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Abstract
We developed a neural network based approach to identify
urban tree species at the individual tree level from lidar and
hyperspectral imagery. This approach is capable of model-
ing the characteristics of multiple spectral signatures within
each species using an internally unsupervised engine, and is
able to catch spectral differences between species using an
externally supervised system. To generate a species-level
map for an urban forest with high spatial heterogeneity and
species diversity, we conducted a treetop-based species
identification. This can avoid the problems of double-sided
illumination, shadow, and mixed pixels, encountered in the
crown-based species classification. The study indicates lidar
data in conjunction with hyperspectral imagery are not only
capable of detecting individual trees and estimating their
tree metrics, but also identifying their species types using
the developed algorithm. The integration of these two data
sources has great potential to take the place of traditional
field surveys.

Introduction
Urban forests have many benefits such as saving energy,
improving water management, reducing air pollution, and
connecting urban residents with nature (McPherson, 2006).
To maximize these benefits, an urban forest inventory is
often needed for planning and management purposes. Basic
information in an urban forest inventory includes the
number of individual trees, their species, spatial distribu-
tions, and health conditions. Traditionally, this information
is collected through field surveys that are costly, labor-
intensive, and time-consuming. In addition, field surveys
can only be performed in areas accessible to the surveyors;
little or no data may be collected for private properties and
other inaccessible areas. It is difficult, if not impossible, to
inventory urban forests for a whole city through field
surveys. Consequently, relatively little information is
available about the urban forest in most cities, a major
constraint for realizing their benefits.

Remote sensing has become an attractive alternative to
field surveys in forest inventory because of its lower total
cost, greater coverage, and more regular data collection
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cycle. Recent developments in remote sensing have allowed
for the detection of the 3D structure of forests and the
estimation of forest attributes using the Light Detection And
Ranging (lidar) techniques. Lidar has the ability to “see” the
ground through openings in canopies and to estimate tree
metrics (Lim et al., 2003; Hyyppä et al., 2008; Ustin and
Gamon, 2010; van Leeuwen and Nieuwenhuis, 2010). Early
generation of lidar based on laser profiling technology have
long been used for estimating forest attributes at the stand
level (Hyyppä et al., 2008). However, for an urban forest,
detailed information at the individual tree level is usually
required. This is because an urban forest is a mosaic of a
large number of trees with different species, ages, and a high
degree of spatial heterogeneity. Fortunately, current lidar
systems, based on laser scanning technology, have an
extremely high sampling rate and are capable of estimating
forest attributes down to the individual tree level. The
literature has indicated that lidar can now effectively detect
individual trees and estimate single tree metrics, such as
tree heights and crown shape and size (e.g., Hyyppä and
Inkinen, 1999; Persson et al., 2002; Brandtberg et al., 2003;
Popescu and Wynne, 2004; Falkowski et al., 2006; Chen
et al., 2006; Koch et al., 2006; Kwak et al., 2007; Morsdorf
et al., 2004; Tiede et al., 2005; Zhang, 2010; Li et al., 2012).
However, most lidar systems have only one or two bands.
This is insufficient for tree species identification, especially
in urban forests with diverse species and high spatial
heterogeneity. Hyperspectral sensors, usually possessing
hundreds of bands, exhibit a great potential in identifying
tree species with their rich spectral contents.

A number of studies were conducted to classify tree
species from hyperspectral imaging data with varying
degrees of success (e.g., Martin et al., 1998; Xiao et al., 2004;

1 In recognition of the 100th Anniversary of the Association
of American Geographers (AAG) in 2004, the AAG Remote
Sensing Specialty Group (RSSG) established a competition
to recognize exemplary research scholarship in remote
sensing by post-doctoral students and faculty in Geography
and allied fields. Dr. Caiyun Zhang submitted this paper
which was selected as the 2011 winner.



Thenkabail et al., 2004; Clark et al., 2005; Buddenbaum
et al., 2005; Boschetti et al., 2007), but their applications in
urban forests are limited. This is because, unlike natural
forests with uniform stand characteristics, trees in urban
settings are often isolated single trees or clumped groups,
with varying tree heights, crown widths, multiple treetops,
and different degrees of canopy overlaps. This complexity
has made characterizing urban trees difficult (Xiao et al.,
2004). Urban forests are also composed of a mixture of trees
of diverse species, varying ages, and different health condi-
tions. These factors combined result in a high degree of
between-species spectral confusion and a great deal of
within-species spectral variability. A noted remote sensing
scientist, Dave Simonett, has said “Green is green is green”
(Jensen, 2005). By this he meant that most trees will likely
appear similar in their signatures throughout the spectrum.
On the other hand, differences in age, health condition, or
the amount of gaps presenting in tree crowns may cause the
same species to appear spectrally different. When traditional
pixel-based classifiers are used to differentiate the species,
pixels of different species may be misclassified as the same
types and pixels of the same tree may be classified as
different types. This may result in a very noisy species
classification map, especially in an urban forest with severe
between-species spectral confusion and within-species
variability problems. The noisy pixel-based species maps are
not only full of errors, but also useless for community
managers. Maps of individual trees with their corresponding
species information are more desirable for urban forest
management purpose.

