting in a much
smaller number of path hypotheses compared to conventional
models. Although the contribution of the contextual model im-
pacts future decoding process, there is a high chance that it does
not affect immediate pruning of a particular biased candidate,
as hypotheses may already been pruned before the contextual
model is applied. In this work, we explore applying the contex-
tual model directly to the E2E model score before the general
beam pruning.

2.3.2. Grapheme Model vs Wordpiece Model
A concern with biasing graphemes, as in [2, 4], is that we can
flood the beam with lots of unnecessary words that have a partial

grapheme match with the contextual FST. For example, imagine
we want to bias the word “cat”, and thus a contextual FST is
constructed such that we bias ‘c’, ‘a’, and ‘t’, as shown in Figure
1. When we bias towards the grapheme ‘c’, we might bring not
only “cat” but also “car” into the beam as we continue decoding.

However, if we bias at the wordpiece level, there is a sparser
match of relevant subwords, and therefore more relevant words
come onto the beam. Following the previous example, if the
wordpiece to bias is “cat”, then “car” would never come into the
beam. In this work, we explore using a 4,096-wordpiece vocab-
ulary, as we have found experimentally this to give reasonable
results.

2.3.3. Prefixes
Shallow fusion biasing manipulates the posterior probabilities.
We found that shallow fusion biasing described above hurts
recognition quality on utterances that do not contain any biasing
phrase, a setting known as anti-context. Similar to conventional
models [9], we explore only activating a biasing phrase if it
is proceeded by a commonly used set of prefixes. For exam-
ple, a contact request typically has the prefix “call”, “text”, or
“message”, while a song request often uses the prefix “play”.

In this work, we construct the contextual FST with prefixes
mined from data. We extract all prefixes appearing more than 50
times that precede biasing phrases. Overall we find 292 phrases
for contact requests, 11 phrases for song requests and 66 phrases
for app requests. We construct an unweighted prefix FST and
concatenate it with the contextual FST. We also allow an empty
prefix option to skip the prefix. That alone, however, would
cancel the intended constraining effect of the activation prefix.
Thus we use a smaller biasing weight λ if the phrase is preceded
with an empty prefix to bias against it.

2.4. Proper Noun Knowledge

2.4.1. Unsupervised Data
One idea to improve proper noun coverage is to train with a
large amount of unsupervised data. The unsupervised data is
collected by mining anonymized utterances from voice search
traffic. These utterances are then decoded by a state-of-the-art
conventional ASR model [10] and only utterances with a high
confidence are kept. Finally, to ensure that we select utterances
mainly focused on proper nouns, we run a proper noun tagger
[11, 12, 13] on the transcripts and only keep utterances with
proper nouns.

We train the model on roughly 100 million unsupervised
utterances created using above method, along with the 35 million
supervised utterances. To ensure that training is not dominated
by the larger amount of unsupervised data, during each step of
training, we choose to fill the batch with supervised data 80%
of the time, and unsupervised data 20% of the time, as this was
found empirically to give the best performance [14].

2.4.2. Synthesizing Proper Nouns
An issue with unsupervised data is that the transcripts could be
wrong. It also limits the alternative spellings of names, such as
Eric or Erik or Erick, to the ones predicted by the conventional
model. As an alternate, we created synthetic training datasets
by generating sentences with a variety of proper nouns and then
synthesizing this data, using a concatenative TTS approach with
only 1 voice [15].

We mined the web for various contextual biasing categories,
namely communication, media and apps. Overall we extracted
roughly 580K contact names, 42K song names and 70K app

1419

names. Next, we mined the logs for various prefixes used with
each category e.g. call John mobile gives us the pre-
fix call for the communication category. The phrases are
k-anonymized, i.e., they are selected only if used by at least 50
different users during a week. Then we combine the category-
specific prefixes and proper nouns to generate the utterance text
and use a synthetic speech data generator to create training sets
with roughly 1 million utterances for each category.

Similar to our supervised training set [10], we add noises to
synthesized utterances using a room simulator, as described in
Section 3.1. During training, each batch is filled with supervised
or synthetic data 90% and 10% of the time respectively.

2.4.3. Fuzzing Transcripts
Finally, we explore if we can introduce more proper nouns into
the supervised training data itself. Specifically, we run a proper
noun tagger on each utterance. For each proper noun, we get the
phonetic representation of the proper noun. For example “Caitlin”
is represented by the phonemes k eI t l @ n. Next, we
look at alternative words in the lexicon with the same phoneme
sequence, for example “Kaitlyn”. Given the ground truth and
alternative words, we randomly sample one of these words dur-
ing training. This gives the model more proper nouns during
training. Our intuition is that if the model can spell more names
during training, it will be more confident to spell these names
when a contextual FST is used during decoding, and words will
not fall off the beam.

