
Abstract
A Compact Airborne Spectrographic Imager-2 (CASI) dataset
was used for detecting mortality and vegetation stress
associated with a new forest disease. We first developed a
multilevel classification scheme to improve classification
accuracy. Then, the CASI raw data were transformed to
reflectance and corrected for topography, and a principal
component (PC) transformation of all 48 bands and the
visible bands and NIR bands were separately conducted to
extract features from the CASI data. Finally, we classified the
calibrated and corrected CASI imagery using a maximum
likelihood classifier and tested the relative accuracies of
classification across the scheme. The multilevel scheme
consists of four levels (Levels 0 to 3). Level 0 covered the
entire study area, classifying eight classes (oak trees,
California bay trees, shrub areas, grasses, dead trees, dry
areas, wet areas, and water). At Level 1, the vegetated and
non-vegetated areas were separated. The vegetated and non-
vegetated areas were further subdivided into four vegetated
(oak trees, California bay trees, shrub areas, grasses) and
four non-vegetated (dead trees, dry areas, wet areas, and
water) classes at Level 2. Level 3 identified stressed and
non-stressed oak trees (two classes). The ten classes classi-
fied at different levels are defined as final classes in this
study. The experimental results indicated that classification
accuracy generally increased as the detailed classification
level increased. When the CASI topographically corrected
reflectance data were processed into ten PCs (five PCs from
the visible region and five PCs from NIR bands), the classifi-
cation accuracy for Level 2 vegetated classes (non-vegetated
classes) increased to 80.15 percent (94.10 percent) from
78.07 percent (92.66 percent) at Level 0. The accuracy of
separating stressed from non-stressed oak trees at Level 3
was 75.55 percent. When classified as a part of Level 0, the
stressed and non-stressed were almost inseparable. Further-
more, we found that PCs derived from visible and NIR bands
separately yielded more accurate results than the PCs from
all 48 CASI bands.
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Introduction
A new canker disease called sudden oak death (SOD) (Rizzo
and Garbelotto, 2003) is affecting tree and shrub species,
including coast live oak (Quercus agrifolia), tanoak (Lithocar-
pus densiflorus), and black oak (Q. kelloggii) along 300 km of
the central California coast. The disease, caused by a newly
discovered virulent pathogen called Phytophthora ramorum
is reaching epidemic proportions in the region. The pathogen
is lethal for many individual trees of these species. On
susceptible trees, the pathogen can enter the bark and kill
phloem tissue restricting translocation of water and nutrients
in the tree. It can take two or more years for a tree to die
(McPherson et al., 2005). However, once crown dieback
begins, the foliage of infected trees appears to die rapidly
with leaves changing color from dark green to pale yellow
and brown in just a few weeks (McPherson et al., 2000;
Garbelotto et al., 2001). SOD has attracted substantial public
attention because oaks are major components of California
hardwood forest ecosystems, urban areas, and the urban/rural
interface (Rizzo and Garbelotto, 2003). Early detection of the
disease would improve the ability of managers to deal with
disease outbreaks. One possible method of early detection
and assessment is remote sensing.

Remote sensing of vegetation relies on a thorough
understanding of the biophysical and biochemical charac-
teristics of plants and their canopies. Parameters such as
crown closure, leaf area index, canopy structure, chloro-
phyll content, foliar nutrients, and foliar water content are
all important indicators of vegetation health (Curran, 1989;
Elvidge, 1990; Cibula et al., 1992; Belanger et al., 1995;
Hall et al., 1998; Ceccato et al., 2001; Gerylo et al., 2002;
Gong et al., 2003; Pu et al., 2003a and 2003b). Previous
research was used to evaluate the utility of multispectral
sensor data for mapping tree mortality in forest areas
affected by disease or stress. Kelly and Meentemeyer
(2002) and Kelly et al. (2004) used high-resolution Air-
borne Data Acquisition and Registration Imagery (ADAR)
imagery to map dead and dying oak trees in Marin County,
California. Similarly, Everitt et al. (1999) reported that
oak wilt disease could be detected using airborne digital
imagery in south-central Texas, while Macomber and
Woodcock (1994) used Thematic Mapper (TM) imagery to
map conifer mortality resulting from drought. Their study
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examined the utility of broad-band remote sensing data in
forest hazard management by providing both locations and
estimates of dead trees. All of the aforementioned authors
found that they could distinguish dead crowns from the
healthy forest mosaic using digital multispectral imagery.
Kelly and Liu (2004), on the other hand, found it difficult
to distinguish different health levels of diseased trees
using multispectral data (ADAR).