Another challenge in urban tree species identification is
the limitation of algorithms for hyperspectral data analysis.
The traditional statistics-based multispectral image classi-
fiers, such as the maximum likelihood approach, often fail
to classify hyperspectral data due to the relatively small
training samples compared to the high dimensionality of the
hyperspectral data.

Endmember-based classifiers such as spectral angle
mapper, linear spectral unmixing, and spectroscopic library
matching, were thus specifically designed for hyperspectral
data processing. These approaches may not achieve the
expected results for identifying urban tree species due to the
difficulties inherent in determining endmembers, the
shortage of comprehensive spectral libraries of tree species,
and the violation of the assumption in the algorithms that
only one spectral representative (i.e., the endmember) exists
for each species. Artificial intelligence techniques, such as
fuzzy logic and neural networks, are another option. They
have been extensively employed in multispectral image
analysis (Mas and Flores, 2008), but their applications in
hyperspectral image processing are still scarce. The employ-
ment of these techniques for urban tree species identifica-
tion is even more limited. The main objective of this study
is to develop an improved neuro-fuzzy system to identify
tree species at the individual tree level from lidar and
hyperspectral data. As a result, an individual tree based
species map can be generated, which is more informative
and useful than a traditional pixel-based species map.

Various studies have been conducted on the synergy of
lidar and high spatial resolution multispectral images for
forest inventory (Hyyppä et al., 2008), but only a few studies
have reported the integration of lidar with hyperspectral
imagery for the purpose of urban forest inventory. Voss and
Sugumaran (2008) fused hyperspectral imagery with several
raster layers generated from lidar data to identify urban tree
species using object-oriented image analysis techniques.
Similarly, Dalponte et al. (2008) integrated lidar-generated
rater layers with hyperspectral imagery to discriminate tree
species on the pixel basis in a complex forest using support

vector machine techniques. To the best of our knowledge,
no efforts were made for mapping tree species at the
individual tree level in complex urban environments with
these two emerging data sources. In this study, we present
a neuro-fuzzy approach to identify a large number of tree
species in a complex urban forest down to the individual
tree level. Single trees were first detected from lidar point
cloud data, and then their species types were identified
from the associated hyperspectral information. The potential
to integrate lidar and hyperspectral imagery for urban forest
inventory is also investigated. We hope this work will
stimulate further research on the synergy of lidar and
hyperspectral data and especially its applications in urban
forests.

Methodology
Study Area and Data
The Turtle Creek in north Dallas, Texas was selected as the
study area. The topography of the area is dominated by the
Turtle Creek, which starts in north central Dallas (at 32°51’
N, 96°48’ W) and flows southwest five miles through
Highland Park and University Park to its mouth on the
Trinity River (at 32°48’ N, 96°50’ W). Elevation in the study
area varies from 112 meters to 156 meters, with the lower
elevations found over the creek and higher elevations
observed along the bank of the creek. A false color compos-
ite in grayscale from the hyperspectral data is shown in
Figure 1. This site is a typical urban area with complex
spatial assemblages of vegetation, buildings, roads, creeks,
and other man-made features. The area is dominated by
broadleaved deciduous trees of different ages, with approxi-
mately 50 species found over the region. The broad range of
tree species poses a challenge for current remote sensing-
based forest inventory. The Turtle Creek area has a complex
ecosystem and has been a center of interest and develop-
ment in Dallas for over 100 years. To better manage this
asset, help understand the current ecosystem, and encourage
the development of priorities over this region, the Turtle
Creek Association conducted a field survey in August 2008,
which was followed by a simultaneous acquisition of small
footprint, discrete-return lidar data and high spatial resolu-
tion hyperspectral images on 24 September 2008.

The field survey was conducted through a contract with
Halff Associates, Inc. Only trees with a diameter at breast
height (DBH) greater than four inches were measured and
tagged with an identification number, resulting in a total of
2,602 trees being surveyed in the Turtle Creek Corridor. Tree
location, species attributes, DBH, and health condition were
recorded for each measured tree. Figure 1 shows the loca-
tions of these surveyed trees in white dots. More than
40 species were identified in the survey. The most common
ten species are American Elm (Ulmus americana), Hackberry
(Celtis laevagata), Pecan (Carya illinoensis), Eastern Red
Cedar (Carya illinoensis), Shumard Red Oak (Quercus
shumardii), Tree of Heaven (Ailanthus altissima), Cedar Elm
(Ulmus crassifolia), Green Ash (Fraxinus pennsylvanica),
Red Mulberry (Morus rubra) and Chinaberry (Melia
azedarach).

