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ABSTRACT 

Chronic myeloid leukemia (CML) is a malignancy of hematopoietic stem cells. The disease is characterized by 
abnormal (excessive) proliferation and aberrant trafficking of transformed progenitor cells. This includes early 
release of these cells into the bloodstream of patients, which is likely due- at least in part- to adhesion receptor 
abnormalities that affect the interaction of malignant cells with bone marrow stroma and important 
extracellular matrix proteins. Aberrant trafficking is also contrarily characterized by homing of transformed cells 
to stroma in the bone marrow and spleen and other tissue sources characterized by high stromal content. This is 
a fate that- due to the cytoprotective effect of stroma on drug-treated leukemia cells- can lead to development 
of minimal residual disease in patients undergoing therapy with targeted inhibitors such as imatinib and 
nilotinib. This review will briefly discuss these events, as well as novel therapeutic strategies designed to 
override stroma-associated drug resistance in CML. 

 

 

CML AND STROMA 

 CML is a hematologic malignancy caused by 
the t(9;22) chromosome translocation product and 
oncogene, BCR/ABL [1].  Aberrant proliferation of 
CML progenitor cells occurs, as well as untimely 
liberation of these cells into the bloodstream. The 
mechanisms underlying the abnormal trafficking 
and proliferation of CML progenitor cells as 
compared to untransformed hematopoietic cells 
have been attributed to altered integrin function 
or expression, possibly leading to altered adhesion 

to stroma and fibronectin, an important 
extracellular molecule of the bone marrow 
microenvironment [2-9]. BCR-ABL itself may cause 
integrin defects in CML cells that play a role in 
aberrant trafficking, and BCR-ABL-altered cellular 
adhesion may increase cell cycling as well as 
release of leukemia cells out of bone marrow and 
into the bloodstream and extramedullary regions 
[2-9].  

 In addition to stromal cell interaction with 
BCR-ABL-expressing cells influencing CML cell 
trafficking, stromal cells have also been implicated 
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in drug resistance and minimal residual disease in 
CML patients treated with tyrosine kinase 
inhibitors (TKIs), such as the frontline CML 
therapy, imatinib (STI571; Glivec; Novartis Pharma 
AG) [10, 11] and the second generation Abl 
inhibitor, nilotinib (NVP-AMN107-NX; Tasigna, 
Novartis Pharma AG) [12]. In clinical trials, CML 
reemerges in over half of the patients who 
discontinue imatinib therapy after having 
maintained a complete molecular response 
(defined as at least a 5 log reduction in BCR-ABL 
mRNA expression) [13]. BCR-ABL-expressing 
leukemic stem cells that continue to reside in the 
bone marrow of tyrosine kinase-treated patients 
having sustained undetectable molecular residual 
disease may contribute to patient relapse 
following cessation of drug treatment [14]. Bone 
marrow stromal cells, which secrete growth 
factors and protect leukemia cells from targeted 
inhibitors, have thus been implicated in the 
development of minimal residual disease 
comprised of CD34+ cells that, despite expressing 
BCR-ABL, are insensitive to ABL inhibitors [15].  

 Using an in vivo bioluminescence model of 
CML, we tracked the homing and progression of 
luciferase-expressing leukemia cell growth, which 
involved monitoring the relative localization of 
tumor burden in different tissue sources in 
untreated mice, as well as that of residual disease 
in nilotinib-treated NCr nude mice [16]. We found 
that, in both vehicle-treated and nilotinib-treated 
mice, leukemia appeared to migrate to stroma-
associated tissues, with the regions that showed 
the highest luminescence (a measure of tumor 
burden) also being those that were highest in 
stromal content. These results, which showed a 
leukemia distribution pattern reminiscent of that 
observed in CML patients treated with imatinib 
and nilotinib, support the notion that significant 
reservoirs for tumor growth are likely tissues that 
are able to support stem cell development.  

 In our study, both the spine and the spleen 
of vehicle-treated control mice were found to 
have the highest relative tumor burden, whereas 
only the spine of nilotinib-treated mice showed 
the highest relative tumor burden. Splenic stroma 
is a notable source of soluble growth factors 
associated with hematopoiesis [17] and diseased 
splenocytes provide viability signals, including IL-2, 
IL-6, macrophage chemoattractant protein-5 
(MCP-5), soluble tumor necrosis factor receptor 1 

(sTNFR1), tumor necrosis factor-alpha, and 
vascular endothelial growth factor-A (VEGF-A),  
which lead to growth and survival of leukemic cells 
[18]. Thus, in addition to bone marrow stroma, 
splenic stroma appears to have a significant 
influence on the proliferation and viability of 
leukemic cells. Indeed, splenomegaly, or spleen 
enlargement, is a characteristic of late-stage CML 
[19].  