Hyperspectral remote sensing has proven useful for
mapping vegetation and detecting vegetation stress at both
the leaf and canopy scales. Hyperspectral data products have
been particularly useful for extracting biochemical parame-
ters like chlorophyll and tree leaf moisture content. For
example, Peñuelas et al. (1993 and 1996) used reflectance
measured in the 950 to 970 nm region to detect gerbera,
pepper, bean, and wheat plant water status. Their results
demonstrated that the ratio of reflectance at 970 nm to the
reflectance at 900 nm could be used to closely track changes
in relative water content (RWC), leaf water potential, stomatal
conductance and cell wall elasticity. Tian et al. (2001)
evaluated the spectral absorption features (between 1650
and 1850 nm) and RWC of wheat leaves to study the feasi-
bility of diagnosing wheat-water status. Their findings
indicated a correlation between spectral absorption features
(depth, area, and wavelength position) and RWC of wheat
leaf samples. Imanishi et al. (2004) conducted a field
experiment using three-year-old potted Quercus glauca and
Q. serrata to examine the utility of derivative spectrum
analysis for detecting drought status and LAI at canopy
level and to find the optimal bands that can independently
detect those variables. The best single bands for detecting
leaf water content and LAI were 519.6 nm in the first
derivative (r � 0.916) and 676.0 nm in the second deriva-
tive (r � 0.828), respectively. By extracting spectral fea-
tures from lab-measured hyperspectral data, Pu et al.
(2003b and 2004) showed that RWC of oak leaves was
correlated with spectral absorption features across the
spectrum, particularly at 975 nm, 1,200 nm, and 1,750 nm,
and the hyperspectral data has also proved useful in meas-
uring vegetation stress (Pu et al., 2004). Stressed leaves
show a stark difference in their major pigment concentra-
tions and water content as compared to non-stressed leaves.
This indicates that the narrow spectral resolution of hyper-
spectral data is sensitive enough to discern spectral differ-
ences between stressed and non-stressed leaves, differences
that broad spectral band sensor data cannot.

As a complement to such a lab-measured spectral
analysis, hyperspectral imagery has been useful in measur-
ing biophysical and biochemical parameters at broad scales.
Curran et al. (1997) used the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) hyperspectral system to
analyze the water content of slash pine needles. Results
indicated an R2 of 0.99 for pine needle water status when
three absorption bands (975 nm, 1,200 nm, and 1,750 nm)
were used in a five-term multivariate regression model.
At the canopy scale, Ustin et al. (1998) found that moderate
resolution (20 m) AVIRIS data could potentially be used on
a regional scale to estimate the water content of chaparral
shrub canopies. Johnson et al. (1994) determined predictive
relationships for biochemical concentrations using regres-
sions between the chemical composition of forest canopy
and AVIRIS reflectances. Using data from AVIRIS and a
Compact Airborne Spectrographic Imager (CASI), Matson
et al. (1994) demonstrated that canopy biochemicals carried
information about forest ecosystem processes and suggested
that some of this chemical information might be estimated
remotely using hyperspectral data collected by airborne
sensors. Wessman et al. (1988 and 1989) reported a signifi-
cant correlation between mid-infrared radiance data from

Airborne Imaging Spectrometer (AIS) and canopy lignin, and
nitrogen availability in both deciduous and coniferous stands.
In addition, some physically based models (e.g., radiative
transfer models) have been successfully used to simulate leaf
reflectance and transmittance and to estimate leaf biochemical
properties. For example, Haboudane et al. (2002) employed
PROSPECT and SAILH radiative transfer models to retrieve
leaf chlorophyll content from hyperspectral CASI imagery
collected over corn crops in three experimental farms from
Ontario and Quebec, Canada by simulating leaf and canopy
reflectance with the models. Evaluation showed chlorophyll
variability over crop plots with various levels of nitrogen, and
revealed an excellent agreement with ground truth. Sampson
et al. (2003) developed an inverse modeling approach that
demonstrated that the CASI could be used to map chlorophyll
content following different silvicultural treatments in a
tolerant hardwood (sugar maple (Acer saccharum M.)) forest.
This capability could be readily applied to operationally
assessing forest physiological strain and in classifying forest
condition based on chlorophyll content at a canopy level.
Recently, Hyperion hyperspectral data were used to predict
and estimate forest nitrogen (Smith et al., 2003; Coops et al.,
2003; Townsend et al., 2003).