Lidar data were collected by Terra Remote Sensing, Inc.
(TRSI) using a proprietary Lightwave Model 110 whisk-broom
scanning lidar system. The operation parameters in this
mission are listed in Table 1. An average point density of
3.5p/m2 was obtained due to an intentional 80 percent
overlap between flights. The US Forest Service suggested a
point density of ≥4 pts/m2 for lidar application in forests
(Laes et al., 2008). The relatively lower density would not
significantly influence its applications for deriving tree
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height and canopy size for this urban forest where most of
trees are broadleaf with bigger canopies. The raw lidar point
cloud data were processed by TRSI using Microstation™

Terrasolid and TRSI proprietary software. Final products
were provided in the commonly used LAS lidar format with
the projection of NAD_1983_UTM_Zone_14N.

Fine spatial resolution optical hyperspectral images
were simultaneously acquired with the lidar data using an
AISA Dual hyperspectral sensor. The AISA Dual sensor is a
high performance, hyperspectral sensor system that concur-
rently collects both visible and near-infrared (VNIR) and
shortwave infrared (SWIR) data. Hyperspectral images with
492 spectral bands were acquired at a spatial resolution of
1.6 meters. Radiometric calibration and geometric correction
were performed by the vendor. The original images were
transformed from raw digital numbers to radiance by
applying a pixel-by-pixel correction using gain and offset.
The offset was extracted from data stored in the “dark” files,
which are sensor readings when the shutter is closed,
representing sensor noise. The gain was extracted from the
calibration files supplied by the sensor manufacturer. During
the transformation from raw to radiance values further
corrections for dropped lines and spectral shift were also
applied. A transformation from radiance to surface
reflectance of the entire image dataset was then carried out
using ATCOR, a Modtran-based code specifically developed to
perform atmospheric correction. For the geometric correc-
tion, the vendor used the lidar positional information to
compute the real world coordinates of each pixel in the
dataset to re-sample the hyperspectral images. The pre-
processed images were then mosaiced and clipped for the
study area.

Individual Tree Detection
In order to identify tree species at the individual tree level,
single trees need to be detected first, which is primarily
achieved from lidar data with two major steps (Zhang,
2010). The first step is the derivation of the Digital Terrain
Model (DTM). Differences in height measurement caused by
local terrain topography must first be eliminated in order to
get the relative height of each lidar point. To this end, a DTM
or Bare Earth Surface must be created and then subtracted
from the original lidar hits. To generate the DTM, the lidar
points reflected from the ground need to be filtered out from
those reflected from above-ground objects. This process is
known as “lidar data filtering” in the literature. Sithole and
Vosselman (2004) compared eight filters and found that
these filters perform well in smooth rural landscapes, but
they all have poor performance in complex urban areas and
rough terrain with vegetation. Since a variety of feature
types (buildings, roads, trees, creeks, etc.) are present in our
study area; none of those eight filters is likely to achieve
satisfactory results for this area. Therefore, a vector-based
filtering technique using a k-mutual nearest neighborhood
clustering algorithm (Chang, 2011) was adopted. The idea of
this algorithm is that points in a neighborhood sharing
similar lidar attributes should belong to the same cluster
which represents either ground or above-ground. A main
advantage of this algorithm is that there is no loss of
information by working directly with the raw lidar point
cloud. Testing results illustrated that this approach had
better performance in complex urban environments than
commonly used raster-based lidar filters (Zhang, 2010).

The second major step is the detection of individual trees.
This step includes treetop identification and tree crown
delineation procedures. Several techniques have been explored
in the literature to delineate tree crowns, detect treetops, and
estimate single tree metrics. These approaches can be grouped
into two categories: raster-based methods and vector-based
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Figure 1. A False Color Composite Image in Grayscale
Derived from the Hyperspectral Data over the Study Area.
Field Measured Trees Are Displayed in White Dots.

TABLE 1. OPERATION PARAMETERS FOR COLLECTING LIDAR AND HYPERSPECTRAL
REMOTE SENSING DATA USED IN THIS STUDY (PROVIDED BY TERRA REMOTE

SENSING, INC., 2008)

Aircraft Type Piper Navajo
Flight Speed 235 km/hr (145 mile/hr)
Operation Altitude (m) 1260
Overlap (%) 80
Beam Divergence (mrad) 0.45
Scan Rate (Hz/Sec) 34
Laser Pulse Rate (kHz) 60
Returns 2
Laser Wavelength (nm) 1064
Scan Swath Width (m) 640
Off-nadir Scan Angle 26o

Footprint (cm) 93
Lidar Relative Accuracy (cm) 15
Lidar Absolute Accuracy (cm) 30



methods (Zhang, 2010). Raster-based methods segment
individual trees from the lidar-derived canopy height model,
a raster image interpolated from lidar points hitting on the
surface of tree canopies. A major problem of those algorithms
is the introduction of errors and uncertainties from the
interpolation process (Smith et al., 2004), which will ulti-
mately affect the subsequent estimates of tree metrics (Suárez
et al., 2005). Vector-based methods detect trees and derive tree
metrics using the original X, Y, Z or other attributes of the
lidar point data without building a raster surface. We adopted
the vector-based approaches developed in Zhang (2010) for
individual tree segmentation because they may provide better
accuracy by preserving the original elevation values.

