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Abstract

A procedure is presented to construct ensemble forecasts from single-value forecasts
of precipitation and temperature. This involves dividing the spatial forecast domain
and total forecast period into a number of parts that are treated as separate forecast
events. The spatial domain is divided into hydrologic sub-basins. The total forecast pe-5

riod is divided into time periods, one for each model time step. For each event archived
values of forecasts and corresponding observations are used to model the joint distri-
bution of forecasts and observations. The conditional distribution of observations for
a given single-value forecast is used to represent the corresponding probability distri-
bution of events that may occur for that forecast. This conditional forecast distribution10

subsequently is used to create ensemble members that vary in space and time using
the “Schaake Shuffle” (Clark et al, 2004). The resulting ensemble members have the
same space-time patterns as historical observations so that space-time joint relation-
ships between events that have a significant effect on hydrological response tend to be
preserved.15

Forecast uncertainty is space and time-scale dependent. For a given lead time to
the beginning of the valid period of an event, forecast uncertainty depends on the
length of the forecast valid time period and the spatial area to which the forecast ap-
plies. Although the “Schaake Shuffle” procedure, when applied to construct ensem-
ble members from a time-series of single value forecasts, may preserve some of this20

scale dependency, it may not be sufficient without additional constraint. To account
more fully for the time-dependent structure of forecast uncertainty, events for additional
“aggregate” forecast periods are defined as accumulations of different “base” forecast
periods.

The generated ensemble members can be ingested by an Ensemble Streamflow25

Prediction system to produce ensemble forecasts of streamflow and other hydrologi-
cal variables that reflect the meteorological uncertainty. The methodology is illustrated
by an application to generate temperature and precipitation ensemble forecasts for
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the American River in California. Parameter estimation and dependent validation re-
sults are presented based on operational single-value forecasts archives of short-range
River Forecast Center (RFC) forecasts and medium-range ensemble mean forecasts
from the National Weather Service (NWS) Global Forecast System (GFS).

1 Introduction5

The National Weather Service (NWS) is implementing a new Advanced Hydrologic
Prediction Service (AHPS) (http://www.nws.noaa.gov/oh/ahps). This includes hydro-
logical forecast products to account for the uncertainty in the forecasts, extend forecast
lead times out to about a year and improve the accuracy of the forecasts. To help
meet these AHPS objectives, the NWS is improving its capability to make ensemble10

streamflow predictions. Although other methods can be used to quantify uncertainty for
specific situations (e.g., Kalman filtering for uncertainty in snowmelt driven water sup-
ply forecasts in the western U.S., Day, 1990), the general flexibility ensemble methods
provide is needed to satisfy the complex mix of operational and scientific requirements
associated with AHPS.15

Ensemble methods are essentially a Monte Carlo approach to solving a sequence
of non-linear multiple integral equations that cannot be solved analytically. While en-
semble methods are most commonly used to quantify uncertainty, they have also been
demonstrated to improve forecast accuracy (Georgakakos et al., 2004). There are
three primary sources of uncertainty in a river forecast system: future meteorological20

forcing, initial hydrological conditions, and hydrological modeling uncertainty. Hydro-
logical modeling uncertainty encompasses all the sources of uncertainty associated
with translating initial conditions and future forcing into future hydrological fluxes and
state variables. Because hydrological systems propagate uncertainty through complex,
non-linear processes that operate in space and time, joint space-time distributions of25

precipitation, temperature and initial conditions, not just their marginal distributions at
individual space-time locations, control estimates of uncertainty in hydrological state
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and flux variables.
The part of the National Weather Service River Forecast System (NWSRFS) that

produces ensemble streamflow forecasts is called the Ensemble Streamflow Predic-
tion (ESP) system. ESP has been used by NWS since the late 1970’s (Hirsch et al.,
1977; Day, 1985; Smith et al., 1992; Schaake and Larson, 1998). For these early5

applications the past climatologic variability of precipitation and temperature was as-
sumed to be representative of what might happen in the future and uncertainties in
the initial conditions and in the hydrological forecast models were ignored. At that time
the ESP acronym meant “Extended Streamflow Prediction”. Since then significant im-
provements have been made in short and medium range forecasts. Accordingly the10

meaning of the acronym ESP has evolved to become “Ensemble Streamflow Predic-
tion”.

This paper describes a methodology to construct precipitation and temperature en-
semble members that can be used for ESP and that incorporates the skill of existing op-
erational single-value precipitation and temperature forecasts (currently for periods out15

to two weeks). These procedures are designed to function in an operational hydrologi-
cal forecast environment using existing operational meteorological forecast information
available at NWS River Forecast Centers (RFCs). The procedures are intentionally
made to be simple, have minimum data requirements for parameter estimation and
potentially be applicable for any hydrological forecast application. Because of its sim-20

plicity it is expected that the technique will have some important limitations that may
require future modifications and development of alternative approaches. The approach
is being tested in pilot projects at four RFCs.

2 Background

The original application of ESP at the NWS was for long-range forecasts. The assump-25

tion was made that atmospheric forcing inputs from historical years were representative
of those likely to occur in the future (the climate being considered as stationary). The
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precipitation and temperature time series for each historical year produced a single
simulation of streamflow that would have occurred if the initial conditions in that year
were the same as estimated for the current year.