3. Experimental Details
3.1. Data Sets

The supervised training set used for experiments consists of
35 million English utterances (∼ 27, 500 hours). The training
utterances are anonymized and hand-transcribed, and are repre-
sentative of Google’s voice search traffic. This data set is created
by artificially corrupting clean utterances using a room simulator,
adding varying degrees of noise and reverberation such that the
overall SNR is between 0dB and 30dB, with an average SNR
of 12dB [16]. The noise sources are from YouTube and noisy
environmental recordings.

We evaluate biasing on a number of test sets, detailed in
Table 1. VS contains short voice search queries extracted from
Google traffic and anonymized. While this set is not used for
biasing, we use it to report “anti-context” performance.

Table 1: Description of evaluated test sets. B-OOV is the oov
rate in context-phrases only (i.e., rihanna, John, etc.).

Test Set #
Utts

Ave.
Bi-
asing
Phrases

B-OOV,
Sup.

B-OOV,
Sup. +
Unsup.

Audio
Source

VS 14k - - - Real
Songs 15k 303 1.4% 1.0% TTS
Cnt-TTS 15k 75 6.2% 0.2% TTS
Cnt-Real 5k 197 6.9% 4.7% Real
Apps 16k 13 1.5% 0.5% TTS

As described in [4], the Songs, Cnt-TTS, and Apps sets are
created by synthesizing sentences in each of these categories
using a parallel-wavenet approach [17] with the same voice used
to generate synthetic training data in in Section 2.4.2. During
recognition, the ground truth proper noun in the utterance, along
with some other proper nouns in the same category, are provided

as a set of biasing phrases. The Songs test set contains media
requests (e.g. play rihanna music) with biasing phrases
containing popular songs and artist names in US-English. The
Cnt-TTS test set contains communication requests (e.g. call
John mobile) with biasing phrases containing popular US-
English names. Finally, the Apps test set contains requests to
interact with an app (e.g. open trivia game) with biasing
phrases containing popular app names. Noise is artificially added
to the synthetic data, similar to [16]. Note that none of the syn-
thetic test sets have phrases that appear in the TTS synthesized
training data.

Finally, the Cnt-Real set contains anonymized and hand-
transcribed utterances extracted from Google traffic. Only utter-
ances with an intent to communicate with a contact are included
in the test set. The contact names are tagged in the transcript,
and also included as part of the biasing set along with other
popular US-English names. The Cnt-Real dataset covers the
harder utterances where the user issues a typed query following
the voice action, which likely means that the recognition result
was not correct. It also acts as a good sanity test to ensure the
model does not over-fit to synthetic data.

3.2. Modeling

All experiments use 80-dimensional log-Mel features, computed
with a 25ms window and shifted every 10ms. Similar to [10], at
the current frame, t, these features are stacked with 3 frames to
the left and downsampled to 30ms frame rate. All experiments
use the Recurrent Neural Network Transducer (RNN-T) model
[18]. Specifically, the encoder network architecture consists of a
time reduction layer [19], followed by 8 long short-term memory
LSTMs [20], where each layer has 2,000 hidden units followed
by a 600-dimensional projection layer. The decoder consists of
2 LSTM layers with 2,000 hidden units and a 600-dimensional
projection layer. The encoder and decoder are fed to a joint-
network that has 600 hidden units. The joint network is fed to
a softmax layer, with either 96 units (for graphemes) or 4,096
units (for wordpieces [21]). All RNN-T models are trained in
Tensorflow [22] on 8× 8 Tensor Processing Units (TPU) slices
with a batch size of 4,096.

During inference, each utterance is associated with a set of
biasing phrases used to construct a contextual FST. Each arc in
this FST has the same weight, as shown in Figure 1. This weight
is tuned independently for each category (songs, contacts, etc.)
[9] to optimize performance on the above test sets.

4. Results
4.1. Shallow Fusion

Table 2 shows the proposed algorithmic improvements, as dis-
cussed in Section 2.3. Experiments E0 and E1 are grapheme
and wordpiece baselines without biasing. E2 shows grapheme
biasing results without any of the proposed improvements. As
noted in [4] and also shown in E3, using a subtractive cost to
prevent keeping bad candidates on the beam gives improvements
across all sets. Switching from grapheme to wordpiece biasing
(E4), such that we bias at longer units, helps to keep more rel-
evant candidates on the beam, and also improves performance.
Finally, applying the biasing FST before beam search pruning,
denoted as early biasing below, helps to ensure that good can-
didates remain on the beam early on, and leads to additional
improvements (E5). Overall, our best shallow fusion setup is
to bias at the wordpiece level with subtractive cost and early
biasing.