To search for treetops in the above-ground lidar point
cloud, which was derived by the lidar data filtering process,
points hitting tree crowns need to be identified so that non-
tree points will not interfere with individual tree isolation.
The Normalized Difference Vegetation Index (NDVI) can be
used for this purpose. We derived a NDVI image from the
hyperspectral data and then spatially overlaid the above-
ground lidar point cloud on it. The NDVI value at the cell
within which the lidar point falls was then extracted as an
additional attribute for the point. The vegetation points were
then identified based on their NDVI values using a threshold.

To effectively and efficiently find treetops, the lidar
points representing the surface of the tree canopy was first
extracted by isolating them from the points that penetrate
into the canopy. This step was accomplished by moving a
square window over the study area in a non-overlapping
manner and preserving the highest first-return pulse within
it. After this, a treetop detection algorithm, referred to as a
tree climbing algorithm was applied to identify the highest
point (i.e., the treetop) of each individual tree. The idea of
this algorithm is that the treetop always has the highest
elevation and can be reached from a moving local window.
After treetop detection, a tree crown delineation algorithm,
referred to as the donut expanding and sliding method, was
used to define tree crowns. This algorithm is the inverse
process of the treetop finding procedure. A detailed descrip-
tion of individual tree segmentation, as well as a designed
procedure for urban forest inventory (location, height, base
height, crown depth, crown diameter, species) from lidar
and hyperspectral imagery, were reported in Zhang (2010).

Tree Species Identification
Once individual trees and their tops are detected, their
corresponding tree species need to be identified. We devel-
oped a neuro-fuzzy approach, referred to as Adaptive Gaussian
Fuzzy Learning Vector Quantization (AGFLVQ), in order to
effectively differentiate a large number of species using
hyperspectral data, which is the focus of this paper. AGFLVQ
is an improvement over Gaussian Fuzzy Learning Vector
Quantization (GFLVQ) developed for hyperspectral image
classification by Qiu (2008). One of the advantages of GFLVQ
is its ability to perform supervised learning and unsupervised
self-organizing simultaneously. The limitation of the GFLVQ is
that it assumes each class has a same number of spectral
representatives. This may lead to overestimation or underesti-
mation of the number of clusters for some classes, thus will
inevitably have negative impacts on the final classification
accuracy. It is therefore necessary to improve the GFLVQ by
exploring a fully adaptive neuron-fuzzy approach that can
automatically determine the number of competitive neurons
to characterize the degree of within-class spectral variability.
To this end, the AGFLVQ is developed as follows.

An illustration of the topological structure of AGFLVQ
with varied numbers of spectral clusters for each species in
the competitive layer is displayed in Figure 2. The AGFLVQ
has three layers: an input layer, a competitive layer, and an

output layer. The neurons in the input layer correspond to
the input pixel values of all the hyperspectral bands. The
number of neurons in the output layer equals the number of
species types. The number of neurons in the competitive
layer can be equal to or greater than that of the output
classes. When the number of competitive neurons is more
than the number of classes, each class is allowed to have
multiple clusters so that the modeling of possible multi-
modal distributions in the data is possible. The AGFLVQ
system can automatically adapt the number of neurons in
the competitive layer based on a student t-test. Externally
the AGFLVQ is a supervised neuro-fuzzy system, but inter-
nally, it has a fully unsupervised engine that can generate
an appropriate number of competitive neurons for each
output class, which makes it more robust than GFLVQ. The
output and competitive layers are not fully connected, as
shown in the illustration.

The AGFLVQ approach contains the fundamental ingredi-
ents of both a neural network and a fuzzy system, and
consists of the following components: (a) fuzzification and
initialization, (b) generation of clusters, (c) neuro-fuzzy
learning, and (d) neuro-fuzzy classification and defuzzifica-
tion. Each component is described in detail below.