A first step to apply short-term forecast information in the ESP process was ac-
complished by linearly blending the single-value Quantitative Precipitation Forecast5

(QPF) and Quantitative Temperature Forecast (QTF) with the climatologic time series
of precipitation and temperature (NWSRFS, 2000). This involved application of rela-
tive weights on the forecast and the historical data so that the weight assigned to the
forecast decreased to zero during the blending period. The forecaster could control the
assignment of weights and the duration of the blending period. This simple blending10

approach does not account for the intermittency of precipitation, nor does it account for
variation in the uncertainty of the QPF with forecast value.

Generating probability distributions for precipitation forecasts with short lead times
was addressed by Krzysztzyfowicz (1998, and references therein) as part of a Bayesian
forecasting system (BFS) that he proposed as a general theoretical framework for prob-15

abilistic forecasting for small headwater basins. His BFS decomposes the total un-
certainty into input uncertainty and hydrological uncertainty (uncertainty coming from
model limitations, parameter values, initial conditions, measurement error, etc.). These
two kinds of uncertainties are quantified independently from each other using an Input
Uncertainty Processor and a Hydrologic Uncertainty Processor. The quantification of20

the precipitation and hydrological uncertainties is then integrated into the probabilistic
forecast using Bayes theorem (Kelly and Krzysztzyfowicz, 2000; Krzysztzyfowicz and
Kelly, 2000; Krzysztzyfowicz and Herr, 2001; Krzysztzyfowicz, 2001). Assumptions un-
derlying this approach make it most appropriate for application to small watersheds.
Seo et al. (2000) proposed an approach to use the Probabilistic Quantitative Precipi-25

tation Forecasts (PQPFs) created by Krzysztzyfowicz’s BFS to produce ensemble pre-
cipitation space-time series from which time series ensemble input for ESP could be
generated. The experimental implementation of this approach was pursued in parallel
with an experimental implementation of the BFS at the Ohio RFC. Operational limita-
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tions of the PQPF procedures underlying the BFS ultimately led to an ending of both
experiments.

Clark and Hay (2004) applied model output statistics (MOS) techniques (Glahn and
Lowry, 1972) to downscale ensemble mean forecasts from retrospective forecasts for
a 40-year period a fixed version of NCEP’s Global Forecast System (GFS) to make5

probabilistic forecasts of daily precipitation and maximum and minimum temperature
at the location of each station in the NWS cooperative network. The GFS forecast
model was known at the time as the Medium Range Forecast (MRF) System and the
re-forecasts were made for an 8-day forecast period every 5 days as part of the NCEP
“Reanalysis” project (Kalnay et al., 1996; Kistler et al., 2001)10

The forecast uncertainty associated with single-value forecasts is scale dependent.
This is especially true for precipitation forecasts. The forecast uncertainty in the single-
value precipitation forecast depends on the space and time scale of the forecast, and
the verification statistics are also scale-dependent (Tustison et al., 2001; Weygandt et
al., 2004). For example, 24-h precipitation forecasts for a given location are more skillful15

than 6-h forecasts for parts of the same 24-h period. This is because it matters less
to determine when precipitation occurs for a 24-h forecast than for a 6-hour forecast.
Similarly the forecast for average precipitation over a large area is more skillful that
forecast for parts of the area.

With the advent of the AHPS it is essential for NWS to find a practical way to use20

short and medium term single-value QPF and QTF information to produce ensemble
input forcing for ESP. Although ensemble meteorological forecast systems, both re-
gional and global, are now operational, much remains to be done to effectively remove
model biases and to compensate for under-prediction of ensemble spread before the
output from ensemble meteorological forecast systems can be used for input to ESP.25

Furthermore, an appropriate role for the human forecaster needs to be developed to
preserve the value added by the forecaster to short-term QPF. Therefore, the following
procedures are being developed to generate ensemble precipitation and temperature
forecasts. These procedures can use existing operational single-value QPF and QTF.
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They also can use the ensemble mean forecasts from ensemble precipitation and tem-
perature forecast systems.

3 Methodology

The National Weather Service River Forecast System (NWSRFS) prepares future pre-
cipitation and temperature ensemble members for input to ESP using an Ensemble5

Pre-Processor (EPP). The methodology presented here is used in a new EPP com-
ponent that transforms time series of single-value QPF and QTF into corresponding
ensemble forecasts of precipitation and temperature. The methodology was developed
to be as simple as possible, involve as few parameters as possible and use existing
single-value forecasts. Although ensemble forecasts are now produced operationally,10

the uncertainty information in them needs further investigation for forecast members to
be made reliable enough for operational ESP application at this time.

The methodology involves two steps. First, the single-value QPF and QTF time
series are processed to produce a corresponding set of conditional distributions of
precipitation and temperature values that might occur. Then, these conditional distri-15

butions are used to assign values to ensemble members using a procedure known
as the “Schaake Shuffle” (Clark et al., 2004). This procedure reassigns to historical
precipitation and temperature values new values derived from the forecast conditional
distributions. It assures that the probability distributions corresponding to the ensemble
members are the same as the conditional distributions corresponding to the QPF and20

QTF. It also assures that the space-time rank correlation structure in the historical data
is preserved in the generated ensemble members.