Based on the previous work and initial examination of
SOD by Pu et al. (2003b and 2004), we suspected that the
foliage of infected trees, even when they appear green, have
a different water and biochemical status as compared to
healthy leaves. If, in addition to mapping hardwood mortal-
ity, we could detect SOD infected oak trees at a much earlier
stage (before the leaves have undergone dramatic shifts in
pigmentation), we could give managers a significant advan-
tage in dealing with the disease. This led us to examine
mortality and vegetation stress using hyperspectral data from
CASI in China Camp State Park, Marin County, California.
We know from previous work that the spectral difference
between healthy and stressed oak leaves sampled from the
Marin County study site is very slight (Pu et al., 2004).
In that work the maximum (or minimum) 1st derivative (1D)
and its corresponding wavelength position (WP) were
extracted from ten spectral slopes along each spectral
reflectance curve of a total of 306 coast live oak leaf samples
to test the relationships between the 20 spectral features and
RWC (percent). We also tested the spectral difference between
two health levels of oak leaves, healthy and infected. The
result of an analysis of variance (ANOVA, SAS Institute,
Inc., 1991) of 20 spectral features suggests that the difference
of a few of spectral features between two health levels of
oak leaves is significant at a 0.95 confidence level, but there
exists a relatively large variation within individual health
levels (Pu et al., 2004). Given this slight difference, we
predicted that the stressed trees would be almost inseparable
from other trees if we were to use a standard classification
strategy. Therefore, we developed a multilevel classification
system (Townsend and Walsh, 2001) to detect SOD with CASI
imagery. The multilevel classification scheme described
in this paper represents a flexible approach to vegetation
mapping and general classification that can be applied to
detect or monitor hardwood mortality and crown dieback.
Additionally, the flexibility of the scheme provides the
potential for increased detail and accuracy in the final
classification and permits the expansion and refinement
without revising the entire classification (Richards, 1993).
Our experimental objectives in this study include: (a) eval-
uating the performance of the multilevel classification
scheme, (b) comparing the effectiveness of two data pre-
processing approaches of calibrating and topographically
correcting the CASI data, and (c) assessing the effect on the
classification accuracy of two feature extraction methods
over ten features each.
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Plate 1. The location of study area and partial training and test areas on a false color CASI image. The green
color dots locate healthy trees; the blue ones locate stressed trees; the pink ones are dead trees; and the
red ones are California bay trees.

Study Site and Analysis Data
Study Site
China Camp State Park was chosen as our study site (Plate 1).
The park is located in a forested peninsula on the east side of
Marin County, California (122°29�50�W, 38°00�30�N). The
topography of the area is composed of moderate to steep
slopes (10° to 40°) with elevations ranging from sea level to
over 300 m. The major forest types include coast live oak,
black oak, and valley oak (Q. lobata) occurring in mixed stands
with mature madrone (Arbutus menziesii) and California bay
trees (Umbellularia californic, all of which, with the exception
of the valley oak, are hosts for P. ramorum (Rizzo et al.,
2002)). The forest stand we examined is of even-age trees
with a largely continuous canopy. Individual trees have
moderately large crowns that range from 4 m2 to 16 m2.
Sudden oak death was first reported in the area in 1997,
and the disease became widespread here through 2004
(McPherson et al., 2000; Kelly, 2002).

CASI Imagery
CASI has been in commercial production since 1989. It is a
charge couple device (CCD) pushbroom imaging spectrograph
intended for the acquisition of visible and near-infrared
hyperspectral imagery. CASI offers a multispectral mode
(programmable bands) and a hyperspectral data cube mode.
CASI operates over a 545 nm spectral range between 400 nm
and 1000 nm and has a cross-track field of view of 37.8°.
The spectral and spatial resolution of the instrument can be
changed from sub-meter to 10-meter pixels, and the hyper-
spectral mode can collect up to 288 bands. Operationally,
the user can trade spatial resolution for spectral resolution,
thus optimizing the quantity of data collected.

In this study, the United States Department of Agricul-
ture, Agricultural Research Service, Sidney, Montana collected
the CASI imagery with 48 spectral bands of approximately
11 nm on 02 July 2002. The 48 bands were systematically
(equal interval) selected from a total of 288 bands, i.e., picking
one every six bands. The original spatial resolution of the CASI
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Figure 1. A multilevel classification scheme: Level 0
with the entire study area; Level 1 with NDVI �0.3 as
vegetated area, otherwise as non-vegetated area; Level 2
with two 4-vegetated classes (Bay trees, Oak trees,
Shrub area and Live grasses) and four non-vegetated
classes (Dead trees, Dry areas, Wet area, and Water
body), Level 3 with two oak health levels: healthy and
stressed. A traditional maximum likelihood classifier
(MLC) was applied to classification at Levels 0, 2, and 3.

data was 2 m. The 2 m data was simply resampled to 1 m to
fit other higher spatial resolution data. We performed topo-
graphic correction on the CASI imagery using a digital eleva-
tion model (DEM) at 5 m spatial resolution. The DEM model
was previously derived from photogrammetric methods using
black and white stereo aerial imagery.

ASD Full Range Hyperspectral Radiometer
Ground spectral data collected from light and dark targets
located in the CASI scenes were acquired using a full-range
Analytical Spectral Device (ASD) (FieldSpec®ProFR). The ASD
data, collected on 23 July 2002, were used to calibrate the raw
CASI data from radiance to reflectance. The targets included a
white target, a parking lot, dry grasses, dense shrubs, a water-
ditch, an asphalt-road surface, and a dense coast live oak
canopy. The ASD instrument consists of three separate spec-
trometers and covers a spectral range of 350 nm to 2,500 nm.
The first spectrometer has a spectral resolution of 3 nm, and
the second and third have a spectral resolution of approxi-
mately 10 nm. Calibration of the CASI data was accomplished
using data from the first spectrometer. All spectra were
measured at nadir with a 25° field of view. The distance
between the spectrometer and the targets ranged from 50 cm
to 100 cm, depending on target characteristics. Ten separate
measurements were acquired from each target.