Fuzzification and Initialization
Since the inputs into the system are usually not fuzzy
numbers, the training samples need to be fuzzified into a set
of fuzzy numbers before entering the system. The fuzzifica-
tion of a single input neuron is achieved by using the
Gaussian fuzzy membership function:

(1)

where Aij is the membership grade, cij is the mean parameter
of the Gaussian function corresponding to the center of the

Aij �e
�

(cij�xj)2

2 * sij
2
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Figure 2. Topological Structure of the AGFLVQ System with
Adaptive Clusters for Each Output Class.



ith cluster of the j th input neuron, and xj is the j th input
variable (that is, input pixel value for j th band), and �ij
represents the Gaussian standard deviation parameter
characterizing the degree of dispersion of the cluster.
Equation 1 can only be used to determine the fuzzy mem-
bership grade of a pixel for one band. For hyperspectral
data, to assign a pixel to a particular cluster or class, the
input values of all the bands of this pixel need to be
considered. This is achieved using an and-or fuzzy operator
in the form of the geometric mean so that an overall mem-
bership grade of this pixel can be obtained by:

(2)

where �i refers to the overall membership grade of the input
pixel concerning the ith output cluster, n refers to the
number of input neurons, and c, x, i, j, and � are the same
parameters as in Equation 1. This operator is an averaging
operator; i.e., it allows a low membership grade in one band
to be compensated for by a high membership grade in
another band, so that a missing or noisy value in one band
will not heavily affect the classification output of the entire
pixel.

Two parameters (c and �) need to be initialized before
running the AGFLVQ algorithm. Instead of assigning random
values for initialization like most neural networks applied to
multispectral image classification, in AGFLVQ, these two
parameters are initialized using the training data. AGFLVQ
first randomly subdivides the training data for each species
type into subsets according to the number of clusters
configured for that species type. Then the mean and stan-
dard deviation of each subset are calculated and assigned to
corresponding clusters as initial values for these two
parameters. This training data informed initialization makes
hyperspectral data classification more efficient (Qiu, 2008).

Generation of Clusters
The advantage of AGFLVQ over GFLVQ is the automatic
generation of clusters for each output class instead of using
a constant number. To automatically generate the number of
clusters for each species, internally unsupervised fuzzy self-
organizing map (Zhang and Qiu, 2011) clustering is performed
first with a predetermined number of clusters (e.g., 5) for
each species, then a two sample Student t-test is used to
assess the similarity of the Gaussian distribution of two
adjacent clusters. The two-sample student t-test can test the
equality of two means from two groups with equal sample
sizes and equal variance, or with unequal sample sizes and
equal variance, or with unequal sample sizes and unequal
variance. After the unsupervised clustering, clusters within
each species should have different sample size and variance.
Thus the two-sample t-test for unequal sample sizes and
unequal variance was used with the equations as:

(3)

(4)

where cij and �ij are the same parameters as for Equation 1,
and n1 and n2 are the total number of samples for cluster
i and cluster i�1, respectively. A p value for each test can
be calculated based on the t distribution. If the p value is
greater than 0.05, indicating the two clusters are basically
from the same distribution, then the two adjacent clusters
are merged; otherwise, they are kept separated. The merging

Scij�c(i�1)j
� C

sij
2

n1
�

s(i�1)j
2

n2

t �
cij � c(i�1)j

Scij�c(i�1)j

ai � aq
j�1

n
e 

�
 

(cij � xj)2

2 * sij b
1
n

of the clusters can be conducted iteratively until no more
merging is needed. In this way, the number of competitive
neurons for each species can be finally determined
automatically.

Neuro-fuzzy Learning
Two parameters (cij and �ij) are updated during the training
process by using the externally supervised learning algo-
rithm, which is, utilizing the true target species information
provided by the training data. The updating schemes are:

if x and c belong to the same species type (5)

if x and c not belong to the same species type (6)

The supervised learning method for the mean parameter has
the effect of moving the mean parameter cij (the cluster
center) towards the matched (correctly classified) input
pattern. Unlike GFLVQ that pushes cij away from the
unmatched (incorrectly classified) input pattern, AGFLVQ
uses only one learning scheme for the mean parameter
because of the high degree of similarity of spectral character-
istics between tree species types. The “pushing away”
scheme may push the mean parameter far from the center of
the cluster, resulting in unexpected relearning. The geomet-
ric interpretation of the updating rule for �ij is that when the
absolute deviation of the input pattern xj from the center of
the matched cluster (centered at cij) is larger than the current
standard deviation �ij of the cluster, the standard deviation
will be increased by � portion of the difference. If the
absolute deviation is smaller, then the standard deviation
will be decreased by the smaller portion of the difference.
This ensures the size of the cluster to be shrunk or enlarged
adaptively based on the deviation of all the matched input
patterns from the cluster center. If the input pattern xj
belongs to a different cluster, then no update is needed
because the cluster has nothing to do with the input pattern,
similar to the GFLVQ system.

Neuro-fuzzy Classification and Defuzzification
All the automatically generated clusters from the internally
unsupervised clustering and externally supervised learning
can be used to directly classify the data. Fuzzy membership
grades are calculated for an input pixel first, and then
defuzzification is performed by comparing all the member-
ship grades of the pixel and then assigning the pixel to the
class with the maximum membership grade.