Forecast uncertainty is space and time-scale dependent. For a given lead time to
the beginning of the valid period of a forecast, it depends on the length of the forecast
time period and the spatial area to which the forecast applies. Although the “Schaake25

Shuffle” procedure applied to the forecast conditional distributions for each time step
may preserve some of this scale dependency, it may not be sufficient to preserve some
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of the multi-scale temporal forecast uncertainty without additional constraint. Accord-
ingly, additional aggregate forecast periods are defined as accumulations of different
base forecast periods that correspond to the individual time steps. Probability forecasts
are also made for these periods and the distribution of aggregate values of the ensem-
ble members is constrained by the corresponding probability forecast. For example, if5

the forecast time step were 6-h, additional aggregate periods could be constructed for
the four 6-h periods for each of the first several days. Further aggregation could be
done for periods of two days, three days, etc. Together, the base periods and the ad-
ditional aggregate periods comprise a set of events. By constructing additional events
for aggregate forecast periods, the skill of forecasts over multiple periods of time can10

be preserved even though there may be very little skill in predicting exactly what may
occur during base events with long lead times.

Ensemble members (for a given location) form a matrix with forecast time step on one
axis and member number on the other. This matrix is initialized with historical obser-
vations corresponding to the current forecast period. The time axis is augmented with15

additional aggregate forecast periods. But defining additional events to constrain the
final ensemble creates an over-determined situation. The ensemble member values
generated by the Schaake Shuffle for the base events may not be consistent with the
corresponding ensemble members for the aggregate periods. To resolve this conflict,
the total set of base and aggregate events is processed in a sequence governed by in-20

creasing forecast skill as measured by the forecast-observation correlation parameter
for each event. The “Schaake Shuffle” is applied at each step of the sequence using the
current data in the ensemble matrix to create an updated ensemble matrix. At the end
of the sequence when all events have been processed, the ensemble matrix contains
the final set of ensemble members that preserves the temporal scale dependency in25

forecast uncertainty and skill. The sequential procedure assures that the highest skill
events have the greatest influence on the final ensemble values. For now, the spatial
scale dependency of forecast uncertainty and skill is controlled by the Schaake Shuffle.
It is not clear if additional spatial aggregation of forecast events is required. This will
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be examined in future studies.

3.1 Marginal distribution of forecast events

The first step in the ensemble generation procedure is to construct conditional distri-
butions for each forecast period. Slightly different approaches are used to estimate
probability distributions for precipitation and temperature because precipitation is in-5

termittent and highly skewed whereas temperature distributions are nearly Gaussian
and do not have an intermittent component. The approach to estimate temperature
distributions is simpler so it will be presented first.

3.1.1 Temperature distributions

NWS hydrological forecast models are programmed to operate at time steps of multi-10

ples of 1-h and factors of 24 h. Most applications have used 6-h time steps but future
applications, with steps as short as 1-h, are expected. Although temperature time se-
ries at the model time step are required to operate the model, most long-term historical
observations of temperature are not made at model time steps. Rather, they are obser-
vations of daily maximum (TX) and minimum temperature (TN). Similarly, most histor-15

ical short term Model Output Statistics (MOS) temperature forecasts have been made
for maximum (FTX) and minimum (FTN) temperature. Accordingly, historical analy-
ses of temperature at model time steps for NWS hydrological model applications are
made using daily maximum and minimum temperature values. To generate tempera-
ture ensembles at the model time step, daily TX and TN ensembles are first generated.20

Then, ensemble temperature members at model time steps are computed from the cor-
responding TX and TN ensemble members using the same interpolation procedures
used to estimate temperature time series from historical TX and TN observations. Ac-
cordingly, the base time step for daily maximum and minimum temperature ensemble
forecasts is one day.25

To generate TX and TN ensemble members the total forecast period is first divided
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into a number of daily base periods. Then, to account for temporal scale dependency
of uncertainty, a number of additional aggregate periods are created that represent
averages of TX and TN over different combinations of base periods depending on the
specific application. The set of base and aggregate periods define a set of events.
These events involve a joint probability relationship between values of FTX or FTN, X ,5

and corresponding TX or TN observations, Y .
Climatological distributions of maximum and minimum temperature forecasts (FTX

and FTN) and observations (TX and TN) tend to be nearly Normal. Although a trans-
formation could be applied to the temperature forecasts and/or observations, that does
not appear to be necessary at this time. Therefore, the joint distribution of temperature10

forecasts (FTX or FTN) and observations (TX or TN)) is assumed to be Bivariate Nor-
mal. The conditional distribution of values of TX or TN that might occur, given FTX or
FTN for each event is, therefore, Normal.