ADAR Imagery
In addition to the CASI data and ground spectral measure-
ments, ADAR 5500 data were collected in spring 2002 and
in summer 2003. The ADAR 5500 is airborne multispectral
sensor and has four spectral bands: band 1 (blue, 450 to
550 nm), band 2 (green, 520 to 610 nm), band 3 (red, 610 to
700 nm), and band 4 (near infrared, 780 to 920 nm). These
data were used with field data to extract samples of healthy,
stressed, and dead oak trees. The aircraft with the ADAR
sensor was flown at an average altitude of 2,205 m, with
an average ground resolution of 1 m (for more details see
Kelly et al., 2004).

Methodology
A Multilevel Classification Scheme
We developed a multilevel classification scheme (Figure 1)
for the project. One advantage of this methodology is that it
matches the logical structure of most plot-based floristic
classification schemes (Townsend and Walsh, 2001). The
multilevel classification scheme was constructed in four
levels (Figure 1). Level 0 is for the entire study area, and
the classification of all eight classes (oak trees, California
bay trees, shrub areas, grasses, dead trees, dry areas, wet
areas, and water) is conducted at this level. At this level, a
traditional classification result would be produced in order
to be compared with results generated at higher levels. At
Level 1, two sub-areas, vegetated and non-vegetated, are
separated using an NDVI threshold of 0.3. NDVI values greater
than 0.3 were assigned as vegetation. With this threshold,
the two sub-areas could be clearly separated within the
study area. The vegetated and non-vegetated areas were
further subdivided into four vegetated and four non-
vegetated classes at Level 2 using a maximum likelihood
classifier (MLC). The four vegetated types include oak trees
(coast live, black, and valley oaks), California bay trees,
shrubs, and living grasses including meadow. The four non-
vegetated classes include dead trees, dry areas (consisting of
dry bare soil, concrete/asphalt, and dry grasses), wet areas
(wet bare soil, wet dead grasses), and water. The finest level
of detail, Level 3, is further subdivided the oak tree class
into two classes, stressed and non-stressed (for their

identification, see the section “Extraction of Training and
Test Samples”). Therefore, the two oak health classes
(Level 3) only relate to oak tree classes that were classified
from the four vegetated classes (Level 2) which are compo-
nents of the vegetated sub-area (Level 1). The purpose of
further classification of the four non-vegetated classes was
to detect the dead trees (oak mortality).

Data Preprocessing Approaches
In this study, two data preprocessing approaches were
applied: first, calibration of CASI radiance data into reflectance
values and second, topographic correction to the reflectance
values. Calibration of CASI data was accomplished using a
well-known empirical band-to-band linear regression model
(Freemantle et al., 1992; Goetz et al., 1997):

Y � AX � B (1)

where Y denotes a spectral vector taken from a ground
target with the ASD spectrometer, X represents CASI pixel
spectral vector digital number (DN) values; A and B are
slope and intercept vectors of the X, Y regression line,
respectively. The B intercept vector is described as an
offset of radiance for each band induced by atmospheric
path radiance, while the A slope vector accounts for
atmospheric transmittance differences and spectral shifts
caused by the instrument. The CASI reflectance image
was then topographically corrected using the following
approach.

Topographic normalization of imagery removes the
influence of slope and aspect from the observed spectral
reflectance or radiance values (Allen, 2000). An ideal slope-
aspect correction model removes all topographically induced
illumination variation. Therefore, objects having the same
reflectance properties have similar DN despite their orienta-
tion to the sun’s position (Meyer et al., 1993). The procedure
used for correction was based on previous work by Townsend
and Foster (2002), Allen (2000), and Meyer et al. (1993). We
assumed that a linear relationship existed between illumina-
tion and spectral reflectance (radiance). This relationship was
used to remove the confounding effects of topography. The
linear regression model takes the form:

(2)LH � LT � cos(i)m � b � LT
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TABLE 1. PIXEL SAMPLES EXTRACTED FROM CASI IMAGERY

USED IN THIS ANALYSIS

Class Name Training Samples Test Samples Total

Bay trees 3664 3884 7548
Oak trees 6137 7157 13294
Shrub 996 965 1961
Grasses 3832 3582 7414
Dead trees 4519 4297 8816
Dry areas 12976 12357 25333
Wet areas 10335 12230 22565
Water 5902 8294 14196
Non-stressed oaks 2188 1819 4007
Stressed oaks 1808 1909 3717