1420

Table 2: Shallow Fusion Results.

Exp
ID

Model Songs Cnt-
Real

Cnt-
TTS

Apps

E0 Grapheme, No Bi-
asing

19.6 18.6 28.3 13.0

E1 WPM, No Biasing 22.7 15.8 37.0 13.3
E2 Grapheme, Biasing 14.8 12.5 24.2 8.7
E3 + subtractive cost 8.1 10.0 13.2 5.8
E4 + WPM 6.2 8.3 10.0 3.6
E5 + early biasing 5.3 7.5 7.3 2.7

4.2. Anti-Context

Since contextual biasing may be always active, we must make
sure the recognizer does not degrade performance when all bi-
asing phrases are not present in an utterance. To test this, we
explored biasing the VS test set with a biasing FST constructed
from 200 biasing phrases randomly selected from the biasing
contexts of the Cnt-TTS test sets. The rest of the test sets use the
same biasing contexts as the previous section.

Table 3 shows anti-context results. E1 is the baseline no-
biasing wordpiece model. Biasing this model (E5) gives a large
degradation in performance on VS. As discussed in Section 2.3.3,
conventional models address this issue by including a prefix in
the biasing FST. If we apply biasing only after seeing any of
the non-empty prefixes (E6), we can improve results on VS but
degrade quality on the biasing sets. However, in E7, if we allow
one of the prefixes to be empty, we got similar results as not
having the prefixes. Our solution is to use a smaller weight on
the context phrase if preceeded by an empty prefix (E8). With
this approach, we observe very little degradation in VS, and also
improved performance on the biasing test sets (E8).

Table 3: Anti-Context Results.

Exp
ID

Model VS Songs Cnt-
Real

Cnt-
TTS

Apps

E1 WPM, No Bi-
asing

6.9 22.7 15.8 37.0 13.3

E5 + Biasing, no
prefix

12.5 5.3 7.5 7.3 2.7

E6 + non-empty
prefix

7.0 10.1 6.9 7.6 2.7

E7 + empty prefix 12.5 5.3 7.9 7.4 2.4
E8 + empty prefix,

lower weight
7.3 5.3 6.7 6.8 2.4

4.3. Proper Noun Knowledge

In this section, we explore how we can improve biasing quality
by improving the model’s knowledge of proper nouns. Our
baseline here is E8, the RNN-T wordpiece model trained on
35M supervised voice search utterances. Experiment E9 shows
improvements across all biasing test sets when training with
unsupervised data. Training with TTS data (E10) gives larger
improvements on the TTS test sets compared to unsupervised
data (E9), but results in a larger degradation on a real test set
(Cnt-Real). This indicates that the improvements in TTS biasing
sets are primarly coming from matched audio conditions between
training and test data, rather than learning a richer vocabulary of
proper nouns. Finally, fuzzing transcripts (E11) shows a quality
degradation on all sets, with reasons still unclear to us.

We now analyze E9 (unsupervised data). Table 5 shows
the percentage of incorrectly recognized biasing phrases in each
test set (ERR), and the same metric on biasing phrases with at

Table 4: Proper Noun Results.

Exp ID Model Songs Cnt-
Real

Cnt-
TTS

Apps

E8 Sup Data 22.7 15.8 37.0 13.3
+ Biasing 5.3 6.7 6.8 2.4

E9 Sup + Unsup Data 14.7 15.4 25.0 9.6
+ Biasing 3.0 5.8 5.4 1.9

E10 TTS + Biasing 4.3 7.1 1.8 1.0
E11 Fuzzing + Biasing 7.2 11.0 14.0 4.4

least one OOV word (OOV), i.e., a word not in the training data.
First, the table shows the model is very likely to misrecognize
OOVs without biasing. Training with unsupervised data largely
improves the ERR metric without biasing, mainly because it
reduces OOV rate as shown in Table 1. Second, we see that
training with unsupervised data also improves the WER on OOV
utterances with biasing, as it provides the model with more simi-
lar words during training, giving the model more confidence to
output the correct word. Thus, models trained with unsupervised
data give better results in all test sets with and without biasing.

Table 5: Error rate in biasing phrases, and errors due to OOV.

Model Songs Cnt-Real Cnt-TTS Apps
Err OOV Err OOV Err OOV Err OOV

E8 21.1 94.7 23.0 91.9 62.9 99.0 16.2 97.9
+Bias 4.5 64.2 8.0 29.4 7.0 24.4 2.0 26.1
E9 15.5 90.8 22.3 94.6 55.6 100.0 12.1 100
+Bias 3.8 60.2 5.6 19.0 4.6 20.8 1.8 15.4

4.4. Comparison To Conventional Model

Table 6 compares the biasing performance of RNN-T to a con-
ventional model of comparable size (130MB), consisting of a
CTC AM trained with context-independent phoneme targets,
along with a separate PM and LM [5]. The RNN-T model out-
performs the conventional model by 20%-40% relative on all
categories but songs, perhaps due to the prefix set for songs not
being comprehensive enough.