The mathematical representation of the daily maximum and minimum ensemble tem-
perature forecast procedure is as follows. For an event corresponding to a given lead15

time (in days), a given location and a valid period for a given number of days, let X
represent the forecast FTX or FTN during the valid period and let Y represent the cor-
responding TX or TN. (For aggregate forecast periods the average values of FTX or
FTN and TX or TN during the aggregation period are used). Conditional distributions
for each even are estimated separately and independently. The joint distribution of X20

and Y is assumed to be Bivariate Normal. The forecast distribution for Y , given a fore-
cast X is the conditional distribution of Y given X which can be extracted from the joint
distribution of X and Y . Let fX (x) be the probability density function (pdf) of X . The
cumulative distribution function (cdf) of X is FX (x). The mean and variance of fX (x)
are µX and σ2

X . Similarly, let fY (y) be the pdf of Y , and FY (y) the cdf of Y . The mean25

and variance of fY (y) are µY and σ2
Y . Let the bivariate pdf of X and Y be fXY (x, y)

which is modeled as Bivariate Normal with the five following parameters: means µX

and µY , variances σ2
X and σ2

Y , and the correlation parameter ρXY . It follows that the de-
sired conditional distribution of Y, given the forecast realization x, fY |X (y |x) is a Normal
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distribution with mean and variance given by:

µY |X = µY + ρXY (σY /σX )(x − µX ) (1)

σ2
Y |X = σ2

Y (1 − ρ2
XY ) (2)

We have found, as expected, the correlation parameter ρXY to be dependent on the
lead time to the beginning of the valid forecast period and on the duration of the valid5

period of the forecast. It also depends on geographic location and season of the year.
The correlation parameter ρXY also serves as a measure of the forecast skill, being
1 for a perfect forecast and 0 for a completely unskilled forecast. The marginal pdfs,
fX (x) and fY (y), represent the climatologies of X and Y , respectively. Equations (1)
and (2), show that as the skill of the forecast decreases (i.e., as ρXY goes to 0), the10

conditional density fY |X approaches the marginal density fY . Indeed, with ρXY equal to
0, the results are independent of the current single-value forecast since the tempera-
ture distribution fY |X is the Normal approximation to climatologic distribution fY . With
ρXY equal to 1 the conditional distribution of Y converges to a Dirac delta function lo-
cated at the bias-adjusted value of the single-value forecast: y = µY+ (σY / σX ) (x - µX )15

(i.e. there is no uncertainty).
For both the maximum and the minimum daily temperature, two marginal distribu-

tions and one correlation parameter are needed for each forecast lead-time and spatial
location: FX (x) the marginal distribution of forecasts, FY (y) the marginal distribution
of observations, and ρXY the correlation coefficient between forecasts and observa-20

tions. Parameters of these distributions are estimated from an archive of forecast and
observation pairs as explained below.

3.1.2 Precipitation distributions

Ensemble precipitation members are generated from a time series of future precipi-
tation forecasts (QPF). Each ensemble member contains basin average precipitation25

values (MAP) at the model time step for the total forecast period. Although the time
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steps of the QPF and MAP values do not have to be the same, the methodology does
condition the distribution of MAP values on appropriate corresponding values of QPF.
The approach is to divide the total forecast period into a number of base periods, one
for each model time step and a number of additional aggregate periods that represent
accumulations of precipitation over different combinations of base periods depending5

on the specific application. The set of base and aggregate periods define a set of
events. These events involve a joint probability relationship between a precipitation
forecast, X and corresponding precipitation observation, Y . Values of X and Y depend
on values of QPF and MAP. For base events there is a one-to-one correspondence
between X and QPF and between Y and MAP if the time step of the QPF is the same10

as the model time step. But each event (both base and aggregate) has a prescribed
relationship between values of QPF and X and values of MAP and Y . Subsequently,
these relationships are used to create ensemble members from a set of conditional
distributions for Y |X , there being one conditional distribution for each event.

The approach to estimate the conditional distribution for precipitation events,15

fY |X (y |x), given a single-value QPF, X , is similar to the approach for temperature
but considers the intermittent property of precipitation. Accordingly, let fX (x) be the
marginal climatological pdf of X . Let fY (y) be the marginal climatological pdf of Y . To
account for the probability associated with the forecast precipitation amount being zero,
fX (x) is modeled as a mixture of two random variables. One component corresponds20

to the likelihood for rain not to occur; the other to the amount of rain if it were to oc-
cur. This mixture has a pdf with discrete (represented by a Dirac Delta function) and
continuous components. The mixture pdf is:

fX (x) = (1 − pX ) δ(x) + pX fXC(x|x > 0) (3)

where pX is the probability of occurrence of an amount of precipitation exceeding a25

prescribed threshold (e.g. more than 0.254 mm for observed point precipitation) and δ
is the Dirac delta function. The continuous part is represented by the conditional pdf for
precipitation, given that forecast precipitation occurs (i.e., x>0). Hence, from Eq. (3),
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the cumulative distribution function FX has the following form:

FX (x) = 1 − pX,i f x = 0, and

FX (x) = 1 − pX + pXFXC(x|x > 0) otherwise. (4)

FX (x) is a mixed distribution that assigns a probability mass of (1- pX ) to events with
no forecast precipitation and spreads the remaining probability mass of pX to all other5

events. The density fY (Y ) and cumulative distribution function FY (Y) have similar forms
based on pY , the probability that an amount of observed precipitation above the pre-
scribed threshold occurs (i.e., y>0). (Note the thresholds for X and Y do not have to
be the same).