52357 56494 108851

where, LH is radiance observed for horizontal surface, LT is
radiance observed over slope terrain, is average radiance of
LT for forest pixels or other specific cover types in a scene of
image, i is sun incidence angle in relation to the normal of a
pixel, and m and b are the slope and intercept of the regres-
sion line, respectively. The pixel-based sun incidence angle
values can be derived using PCI Geomatica® software (PCI
Geomatics, Ontario, Canada) using a DEM model and the sun
position in association with the date and time when the
image was acquired. It is worth noting that the effectiveness
of topographic correction depends on what cover type in the
scene is used for deriving parameters in Equation 2. In this
study, since we emphasize on mapping mortality and detect-
ing oak tree stress associated with a new disease (SOD), all the
parameters in Equation 2 were derived from the oak tree class
in the study area.

Feature Extraction Methods
Feature selection is one challenge inherent in using hyper-
spectral data. With tens and sometimes hundreds of bands
from which to choose, the analyst must determine which
bands or features to include in a classification scheme.
In hyperspectral remote sensing, it is well known that
classification with all spectral bands can lead to lower
accuracies (Gong et al., 1997; Hsu et al., 2002). This is due
to cross correlation issues across classes (Yu et al., 1999).
We chose principal component analysis (PCA) to extract
features from CASI hyperspectral data and evaluated the PCs
for their utility in discriminating classes at different classi-
fication levels. PCA along with Kauth-Thomas transformation
(KT) (a specialized Gramm-Schmidt orthogonalization) has
been broadly applied in change detection (e.g., Gong, 1993;
Collins and Woodcock, 1996; Hayer and Sader, 2001).

Method 1 Five Principal Components from the Visible
Bands and Five from the NIR Bands
Principal component analysis was performed on 25 bands
in the visible region of the CASI data (420 to 705 nm) and on
23 bands in the near infrared (NIR) region (705 to 970 nm)
separately. A total of ten principal components (PC) were
extracted, five of which were from visible bands and five of
which were from NIR bands. Separate extraction of PCs from
visible and NIR regions was done to maximize available
information obtained from the lower variability data of the
visible region relative to that from the NIR region, which
typically has higher variability in its data.

Method 2 First Ten Principal Components
The first ten PCs were extracted from the entire 48-band CASI
data cube without regard for differences in variability in the
visible or NIR regions.

Classification Algorithm
A traditional MLC was applied to four datasets (two data
preprocessing approaches by two feature extraction methods)
in order to detect mortality and vegetation stress associated
with the disease. Determining the accuracy of the classifica-
tion results was accomplished using average accuracy (AA)
assessment, overall average accuracy assessment (OAA), and
the Kappa-Variance (K-V) as accuracy and statistical indices
(Congalton and Mead, 1983; Fung and LeDrew, 1988). All
those accuracy indices were calculated from independent
test samples. The K-V was used to calculate a Z-statistic 

( , where, k1 and k2 are kappa values of 

corresponding Method 1 and Method 2, respectively, and
v1 and v2 are corresponding variances) that was used to test
the difference in accuracy between data preprocessing
approaches and between feature extraction methods.

Z �
�k1 � k2 �wv1 � v2

LT

Extraction of Training and Test Samples
Field surveys and comparison of multitemporal ADAR
imagery were used to extract four different training and
test samples from the CASI datasets. The eight cover types
(the first eight classes in Table 1) were also outlined on a
hardcopy of the CASI image. In order to separate the two
oak health levels (stressed and non-stressed), we examined
previously-acquired ADAR imagery from 2003 and 2002.
The locations of 118 healthy coastal live oak trees with
medium to large crowns (�3 m diameter), green foliage,
and no SOD symptoms on the tree trunk were located either
using GPS or by comparing the differences between the
2002 and 2003 ADAR imageries. The locations of 81 stressed
coast live oak trees with medium to large green crowns
were found by first finding individual trees in the 2003
ADAR imagery that already were dead but appeared healthy
in the 2002 ADAR imagery. We then located 40 individuals
from the 81 stressed oak trees in the field with GPS and
made a note on the hardcopies of the 2002 CASI and ADAR
imagery, which helped confirm the remaining stressed oak
trees identified in the ADAR imagery. Stressed trees had
advanced symptoms on the main stem (extensive cankering
and bleeding) and were within one year of changing color
from green to brown. Plate 1 presents examples of Bay,
healthy oak, stressed oak, and dead trees.

After delineating training and test areas of all ten classes
on the CASI imagery, we extracted their pixel spectra. Table 1
lists numbers of pixel samples of all ten classes. The sample
sizes (Table 1) are significantly different among the ten
classes, which is because selection of sample size was
difficult for some classes, such as two health levels of oak
trees and shrub class, due to limited numbers of oak trees
(reliably separating stressed and non-stressed) and shrub
class (identified). According to the individual crown size,
10 to 50 pixel samples were extracted from the CASI imagery
for one individual tree.