Results and Discussion
The lidar algorithms adopted in this study for data filtering,
individual tree detection and crown delineation generated
good results (Zhang, 2010). An average agreement of
93.5 percent was obtained for the lidar tree detection
algorithm by comparing the number of lidar detected trees
with the number of field surveyed trees in the Turtle Creek
Corridor. For the entire study area, a total of 20, 736 dominant
trees were detected from the lidar data, whose species need
to be identified.

A lidar-detected individual tree can be conceptualized
as an object comprised of lidar points representing its tree
crown, including the associated treetop. Therefore, the
assignment of each individual tree to a specific species is
achieved using object level tree species classification, rather
than traditional pixel level classification. Object level
species classification can be conducted by analyzing the

e¢cij � 0     
¢sij � 0     

e ¢cij�h (xj �cij)     
¢sij �h (|cij �xj|)  
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typical values of the hyperspectral pixels corresponding to
all the points falling within a crown, referred to as crown-
based species classification, similar to most object level
classification approaches. Alternatively, species classifica-
tion can also be achieved by analyzing only the hyperspec-
tral pixel value corresponding to the treetop, known as
treetop-based species classification.

The developed AGFLVQ method is capable of performing
both crown-based and treetop-based species classification.
However, crown-based species classification for individual
trees has several disadvantages compared with treetop-based
classification. First, a representative spectral signature for a
crown is difficult to determine, because each tree crown
often has an illuminated side and a shaded side. The spectra
of these two sides can differ significantly. Additionally,
shadows and canopy gaps within a crown may introduce the
mixed pixel problem. Second, errors are unavoidable during
the tree crown delineation process, which can be propagated
into, and impact significantly, the subsequent crown-based
species classification. Crown delineation commission errors
may group crowns of different trees into one object and thus
incorporate spectral signatures of different species into one
crown. This will complicate the crown-based species
classification. Crown delineation omission error may result
in small crown objects, which may not be able to provide a
sufficient number of pixel values to generate statistically
reliable and typical spectral signatures for the crowns.
Additionally, more severe mixing pixel problems can occur
at the boundary of tree crowns due to the possible inclusion
of the spectra of different neighboring tree species or of bare
earth into a pixel at the edge of crowns.

Treetop-based species classification at the individual
tree level, however, has the following advantages compared
with the crown-based species classification. First, the
treetops are less likely to suffer from the double-sided
illumination problem described above, because the treetops
are often the best illuminated portion of a tree crown.
Located in the middle of a tree canopy, treetops also have
the least amount of shadow, gaps, and bare earth interfer-
ence compared to the rest of the crown, and are therefore
less impacted by the mixed pixel problem. The errors in the
crown delineation have no impact on the classification

because only the treetops are used to represent the spectral
signature of a tree for species classification. In addition, a
treetop-based species identification can save substantial
computation time because only one hyperspectral pixel is
processed for each tree. When species classification is
completed, the identified species type for the treetop pixel
can be assigned to the entire tree crown as object level
information. For these reasons, the treetop-based species
classification was employed to identify the species type of
each individual tree using the hyperspectral pixel values
over the lidar-detected treetops.

To apply the AGFLVQ algorithm, the hyperspectral pixel
values for the treetops of all field-surveyed trees were first
extracted from the hyperspectral imagery as the reference
data. Out of 46 species in total, only the 40 species that had
more than two field samples were used by the AGFLVQ
algorithm. The number of reference data for the selected
40 species is shown in Table 2. These reference data were
randomly divided into two parts. One part was used as
training data, and the other part was employed as testing
data for accuracy assessment. Statistical t-tests were con-
ducted only for the first 20 species, which have more than
30 field samples, and only one cluster was defined for the
other 20 species because they have a relatively small
number of field samples. After training, species identifica-
tion for lidar-detected trees in the entire study area was
conducted by classifying the hyperspectral pixels correspon-
ding to each treetop. The final identified species could be
mapped on the crown basis by extending the treetop-based
result to the lidar-delineated crown, as shown in Plate 1.
A high spatial heterogeneity of trees and diverse species
over this area is clearly observed. The individual tree based
species map using either the treetops or the crowns is easier
to use to the community managers.