In order to model (i.e. parameterize) the joint distribution FXY the climatological10

marginal distributions FX and FY are used to transform variables X and Y to variables
U and V , each having marginal Standard Normal distributions. The joint distribution
between U and V is assumed to be Bivariate Standard Normal (BSN). The normal
quantile transform (NQT), described by Kelly and Krzysztofowicz (1997), is applied as
follows to map the non-Normal variables X and Y into standard Normal variables U15

and V , respectively, with the inverse Q−1 of the standard Normal cdf:

u = Q−1(FX (x)) if x > 0, (5)

v = Q−1(FY (y)) if y > 0. (6)

If x = 0, the value of u is unknown but is less than u0 where Q(u0) = 1 – pX . Likewise,
if y = 0, the value of v is unknown but less than v0 where Q(v0) = 1 – py .20

From Eqs. (5) and (6), realizations of X and Y corresponding to realizations of U and
V can be obtained from the inverse transforms:

x = F −1
X (Q(u)) if u > u0;x = 0,otherwise. (7)

y = F −1
Y (Q(v)) if v > v0; y = 0,otherwise. (8)
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Applying the inverse transform to a variable that has been transformed via the NQT will
result in the original variable.

The joint pdf of U and V , b(u, v), is assumed to be Bivariate Standard Normal with
parameter ρUV , the correlation coefficient between U and V in standard normal space.
The parameter ρUV is a measure of forecast skill, being 1 for a perfect forecast and 05

for a completely unskilled forecast.
In the present approach the probability of precipitation corresponding to a given

single-value QPF, X , is implied by the joint distribution between U and V and is not
estimated explicitly for a given value of X . Because the sample sizes of precipita-
tion forecast and observed pairs are often too small to enable the user to estimate10

separately the bivariate properties of discrete and the continuous components of the
mixtures in the untransformed space of X and Y , we prefer to make this transformation
from X and Y to U and V together with the assumption that U and V are Bivariate
Standard Normal (BSN) to keep the model as parsimonious as possible until larger
sample sizes of X and Y are more generally available and we have more experience15

with alternative representations of X and Y . Moreover, our experience with dependent
validation of this approach has shown that this methodology is very promising. Others
(Bell, 1987; Bellerby, 2005) have used similar approaches to transform precipitation
into normally distributed random variables.

The conditional distribution FY |X (y |x) is used to estimate the cumulative distribution of20

observed precipitation conditioned by a given forecast. Two cases need to be studied
when assessing this conditional distribution: (1) the forecast realization x is greater
than zero; (2) the forecast realization x equals zero.

If x is greater than zero, the realization u corresponding to x is calculated using
Eq. (5). Since U and V are BSN deviates, the conditional distribution BV |U (v |u>u0) is a25

Normal distribution with mean and variance given by:

µV |U = ρUV u (9)

σ2
V |U = (1 − ρ2

UV ) (10)
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It follows conditional values of y corresponding to x > 0 are implied by FY |X (y |x>0) =

BV |U (v |u>u0) and are given by y = F −1
Y (Q(B−1

V |U (v |u>u0))).
If the forecast realization x equals zero, the exact value of u corresponding to x is

unknown. It is only known that u is less than or equal to u0, where u0 = Q−1(1 - pX ).
The conditional probability distribution BV |U (v |u≤ u0) is:5

BV |U (v |u ≤ u0) =

v∫
−∞

u0∫
−∞

b (u, v)dudv/

∞∫
−∞

u0∫
−∞

b (u, v)dudv (11)

Equation (10) can be expanded as follows:

BV |U (v |u ≤ u0) =

v∫
−∞

 u0∫
−∞

b
(
u |v

)
du

b (v)dv/

∞∫
−∞

 u0∫
−∞

b
(
u |v

)
du

b (v)dv (12)

where
u0∫
−∞

b
(
u |v

)
du=B

(
u0 |v

)
is normal with mean µU |V=ρUV v and variance σ2

U |V =

(1 – ρ2
UV ).10

It follows that conditional values of y corresponding to x=0 are implied by
FY |X (y|x=0) = BV |U (v |u≤u0) and are given by y=F −1

Y (Q(B−1
V |U (v |u≤u0))).

3.2 Ensemble construction

Ensemble values are constructed using the Schaake Shuffle (Clark et al., 2004) by
re-scaling historical observed events so that ensemble member values are distributed15

with the conditional distribution If there are n historical values, a set of n values of Y
are derived from FY |X (y |x) using stratified sampling. For each event, the largest value
in the climatological record with rk=n is re-assigned to the highest ensemble forecast
value, yn; the smallest event with rk=1 is re-assigned to the lowest ensemble forecast
value, y1. Hence the ranks of the climatological values match the ranks of the ensemble20

669

members. Applying this technique for each event in the forecast period creates ensem-
ble forecasts that preserve the space-time patterns of the climatological values. Clark
et al. (2004) applied this method of ensemble member construction for temperature
and precipitation and called it the Schaake Shuffle. They examined the space-time
variability in local-scale ensemble forecasts of precipitation and temperature in four5

river basins in the USA. They found that the reconstruction methodology preserves
the spatial correlation between all station pairs for all variables in each of the study
basins. They also found that the reconstruction approach is capable of preserving the
climatological correlation between variables (e.g., correlations between precipitation
and temperature). Clark and Hay did not use additional aggregate events as are used10

here to preserve the conditional correlation structure implied by the multi-scaling nature
of forecast uncertainty at different temporal scales.