 Recent studies have identified factors, such 
as c-Myb-dependent Slug expression [20], which 
are believed to be essential for the homing of CML 
to the bone marrow. Other studies have in 
contrast found proteins, such as Crk-associated 
substrate lymphocyte type (Cas-L), to have a 
negative influence on CML infiltration into tissues 
such as spleen [21]. Signaling pathways and 
signaling molecules, such as Src, may play a role in 
supporting leukemic cell survival under hypoxic 
conditions, which is a feature characteristic of the 
bone marrow stromal microenvironment and 
which has an influence on drug sensitivity and 
leukemic cell progression [22].  

 The provision of viability signals by the bone 
marrow stroma, including granulocyte 
macrophage colony-stimulating factor (GM-CSF), 
granulocyte colony-stimulating factor (G-CSF), and 
stem cell factor (SCF), has been found to enhance 
hematopoietic stem cell proliferation as well as a 
block in terminal differentiation [23-29]. This led 
us to investigate the possibility that stromal-
secreted cytokines might be able to confer 
cytoprotection to tyrosine kinase inhibitor-treated 
BCR-ABL-expressing cells.  We cultured imatinib- 
and nilotinib-treated primary CML cells and a 
human CML cell line with conditioned media 
pooled from human stromal cells, and observed 
that the stromal-conditioned media (SCM) 
partially protected the leukemic cells from the 
inhibitory effects of both agents [16]. Our results 
supported the notion that stromal-mediated 
chemoresistance in the context of CML is at least 
in part likely attributed to stromal-derived viability 
signals. A more in-depth analysis ensued with the 
aim of identifying specific cytokines capable of 
mimicking the effects of SCM [16]. In parallel with 
SCM, we tested the effects of a cytokine cocktail 
consisting of stromal-derived factor-1 (SDF-1), a 
bone marrow-secreted chemoattractant that 
supports stem cell homing, as well as a panel of 
cytokines secreted in high concentrations from 
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human stromal cells [30]. Indeed, the cocktail, 
consisting of SDF-1, interleukin (IL)-6, IL-8, IL-11, 
GM-CSF, and M-CSF, enhanced the growth of BCR-
ABL-expressing cells and partially protected 
imatinib-treated leukemic cells to a similar extent 
to SCM. The level of protection conferred by each 
individual cytokine was less than the complete 
cytokine cocktail, suggesting that two or more 
growth factors are likely needed for maximum 
cytoprotection [16]. Our findings were consistent 
with other published findings that demonstrated 
cytokine protection of chemotherapy-treated 
myeloid leukemia cells [31]. 

NOVEL THERAPEUTIC STRATEGIES 
TARGETING STROMAL CYTOPROTECTION 
OF CML 

 Novel approaches to overriding stromal-
mediated chemoresistance contributing to 
minimal residual disease in CML patients have 
been proposed. As we and others have found that 
viability signals play an integral role in 
chemoresistance due to the stromal 
microenvironment, one such strategy involves 
blockade of apoptotic signaling through inhibitor 
of apoptosis (IAP) inhibition. We thus investigated 
the ability of pro-apoptotic agents, such as IAP 
inhibitors, to potentiate the effects of ABL 
inhibitors and, in effect, delay or prevent the onset 
of residual disease. Effective inhibitors of the IAP 
family of proteins [32, 33] have been developed, 
such as LBW242 [34], and its structural analog, 
LCL161, which bind and impede the activity of 
multiple IAPs. We tested the ability of LCL161 to 
significantly delay disease recurrence in mice 
harboring BCR-ABL-positive cells and treated for 
several weeks with a moderate-to-high dose of 
nilotinib [35].  Using an in vitro model of stromal-
mediated chemoresistance, as well as an in vivo 
model of progressive and residual disease, we 
demonstrated the ability of LCL161 to potentiate 
the inhibitory effects of nilotinib against leukemic 
disease. Specifically, LCL161 synergized in vivo 
with nilotinib to lower leukemia burden 
significantly below the basal suppression exhibited 
by a moderate-to-high dose of nilotinib. These 
results support the notion of using IAP inhibitors in 
combination with ABL inhibitors to suppress or 
eliminate progressive and drug-resistant/residual 
disease. LCL161 is being considered for testing in 
clinical trials for leukemia; early clinical trials in 

advanced solid tumors are ongoing. 

 Another putative approach to overriding the 
cytoprotective effect of stroma on TKI-treated 
leukemic cells involves the administration of 
antagonists of the SDF-1 receptor, CXCR4. This 
receptor is integral to stromal cell:leukemic cell 
interactions, as a primary function of CXCR4 is to 
mediate hematopoietic cell migration to bone 
marrow stroma.  CXCR4 expression and signaling 
are diminished in cells that express BCR-ABL, [36, 
37], whereas imatinib or nilotinib inhibition of 
BCR-ABL kinase activity increases CXCR4 surface 
expression, an effect prompting CML cells to 
migrate to bone marrow stroma where they are 
protected and resistant to TKI therapy [36-38]. As 
CXCR4 antagonists steer leukemic cells away from 
cytoprotective stroma, they are potentially 
effective in potentiating the apoptosis-inducing 
effects of TKIs like imatinib [39].  Of relevance, 
plerixafor (AMD3100; Genzyme), an 
antagonist/partial agonist of CXCR4 and allosteric 
agonist of CXCR7 [40], has been demonstrated to 
augment the cytotoxic effects of chemotherapy- or 
tyrosine kinase inhibitors on stroma-protected 
acute myeloid leukemia (AML) [41-43], multiple 
myeloma [44, 45], and CML [38, 46].  