Table 6: E2E vs. Conventional Model Biasing

Model VS Songs Cnt-
Real

Cnt-
TTS

Apps

RNN-T 6.7 3.0 5.8 5.4 1.9
Conventional 9.3 2.4 6.8 5.7 2.4

5. Conclusions
In this paper, we present various algorithmic and data improve-
ments to shallow-fusion E2E biasing. We find that RNN-T
shallow-fusion-based biasing shows competitive performance to
an on-device conventional model across a variety of contextual-
biasing tasks.

6. Acknowledgements
The authors would like to thank Brian Roark, Justin Scheiner,
Yanzhang (Ryan) He, Golan Pundak, Ben Haynor, Rohit Prab-
havalkar, Ian McGraw and Trevor Strohman for useful discus-
sions.

1421

7. References
[1] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall, B. Roark,

D. Rybach, and P. Moreno, “Bringing contextual information to
Google speech recognition,” in Interspeech, 2015.

[2] I. Williams, A. Kannan, P. Aleksic, D. Rybach, and T.N. Sainath,
“Contextual speech recognition in end-to-end neural network sys-
tems using beam search,” in Interspeech, 2018.

[3] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and R. Prab-
havalkar, “An analysis of incorporating an external language model
into a sequence-to-sequence model,” in ICASSP, 2018.

[4] G. Pundak, T.N. Sainath, R. Prabhavalkar, A. Kannan, and D. Zhao,
“Deep context: End-to-end contextual speech recognition,” in to
appear in Proc. of SLT, 2018.

[5] I. McGraw, R. Prabhabalkar, R. Alvarez, M. Gonzalez, K. Rao,
D. Rybach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays, and
C. Parada, “Personalized speech recognition on mobile devices,”
in ICASSP, 2016.

[6] K. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro, K. Naka-
jima, M. Riley, B. Roark, D. Rybach, and L. Zhang, “Composition-
based on-the-fly rescoring for salient n-gram biasing,” in Inter-
speech, 2015.

[7] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state trans-
ducers in speech recognition,” Computer Speech & Language, vol.
16, no. 1, pp. 69–88, 2002.

[8] D. Rybach, J. Schalkwyk, and M. Riley, “On lattice generation for
large vocabulary speech recognition,” in ASRU, 2017.

[9] L. Vasserman, B. Haynor, and P. Aleksic, “Contextual Language
Model Adaptation using Dynamic Classes,” SLT, 2016.

[10] G. Pundak and T. N. Sainath, “Lower frame rate neural network
acoustic models,” in Proc. Interspeech, 2016.

[11] Google, “Cloud natural language,” https://cloud.google.
com/natural-language/, 2018, [Online].

[12] Z. Huang and W. Xu and K. Yu, “Bidirectional LSTM-CRF Models
for Sequence Tagging,” CoRR, vol. abs/1508.01991, 2015.

[13] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins, “Globally Normalized Transition-Based
Neural Networks,” CoRR, vol. abs/1603.06042, 2016.

[14] B. Li, T.N. Sainath, R. Pang, and Z. Wu, “Semi-supervised
Training for End-to-End Models Via Weak Distillation,” in Proc.
ICASSP, 2019.

[15] X. Gonzalvo, S. Tazari, C. Chan, M. Becker, A. Gutkin, and
H. Silen, “Recent Advances in Google Real-time HMM-driven
Unit Selection Synthesizer,” in Interspeech, 2016.

[16] C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. N. Sainath,
and M. Bacchiani, “Generated of large-scale simulated utterances
in virtual rooms to train deep-neural networks for far-field speech
recognition in Google Home,” in Proc. Interspeech, 2017.

[17] A. van den Oord, Y. Li, and I. Babuschkin et. al., “Parallel wavenet:
Fast high-fidelity speech synthesis,” Tech. Rep., Google Deepmind,
2017.

[18] A. Graves, “Sequence transduction with recurrent neural networks,”
CoRR, vol. abs/1211.3711, 2012.

[19] H. Soltau, H. Liao, and H. Sak, “Reducing the Computational
Complexity for Whole Word Models,” in ASRU, 2017.

[20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.

[21] M. Schuster and K. Nakajima, “Japanese and Korean voice search,”
2012 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2012.

[22] M. Abadi et al., “Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems,” Available online:
http://download.tensorflow.org/paper/whitepaper2015.pdf, 2015.

1422