3.2.1 Temperature

The following re-scaling process is used for both maximum temperature and minimum
temperature as follows:15

1. First the daily maximum/minimum temperature values for the current day in each
of n years in the climatologic record are ranked in the increasing order. The
number of ensemble members to be constructed is n. Each year, k, is associated
with a rank rk according to the daily maximum/minimum temperature value that
occurred for that year relative to other years.20

2. Second, the conditional cdf FY |X (y |x) is partitioned into n equal intervals of prob-
ability equal to 1/n.

3. Then for each interval i varying from 1 to n, the expected value of Y given that Y
is in that interval, noted yi , is computed.

4. Finally, each of the n values of yi are assigned to replace the historical value for25

year k by associating i and k so that rk=i .
670



The distribution mapping process, which is used for both maximum temperature and
minimum temperature, generates an ensemble of maximums and an ensemble of mini-
mums for each day in the forecast period. The final temperature ensemble is computed
from those two sets using a diurnal cycle to temporally interpolate between the maxi-
mum and minimum ensemble members to produce time series of temperature values5

at the model time step (e.g., 6-h time step).

3.2.2 Precipitation

A similar process is used to construct precipitation ensemble members for each time
step of the forecast period although there are differences to account for the intermit-
tency of rain events. The distribution mapping process for precipitation works as fol-10

lows:

1. First, precipitation values in each of n years in the climatologic record are ranked
in the increasing order for each precipitation event. The number of ensemble
members to be constructed is n. Each year, k, is associated with a rank rk ac-
cording to the precipitation value that occurred at the current time for that year15

relative to other years. In years when no rain occurred, a rank is currently as-
signed randomly with none to exceed the smallest non-zero event rank.

2. Second, the conditional cdf BV |U (v |u) is partitioned into n equal intervals of prob-
ability equal to 1/n.

3. Then for each interval i varying from 1 to n, the yi expected value of Y (corre-20

sponding to the value F −1
Y (BV |U (v |u)) given that V and Y are in the interval i is

computed.

4. Finally, each of the n values of yi is assigned to replace the historical value for
year k by associating i and k so that rk=i .
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This distribution mapping process is applied for each time event. The sequence of
events is ordered in increasing order of the magnitude of the ρUV correlation parame-
ters. Values of Y for aggregate events are used to constrain the corresponding aggre-
gate values of Y of the corresponding values of Y for individual model time steps. This
preserves the appropriate space and time relationships between different precipitation5

and temperature events. This is crucial for the ESP system that ingests precipitation
and temperature ensembles to generate streamflow ensembles.

4 Example application to North Fork American River, California

An example application of the short-term temperature and precipitation ensemble gen-
eration procedures is illustrated using data from a high elevation sub-area of the Amer-10

ican river basin in the Sierra Nevada mountains of northern California. The Ameri-
can river basin was chosen for several reasons. The basin has complex mountainous
terrain so we can demonstrate that the technique is applicable to mountainous ar-
eas. Precipitation is highly seasonal, occurring mainly during the cool season between
November and April. Precipitation and temperature climatologic statistics vary during15

the cool season in this basin so we can test how well the parameter estimation pro-
cedures can represent this variability. The best historical archive of short range QPF
forecasts exists for locations in the CNRFC (California-Nevada RFC) area, including
6-hour QPF amounts for all 6-h periods for lead days 1 to 5.

The American River flows into the Sacramento River at Sacramento, CA. Approx-20

imately 40 km upstream of Sacramento is Folsom Reservoir, a multi-purpose water
management project operated by the Bureau of Reclamation. Three forks of the Amer-
ican River (North, Middle, and South Forks) drain approximately 4800 km2 of moun-
tainous terrain (with elevation values up to 3000 m) and join to provide the inflow to
Folsom Lake. This basin is characterized by orographic precipitation patterns associ-25

ated with steep terrain barriers and with snow in the high elevations (typically above
1500 m) (Carpenter and Georgakakos, 2001).
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The results presented here are for the upper elevation zone of the North Fork of
the American river basin above Folsom Lake. Precipitation data associated with this
sub-area are labeled nfdc1huf; temperature data are labeled mfac1luf. Both temper-
ature and precipitation “observations” used in this example are analyzed values that
represent area averages and are based on observations from several point locations.5

4.1 Forecast data sources

Two sources of single-value precipitation and temperature forecasts are used in this
example application. One is RFC short range (1–5 day) forecasts that are produced at
the CNRFC from a range of guidance products including forecasts from the Hydrome-
teorological Prediction Center (HPC), Weather Forecast Offices (WFOs), Regional and10