Results
Data Preprocessing
Since both CASI and ASD data were acquired near noon
under a clear sky condition, the influence on both datasets
by the atmospheric and BRDF effects were relatively weak.
A simple linear model Equation 1 was therefore applicable
and was used to calibrate the CASI radiance to reflectance.
Consequently, the six targets (a parking lot, dry grasses,
dense shrubs, a water-ditch, an asphalt-road surface, and a
dense coast live oak canopy) were selected from the CASI
imagery and in the field with two requirements: relative
homogeneity within individual target areas, and patch sizes
no smaller than 9 (3 � 3) CASI pixels (36 m2). The six
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Figure 2. CASI hyperspectral data calibrated from digital (radiance) to reflectance: (a) CASI raw data
(digital number), (b) ASD spectral measurements taken from the same targets on the ground as (a),
(c) band to band correlation between ASD spectral reflectances and CASI raw data, and (d) CASI
converted reflectances.

targets were selected because they represent nearly the
whole range of spectral variation in the study area (from
bright to dark targets). CASI DN curves were extracted from
six targets, averaged by 4 to 9 CASI pixels, and the plot of
six ASD curves each was averaged by ten measurements.
These are shown in Figure 2a and 2b. Figure 2c shows the
R2 between CASI DN and ASD reflectance data for each band.
The R2 values for individual bands were calculated from six
samples (i.e., the six curves in Figure 2a and 2b). Compara-
tive observation indicated that the CASI DN curves are
subject to a significant variation, particularly in the NIR
region (Figure 2a). This supposition is supported by the ASD
spectrometer data, which are much smoother (with less
variation) in this region (Figure 2b). Figure 2c shows the R2

between CASI DN and ASD reflectance data for each band.
The R2 values of all bands (except for the 700 nm band) are
either close to or greater than 0.9, indicating a reliable
functional relationship between the two devices in most
regions of the electromagnetic spectrum. The ASD data,
therefore, can be used to calibrate the CASI DN to reflectance
values. Some of the differences found between ASD and
CASI spectra might be due to the different full-width-half-
maximum (FWHM) of both instruments (3 nm and 11 nm),
especially at 700 nm, a region or rapid reflectance increase
(the so-called “red edge” reflectance range) due to leaf
pigment absorption and leaf structure scattering. Figure 2d
presents the six CASI reflectance curves after conversion to
reflectance. The converted reflectance curves shown in
Figure 2d are very similar to original ASD reflectance curves

shown in Figure 2b, with the exception of the band near
700 nm. The cause of the low R2 value at that point
(Figure 2c) was undetermined.

Equation 2 was used to correct all slope-aspect pixel
values (reflectance) to horizontal pixel values based on
sun orientation. Figure 3a and 3b present the results of the
terrain normalization of CASI converted reflectance imagery
with Equation 2 whose parameters were simulated from
the pixel samples of the oak tree class in the study area.
The topographic normalization, in large part, corrected for
the influence of terrain on CASI reflectance pixel values.
It also de-trended pixel values dependant on the slope and
aspect of the terrain. The effects of this normalization are
especially apparent when comparing the corrected and
uncorrected data.

Multi-level Classification
The multi-level classification scheme was used to increase
the classification accuracy of end-classes. Table 2 lists the
producer and user classification accuracies as well as the
average and overall accuracies of the different classification
levels. Differences in classification accuracies for Level 2 and
Level 0 (the four vegetated classes and four non-vegetated
classes) are significantly different (alpha � 0.01) with accura-
cies increasing as levels increase (average accuracies). Due to
their similar spectral characteristics, the Level 0 (eight-class)
scheme could not differentiate between stressed and non-
stressed oaks. However, the stressed and non-stressed oak
trees could be differentiated at Level 3 even when they were
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Figure 3. Scatter plots of topographic normalization
to CASI data (in converted reflectance): (a) CASI
converted reflectance of band 40 versus solar inci-
dence angle (cos(i)*10000), and (b)after topographic
normalization to (a).

the only two classes present. To assess the final producer’s
accuracy in identifying oak health levels, we also considered
the classification accuracy of the oak class in the vegetated
group at lower levels. For this case, the non-stressed oak trees
can be identified with a joint accuracy of 77.20 (Level 2) �
78.20 (Level 3) � 60.37 percent, while the stressed oak trees
had a joint accuracy of 77.20 (Level 2) � 72.90 (Level 3) �
56.28 percent (Table 2). While the joint identification accu-
racy is relatively low, the spectral similarity between the two
health levels of oak trees reinforces the observation that the
multilevel scheme is able to increase accuracy as a results of
an increase in the relative spectral separability with higher
classification levels (Levels 2 and 3).