The accuracy of the AGFLVQ algorithm was assessed by
the conventional error matrix approach on the individual
tree basis. The total accuracy was also calculated from the
number of correctly identified trees against the total number
of trees. The Kappa statistics is believed to be a better
representation of the general quality of classification because
it removes the effects caused by the differences in sample
size and also accounts for the off-diagonal elements in the

1084 Oc t obe r  2012 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 2. ACCURACY GENERATED FROM THE AGFLVQ FOR EACH SPECIES

ID Species PA (%) UA (%) NRD ID Species PA(%) UA (%) NRD

1 American Elm 39.39 82.11 398 21 Bois d’arc 91.67 100.00 24
2 Hackberry 47.89 77.12 379 22 Sycamore 72.73 80.00 21
3 Pecan 65.55 60.94 237 23 Black Locust 87.50 100.00 15
4 Eastern Red Cedar 62.93 73.00 232 24 Redbud 100.00 100.00 13
5 Shumard Red Oak 77.27 65.89 219 25 Persimmon 100.00 100.00 6
6 Tree of Heaven 76.36 47.19 220 26 Slash Pine 100.00 100.00 5
7 Cedar Elm 83.54 52.80 159 27 Gingko 100.00 100.00 5
8 Green Ash 87.23 65.08 94 28 Southern Magnolia 100.00 100.00 5
9 Red Mulberry 84.62 71.74 77 29 Dogwood 100.00 100.00 4
10 Chinaberry 78.79 68.42 65 30 White Ash 100.00 100.00 4
11 Gum Bumelia 88.89 85.71 54 31 Bradford Pear 100.00 100.00 3
12 Bald Cypress 84.00 77.78 49 32 Chinese Pistache 100.00 100.00 3
13 Cherry Laurel 95.00 59.38 39 33 Chinese Tallow 100.00 100.00 3
14 Boxelder 90.00 81.82 38 34 Southern Catalpa 100.00 100.00 3
15 Post Oak 100.00 86.36 38 35 Sweetgum 100.00 100.00 3
16 Live Oak 89.47 85.00 37 36 Golden Rain Tree 100.00 100.00 2
17 Bur Oak 94.12 80.00 34 37 Black Walnut 100.00 100.00 2
18 Cottonwood 94.12 94.12 34 38 Honey Locust 100.00 100.00 2
19 Crepe Myrtle 100.00 100% 32 39 Western Soapberry 100.00 100.00 2
20 Black Willow 93.75 88.24 31 40 Catalpa 66.67 100.00 2

Total Accuracy: 68.8% Kappa Value (k_hat): 0.66 Z-Score: 47.76
PA: Producer’s Accuracy UA: User’s Accuracy NRD: Number of Reference Data



error matrix (Congalton et al., 1983). Thus, the Kappa value
was also calculated to quantify the classification accuracy.
After running the algorithm 100 times with different training
and testing data selected, the average of the producer’s and
user’s accuracy of each species, the average of the overall
accuracy and Kappa statistics were calculated, which are
given in Table 2. The producer’s accuracy varies from
39.39 percent to 100 percent, and the user’s accuracy ranges
from 47.19 percent to 100 percent for different species. The
most common species: American Elm, Hackberry, and Cedar
Elm, all belong to the Elm family, resulting in a poor
accuracy in classification due to their similarity in plant
biochemistry. Good accuracy was achieved for the less
common species. The overall averaged accuracy of classifica-
tion is 68.8 percent, and the Kappa value is 0.66. These
accuracy measures are more robust than those obtained by
training and testing the algorithm with the same data group.
To examine the significance of the result, the Kappa z-score
statistical test based on the error matrix was conducted.
The derived value of z-score is 47.76, suggesting the result is
significantly better than a random classification at the
95 percent statistical confidence level. For comparative
purposes, the traditional spectral angle mapper (SAM)
method for hyperspectral data classification was also
applied to identify tree species in the study region with the
calculated mean spectrum as the endmember for each
species. An overall accuracy of 39.95 percent and a Kappa
value of 0.36 were obtained using the SAM method, illustrat-
ing that the AGFLVQ algorithm is more effective than the
traditional SAM method.

It is difficult to compare the results obtained here with
other studies using hyperspectral data for species identifica-
tion due to differences in the study sites, the total number
of species being discriminated, and the seasons in which
data was collected. However, it is valuable to compare the
results of other studies that were conducted under similar
situations. In the literature, the work of Xiao et al. (2004)

using AVIRIS imagery and the work of Voss and Sugumaran
(2008) using lidar and hyperspectral imagery for urban tree
species identification are most similar to this research. To
provide a more legitimate basis for comparisons when
different numbers of species are being identified, an index
termed Number Of Categories Adjusted Index (NOCAI) is
proposed. The NOCAI considers the number of tree species
being differentiated and the accuracy of the obtained results.
It is calculated by dividing the accuracy achieved by a
specific algorithm by an expected accuracy that would be
obtained if trees were randomly assigned to a species.
The expected accuracy is simply 1/k�100% where k is the
number of species. Logically, the more the species, the
lower the expected accuracy would be. Higher values for
the NOCAI indicate better performance of the algorithm.
Xiao et al. (2004) reported an average accuracy of 70% for
identifying 12 deciduous tree species. The expected accu-
racy in Xiao et al. (2004)’s case is , meaning
an accuracy of 8.3% could be obtained by just randomly
assigning a tree to a species type without using any classifi-
cation methods. The NOCAI for the Xiao et al.’ study is 8.4

. Voss and Sugumaran (2008) reported an overall
accuracy of 57 percent for discriminating seven species;
thus the value of NOCAI for their result is 3.99. In this study,
an overall accuracy of 68.8 percent is achieved for identify-
ing 40 species. An expected accuracy of 2.5 percent

could be obtained for a tree by just randomly
assigning a tree to one of 40 species. The calculated value of
the NOCAI is 27.52. This higher NOCAI value suggests that the
developed approach is effective to discriminate a large
number of tree species for an urban forest, based upon
comparison with Xiao et al.(2004)’s multiple-masking
techniques and Voss and Sugumaran (2008)’s object-based
approach.