Global models and Model Output Statistics (MOS) products. These are available only
for the last few years. Precipitation forecasts are for 6 h periods for lead times of 1
to 5 days for subarea nfdc1huf. Daily maximum and minimum temperature forecasts
are available for lead times of 1 to 7 days for subarea mfac1huf . The other source of
forecasts is medium range (1–14 day) ensemble mean forecasts from a fixed version15

of the Global Forecast System (GFS) ensemble forecast model (Hamill, 2004). These
are available from January, 1979 to the present. They are available for 12 h time steps.
Only the ensemble mean forecasts are used because the uncertainty information in the
GFS ensemble forecasts is not reliable (Whitaker and Loughe, 1998).

4.2 Observations data sources20

Two sources of precipitation and temperature observations data are used in this exam-
ple application. One is RFC archives of operational precipitation analyses for nfdc1huf
and temperature analyses for mfac1luf. The other is analyses of historical precipita-
tion and temperature data from the National Climatological Data Center (NCDC) for
nfdc1huf and mfac1luf. Different observing systems are used to produce the opera-25

tional and historical analyses.
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4.3 Design of the example application

The objective of this application is to illustrate the methodology and to demonstrate the
potential for it to be useful for generation of ensemble forcing for hydrological ensemble
prediction using single-value atmospheric forecasts. Clearly, this methodology has
many limitations. These can be expected to depend on climatology, the accuracy of5

the single-value forecasts, amount of data available to estimate parameters and on
basin hydrological characteristics. It is not possible in a simple example to evaluate
these limitations.

Example ensemble temperature forecasts are presented for mfac1luf; example pre-
cipitation forecasts for nfdc1huf. In order to illustrate and compare ensemble forecasts10

using both RFC and GFS single-value forecasts, the period of data used is limited to
the last few years when both RFC and GFS forecasts are available. All forecasts in
this example are for lead times of 1 to 5 days. All ensemble forecasts use the same
aggregate forecast periods to account for the effects of temporal scale dependency in
forecast uncertainty.15

Given the limited objectives of this example, the limited amount of data available to
estimate parameters and the desire to show that the methodology can account for sea-
sonal differences in climatology and single-value forecast characteristics; the validation
results presented will be for the same period as used to estimate model parameters.
This has the advantage that the ensemble generation procedures should be fully cal-20

ibrated relative to the climatology of the observations used to do the evaluation. Any
biases in the examples presented here occur because of limitations in the way the data
are represented by the procedures. This is an important starting point for evaluating
the methodology.
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5 Temperature ensemble example for mfac1luf

The temperature ensemble example illustrates the application of RFC daily maximum
and minimum temperature forecasts and the application of GFS 12 h temperature fore-
casts to produce probabilistic daily maximum and minimum temperature forecasts for
mfac1luf. Daily maximum and minimum temperatures GFS 12 h temperature forecasts5

are associated with daily maximum and minimum temperature forecasts for mfac1luf. A
common set of temperature values based on gage observations are used to estimate
parameters and to evaluate both the RFC and GFS based TX and TN probabilistic
forecasts. This common observations data set is based on operational TX and TN
observations if they exist and on NCDC observations otherwise.10

The first part of the example presents some parameter estimation results. The sec-
ond part presents selected forecast verification results using the same data as were
used to estimate the parameters. Although the GFS forecasts extend out to fourteen
days of lead time, the examples presented here are for only the first five days of fore-
cast lead time when both RFC and GFS forecasts are available so that comparisons15

between the results can easily be made. Also, the historical period used is for calen-
dar years 1998 to 2002. This is the common period for which all required forecasts
and observations were available. This period is too short to support a split sample
approach to parameter estimation and forecast validation. Therefore the validation re-
sults are for the same period as used for parameter estimation and do not represent20

independent validation of the procedures. But they do test whether the proposed prob-
abilistic representation of the forecasts can represent the distribution characteristics of
the observations when the procedures are well calibrated and when the climatological
characteristics of the validation period are the same as used for calibration.

5.1 Temperature parameters25

Parameters for the temperature ensemble procedures are estimated using single-value
forecast and observation pairs of daily maximum and minimum temperature values
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(FTX/FTN and TX/TN). Ideally historical archives of these data should be for many
years with longer archives required as the correlation parameter between forecasts
and observations approaches zero. If the correlation parameter were equal to zero, the
conditional distribution would be the climatological distribution which does not depend
on the forecast. In that case, a long archive of 30 or more years is preferred. If the cor-5

relation were nearly equal to one, only a short archive would be needed. The question
of required archive length is beyond the scope of this work. It is being investigated and
will be presented in future papers.