We evaluated the accuracy of each data preprocessing
approach and feature extraction method (Table 3). The
underlined value represents the greatest accuracy across
the two data preprocessing approaches and the two feature
extraction methods at one classification level (Table 3). The
Z-statistics (data not shown) tested for a significant differ-
ence between the two classification accuracies with two
feature extraction methods and the two data preprocessing
approaches. Based on these statistics, the results suggest
that the PCs extracted from visible and NIR bands separately
were more useful (Table 4) than the PCs from all 48 bands
for classification at all levels except for the classification of
vegetated classes at Level 2, especially for the identifica-
tion of the two health levels of oaks at Level 3. The results
also imply that topographic correction could favor vegeta-
tion classification (Level 2 for four vegetated classes and
Level 3 for the identification of two oak health levels). This
is because the slope-aspect normalization model (from

Equation 2) was simulated under consideration of the oak
forest type. In identifying the two oak health levels, we
further analyzed the differences in accuracy between the
two data preprocessing approaches and two feature extrac-
tion methods with Z-statistics, listed in Table 4. While
focusing on the PCA from visible and NIR bands separately,
the OAA calculated with the data preprocessing approaches
has a certain difference.

Discussion
In this comparative analysis of classification at four different
levels with two data preprocessing types and two feature
extraction methods, we found that the classification accura-
cies are not consistent across classification levels or methods
(Table 3). We have two possible technical explanations, as
well as some considerations about our particular situation.
The first technical consideration is that the response values
of the 48 CASI bands, especially the 23 bands located in NIR
region, need internal calibration. The second is that the
calibration procedure of CASI data using Equation 1 may
lower the variance contained in the original data set. This
may also directly influence the separability of some cover
types. This phenomenon of lowering the variance of the
original data set is common, and CASI data calibration
followed by a topographic normalization may be more
pronounced. For example, the topographically-corrected
reflectance preprocessing approach for the eight class
scheme in Table 3 resulted in the lowest classification
accuracy across the two feature extraction methods and the
two data preprocessing approaches. However, converted
reflectance data followed by topographic normalization
should prove to be very helpful when comparing two data
sets acquired at different locations or different times.

Our critical goal was to identify the two health levels of
oak trees (Level 3), and we found that the feature extraction
method using PCs from visible and NIR bands separately
was effective (Table 3). A typical plant spectrum has lower
reflectance in the visible region (light is absorbed by various
pigments) and a higher reflectance in the NIR region (radia-
tion is scattered by plant cell structure). Compared to the
variation of reflectance in NIR, the spectral variation in the
visible region is much smaller. However, the visible region
contains a larger amount of more stable plant spectral
information than the NIR region does, e.g., information of
pigment variation, making it more helpful to the classifica-
tion of the two oak health levels (Gong et al., 1997; van
Aardt and Wynne, 2001). When features are extracted by PCA
and executed separately to visible bands and NIR bands,
maximum spectral information can be preserved in PCs
derived from visible and NIR regions. When features are
extracted by a PCA executed on all 48 bands, the first several
components may account for most variance in the NIR region,
thus the valuable information found in the visible region is
used inefficiently. This partly explains why the results of the
first ten PCs were poorer than those derived with the five PCs
extracted from each of the visible and NIR regions for the
classification of the two oak health levels.

Although we discriminated between the two oak health
levels at a more detailed classification level (Level 3), the
greatest OAA was only approximately 75 percent across two
feature extraction methods and two data preprocessing
approaches used in this analysis (Table 3). Additionally,
the greatest accuracy for the non-stressed and stressed oak
classes at Levels 2 and 3 were approximately 60 percent
and approximately 56 percent, respectively. The accuracy
was slightly influenced by shade and shadow. If we consider
the full influence of shade and shadow on the final classifi-
cation result, the final classification accuracy for the two
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TABLE 3. SUMMARY OF OVERALL AVERAGE ACCURACY (OAA) OF CLASSIFICATION USING THE TWO FEATURE EXTRACTION METHODS

Method 1 Method 2
(Principal Components From (Principal Components

OAA (%) Visible and NIR Bands) from All Bands)

Reflectance Topographically Corrected Reflectance Topographically Corrected
Reflectance Reflectance

Level 0 89.82 88.08 89.49 86.93
(eight classes)

Level 2 81.33 81.02 80.86 81.55
(four vegetated classes)

Level 2 95.09 92.95 94.78 90.81
(four non-vegetated classes)

Level 3 74.06 75.49 74.44 74.84
(two oak health classes)

TABLE 4. RESULTS OF Z-STATISTIC TEST CALCULATED FROM KAPPA-VARIANCE BETWEEN TWO DATA

PREPROCESSING APPROACHES AND BETWEEN FEATURE EXTRACTION METHODS FOR SEPARATING THE

TWO OAK HEALTH LEVELS: NON-STRESSED AND STRESSED

Test two data Method 1 Method 2
preprocessing approaches (PCA from visible and NIR bands) (PCA from all bands)

Reflectance versus topographically 1.409 0.424
corrected reflectance

Test two feature extraction methods Approach 1 (Reflectance) Approach 2 (Topographically 
corrected reflectance)

Method 1 versus method 2 0.628 0.370

health levels (stressed and non-stressed) may be lower than
75 percent (or 60 percent and 56 percent for the joint
accuracies). However, this result is still encouraging, espe-
cially considering the subtle spectral difference between the
two levels of oak health and our previous work (Pu et al.,
2003b; Kelly and Liu, 2004).