 In CML, potentiation of tyrosine kinase 
activity by plerixafor has been demonstrated via 
measurement of the percentages of human CD19+ 
cells that engrafted in the BM and spleen of mice 
following co-cultivation of imatinib-treated BCR-
ABL-expressing cells with mesenchymal stromal 
cells and pre-treatment with plerixafor [46]. In this 
study, there were substantial reductions in 
engraftment for cells pretreated with plerixafor 
followed by secondary treatment with imatinib, 
which suggests a restoration of ABL inhibitor 
sensitivity of the cells by plerixafor. We recently 
tested the synergizing potential of plerixafor in our 
in vivo assay system [35] that allows monitoring of 
progressive disease and baseline level (or 
"residual") disease following treatment with a 
moderate-to-high dose of nilotinib [47]. We found 
that leukemic stem cell mobilization into the 
peripheral blood of mice, induced by plerixafor, 
enhances the efficacy of nilotinib by inhibiting 
leukemia recurrence post-nilotinib therapy. 
Specifically, nilotinib initially effectively reduced 
leukemia burden in mice, however with continued 
treatment, nilotinib resistance was evident as 
tumor burden increased despite prolonged drug 
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exposure. Plerixafor demonstrated no single agent 
activity, however combination with nilotinib 
significantly postponed time to relapse and also 
significantly extended survival when compared to 
treatment with nilotinib treatment alone 
(p<0.0001).  Plerixafor was thus demonstrated to 
act synergistically with nilotinib when 
administered at a well-tolerated dose to inhibit 
the growth of BCR-ABL-positive leukemia.  

 In support of our in vivo results, plerixafor 
was observed in vitro to decrease the migration of 
BCR-ABL-expressing cells, as well as diminish 
leukemic cell adhesion to bone marrow stromal 
cells, fibronectin, and endothelial cells. Plerixafor 
was also demonstrated in an in vitro co-culture 
system to reverse the cytoprotective effect of 
stroma on nilotinib induction of apoptosis of CML 
cells. All results taken together support the notion 
that plerixafor interferes with leukemic:stromal 
cell interaction and in effect sensitizes BCR-ABL-
positive cells to tyrosine kinase inhibition.  

 Our results differed with those of another 
report [48], which tested the combination of 
plerixafor with imatinib or the second generation 
ABL inhibitor, dasatinib (BMS-354825, Sprycel, 
Bristol-Myers Squibb) [49] in a murine CML 
retroviral transduction/transplantation model 
mimicking highly active CML. According to this 
study, the combination of plerixafor and the TKIs- 
in contrast to our findings- promoted 
extramedullary leukemic infiltrations in vital 
organs, including the brain, with no reduction in 
leukemia burden observed. Differences in the 
murine models used are believed to account for 
the disparate results between the two studies. 
Irradiation of mice, which was not employed in our 
CML model, is believed to have damaged the 
blood-brain barrier in the murine model utilized by 
Agarwal et al. Of relevance, others have reported 
that in non-irradiated mice, plerixafor does not 
cause bone marrow-derived cells to infiltrate the 
brain [50]. In addition, our model attempted to 

mimic minimal residual disease and to effectively 
demonstrate an effect of plerixafor on stem cells. 
In the Agarwal et al. model, the comparatively 
high leukemia burden in mice left little margin to 
show a cooperative effect between plerixafor and 
TKIs, and this was coupled by plerixafor-enhanced 
toxicity due to the extramedullary infiltration and 
migration of leukemic cells into vital organs 
stemming from irradiation. Finally, differences in 
in vivo efficacy and stability/half-life between 
nilotinib, imatinib, and dasatinib may also account 
for differences in results between the studies. 
Thus, we conclude that stem cell mobilization 
combined with TKI therapy is a potentially 
effective strategy aimed at suppressing or 
eradicating minimal residual disease in CML 
patients. 

CONCLUSION 

 The significant role of stroma in CML cell 
trafficking is apparent from the numerous studies 
that have been carried out over the past couple of 
decades. Interference with stroma:leukemia cells 
interaction due to abnormal adhesion properties 
likely contributes to enhanced proliferation of 
leukemic cells and their premature release out of 
the bone marrow and into the peripheral blood of 
patients. The homing of CML cells to stroma 
negatively influences the effectiveness of TKI 
therapy due to envelopment of leukemic cells in a 
cytoprotective environment that leads to 
development of minimal residual disease. Novel 
approaches to overriding stromal-associated 
chemoresistance, such as the use of proapoptotic 
agents in combination with TKIs, and the 
administration of CXCR4 antagonists with TKIs, 
show promise in preclinical studies and will 
hopefully lead to improved CML patient response 
and survival if developed as anticancer 
therapeutics. 
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