Species identification is challenging because of the rich
diversity of species and the spatial heterogeneity of urban
forests. The AGFLVQ algorithm was able to provide good

((1/40) * 100%)

(0.7/(1/12))

(1/12) * 100%
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Plate 1. Species Map on the Crown Level with the Detected Treetops. The complexity of the urban forest
with rich species, varying crown size, and high spatial heterogeneity, are presented.



accuracies on most species and yielded acceptable total
accuracy and Kappa statistics for discrimination of 40 species
in the study site. The result is significantly better than the
traditional SAM hyperspectral classifier. This can be attributed
to its capability to model the multiple spectral signatures
within each species through the built-in unsupervised engine,
as well as its power to catch the differences in the spectral
mean and standard deviation between species. The adaptabil-
ity of the competitive layer in AGFLVQ is also helpful for the
achieved results. The adoption of the original GFLVQ could
not generate a satisfactory accuracy. The between-species
spectral similarity problem, and the varying degree of within-
species variability is primarily responsible for the unsatisfac-
tory result. While some species (such as many evergreen
trees) exhibit relative within-species spectral homogeneity
that can be captured by only one spectral signature, other
species (such as many deciduous trees) may need two or
more spectral signatures to characterize their within-species
variability. The GFLVQ is unable to model this situation due to
the fact that it assumes all the species have the same number
of spectral signatures (or spectral clusters). Better accuracy
may possibly be achieved if lidar-derived variables such as
height, crown base height, and proportion of returns can be
combined into the algorithm, which needs to be examined in
the future. It is also worth mentioning that the time of data
collection could impact the species classification accuracy. It
has been found that good results can be obtained if the
images are collected in the spring, shortly after the flushing of
leaves, or in autumn, after trees have turned color (Lillesand
and Kiefer, 1994). The imagery in this study was collected in
summer, and most of the trees appear green with similar
spectral characteristics throughout the visible portion of the
spectrum; however, the richness of the spectral contents in
hyperspectral data combined with a fine spatial resolution
still made tree species identifiable. Potentially, better results
could be achieved if data were collected in spring or autumn.

Conclusions and Future Research
The contribution of this research is the development of
algorithms for automatically inventorying urban forests from
lidar point cloud data and hyperspectral imagery. The study
illustrated that tree species can be estimated with a reasonable
accuracy by the proposed AGFLVQ from hyperspectral data at
the individual tree level. Hyperspectral data have a powerful
capability for identifying species due to their rich spectral
contents. Taking the lidar derived treetop locations, tree
species could be recognized by analyzing the hyperspectral
data associated with these locations. The generated vector-
based species map allows the query of species information of
each individual tree, which is more useful for forest manage-
ment than the traditional pixel-based species map. Lacking the
concept of object, pixel-based species classification and
mapping may result in different species types being identified
as the same individual tree. Lidar data in conjunction with
hyperspectral imagery are not only capable of detecting
individual trees and estimating their tree metrics, but also
identifying their species types using the proposed algorithm.

Note that only a simple integration of lidar and hyper-
spectral data was explored in this study. An in-depth fusion
of lidar and hyperspectral data may further improve the
accuracy of individual tree delineation, metrics estimation
and species classification. For example, the spectral informa-
tion may be used to provide a better crown delineation by
excluding lidar points with very different spectra at the edge
of the tree. Tree species identification may also be improved
by making use of the tree lidar point density and the
derived tree metrics as ancillary information to the current
spectral-only classification if properly utilized. This in-depth

lidar and hyperspectral data fusion could eventually acceler-
ate the transition of lidar and hyperspectral applications in
their respective field from scientific interests to commercial
operational implementations. This research has laid down a
solid foundation for further research on individual tree
based analysis for urban forest inventory. A complete fusion
of the two data sources for forest applications is one of the
major directions for future research.

The developed algorithm for tree species identification
was only tested in one study area. Additional research is
needed in areas with different species, forest compositions,
and sensors in order to examine the robustness and extensi-
bility of this technique. We hope that the promising results
for individual tree level species mapping obtained in this
study will stimulate further lidar and hyperspectral remote
sensing research and applications in many other urban
forests of the world.
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