There have been many studies on forest moisture stress
detection and mapping with multi/hyperspectral remote
sensing data, including both airborne and satellite remote
sensing (e.g., Riggs and Running, 1991; Macomber and
Woodcock, 1994). Water stress may be attributed to drought,
diseases or both. Generally, this type of research suggests that
canopy moisture stress would be detectable with remote
sensing techniques only when it reaches a relatively high
level. For example, Riggs and Running (1991) used Airborne
Imaging Spectrometer (AIS-2) data to detect canopy water
stress in conifers. They concluded that water stress in conifer
canopies may not be routinely detectable at an operational
landscape scale because they could not find any significant
differences in reflectance between most coniferous stressed
and controlled canopies. This lack of difference can be
attributed to relatively low level of water stress, as well as
high levels of variability in canopy conditions. This might
play a particularly important role in hardwood canopies,
where canopy condition is highly variable. In monitoring
forest health conditions, especially hardwood oak forest
diseases, airborne digital imageries have been successfully
used to delineate or map dead and dying oak trees to monitor
SOD in California (Kelly, 2002) and to detect oak wilt disease
(Everitt et al., 1999) in south-central Texas. Previous work
(e.g., Riggs and Running, 1991; Everitt et al., 1999) has
demonstrated that detecting canopy moisture stress with
airborne or satellite remote sensing imagery is only possible
when the stress is very high. Forest health conditions can
be monitored or mapped only for those severely infected
(or affected) and dead or dying trees; this requires appropriate
timing of imagery acquisition. We are encouraged by our
experimental results derived from a multilevel classification

scheme and hyperspectral remote sensing data; and anticipate
that future efforts may be able to monitor and map forest
moisture stress and other health conditions at earlier stages of
stress, given sufficient attention is paid to spectral resolution,
and timing of imagery acquisition.

Summary and Conclusions
In this study, a Compact Airborne Spectrographic Imager-2
(CASI) dataset was used for detecting mortality and vegeta-
tion stress associated with a new forest disease, sudden oak
death (SOD). We first developed a multilevel classification
scheme to increase classification accuracy of final classes.
We next transformed the CASI radiance values to reflectance
and corrected for topography and used a PCA transformation
of all 48 CASI bands and the visible bands and NIR bands
separately to extract features from CASI data. Finally, we
classified each of the four datasets (created with the two
data preprocessing approaches each with the two feature
extraction methods) using a maximum likelihood classifier
and tested the relative accuracies of each across the classifi-
cation scheme. The multilevel scheme consists of four
levels: Levels 0 through 3. Level 0 (a traditional classifica-
tion scheme) was for the entire study area and classified
eight classes found in the study area (California bay trees,
oak trees, shrub areas, grasses, dead trees, dry areas, wet
areas, and water). At Level 1, the vegetated and non-
vegetated areas were separated using an NDVI threshold of
0.3 (all pixels greater than 0.3 assigned as vegetation). The
vegetated and non-vegetated areas were further subdivided
into four vegetated (bay trees, oak trees, shrub area, and
grasses) and four non-vegetated (dead trees, dry and wet
areas, and water body) classes at Level 2. Level 3 identified
stressed and non-stressed oak trees.

According to the classification scheme, the more
detailed classification level resulted in higher classification
accuracy. When the CASI topographically corrected reflec-
tance data were processed into ten PCs (five PCs from the
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visible region and five PCs from NIR bands) the classification
accuracy (AA) for Level 2 vegetated classes increased to
80.15 percent from the classification accuracy at Level 0
(78.07 percent). The classification accuracy for Level 2 non-
vegetated classes also increased to 94.10 percent from the
classification accuracy at Level 0 (92.66 percent). Finally, we
went from being unable to discriminate stressed and non-
stressed oak trees at Level 0 to a classification accuracy of
75.55 percent (OAA � 75.49 percent) at Level 3. Particularly,
it is encouraging that the two health levels of oak trees could
be differentiated at a high classification level in spite of a
relatively low classification accuracy in other classes. This is
due to an increased spectral separability at the more detailed
classification levels (Levels 2 and 3). Furthermore, the
experimental results indicated that the feature extraction
method using PCs from visible and NIR bands separately is
better than those PCs from all 48 bands, especially for
differentiating the two oak health levels at Level 3.
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