The period used for the analysis in this example is the 4-year period 1998 to 2001
when RFC and GFS forecasts and observations were available in the data base. For10

both daily maximum and minimum temperatures, the joint distribution for each temper-
ature event has five parameters (µX ,σX ,µY ,σY , and ρXY ). The method of moments
is used to estimate µX,σX,µY and σY directly from archived temperature values. The
value of ρXY is estimated as the coefficient of correlation between forecasts and ob-
servations. To assure that values of these parameters vary gradually from day to day15

during the year and to minimize the required length of historical archive, all data in a
window centered on a given day are used to estimate parameters. This data pooling
process increases the sample size in order to better estimate the distribution parame-
ters and to remove random sampling noise for extreme events. In the examples pre-
sented below the total width of the window used is 91 days with 45 days before and20

after the target day. This was done for time steps of every 5 days throughout the year.
Daily parameter values were interpolated from the 5-day values. The length of the time
window was chosen subjectively to balance the need for data with the need to respect
the seasonality of the parameter values.

Values of average daily minimum temperature observations (µY ) and forecasts (µX )25

are illustrated in Fig. 3. There are four plots in this figure. Figure 3a is for values of
µY for RFC-based forecasts. Figure 3b is for values of µX for RFC-based forecasts.
Figure 3c is for values of µY for GFS-based forecasts. Figure 3d is for values of µX for
GFS-based forecasts. Each plot shows how average minimum temperature forecasts
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or observations vary with season throughout the year (vertical axis) for each of eight
forecast periods (horizontal axis). Units are degrees Celsius. The first five forecast
periods correspond to forecasts for future days one to five. Forecast periods six to
eight represent average forecasts for different aggregations of the forecasts for the first
five days. Period six is the average of forecasts for days one and two. Period seven is5

the average of forecasts for days three to five. Period eight is the average of forecasts
for all five days.

Figures 3a–d show there are strong seasonal changes in the averages but there
is very little change in the averages with forecast period at a given time of year, as
is expected. The average TN observations for RFC and GFS forecasts in Figs. 3a10

and c are the same because a common set of observations data were used for these
figures. The average RFC TN forecasts in Fig. 3b are much closer to the corresponding
average TN observations (Fig. 3a) than are the average GFS TN forecasts in Fig. 3d
to the corresponding observations in 3c. This is because the GFS TN forecasts are
for a 2.5 degree grid element that includes mfac1luf. But mfac1luf is in the Sierra15

Nevada mountains and has a much higher elevation than the average elevation of the
corresponding GFS grid element. One of the implications of Fig. 3 is that it is essential
to remove biases from atmospheric model forecasts before they are used as input to
hydrological models. As will be shown below the biases in both the RFC and GFS
forecasts that are indicated in Fig. 3 are removed by the proposed procedures.20

Figures 4a–d show the standard deviations (σX and σY ), in degrees Celsius, corre-
sponding to the averages presented in Figs. 3a–d. The observed standard deviations
for RFC and GFS based forecasts in Figs. 4a and c are identical because the same
data were used to produce these plots. The RFC forecasts have much smaller stan-
dard deviations than observed. The standard deviations of the GFS forecasts tend to25

be slightly larger than the observed standard deviations. There is evidence of temporal
scale dependence in the standard deviations of the temperatures because the ob-
served standard deviations for forecast periods 6 to 8 are less than the corresponding
standard deviations of the daily values for periods one to five. The RFC forecasts have
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much smaller standard deviations than observed. There is some evidence that fore-
cast standard deviations decrease with lead time in forecast periods 1–5. A decrease
in forecast standard deviation is consistent with the fact that the standard deviation
of an optimal single-value minimum variance estimator is less than the standard de-
viation of the predictand as a function of the correlation coefficient between them, as5

given in Eq. (2). Nevertheless, the procedures proposed here remove the effects on the
temperature probability forecasts of any biases or inconsistencies in the single-value
temperature forecasts used to drive the procedures.

Figures 5a and c show the correlation coefficient between single-value forecasts and
observations. Figure 5a corresponds to RFC single-value forecasts; Fig. 5c, to GFS10

single-value forecasts. For both forecasts the correlations are higher in spring and fall
than in summer and winter. The GFS single-value temperature forecasts are generally
more highly correlated with observations than the RFC temperature forecasts at this
location. Figures 5b and d present the corresponding correlation coefficients for the
ensemble mean of the probabilistic minimum daily temperature forecasts generated by15

the proposed preprocessing procedures. The ensemble mean correlations with obser-
vations are almost identical to the single-value forecast correlations for both RFC and
GFS forecasts. This means that the proposed preprocessing procedures preserve the
skill inherent in the single-value forecasts. Figures 5a to d show that the correlation
coefficient tends to decrease with increasing lead time (forecast periods 1–5) and is20

highly temporally scale dependent (forecast periods 6–8). In fact the correlation be-
tween the mean minimum temperature for days 1–5 (forecast period 8) is almost as
great as the correlation for minimum forecasts on day 1.

5.2 Temperature ensemble validation

Owing to the shortness of historical record of short-term forecasts of precipitation and25

temperature (see below for details), only dependent validation could be carried out.
The same data set used for parameter estimation is also used for validation (1988–
2002). The validation statistics presented here only measure how well the model pro-
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cedures fit the calibration data and aim at establishing the plausibility of the approach.
To evaluate the temperature ensemble forecasts generated with this methodology, daily
maximum and minimum temperature ensembles were generated and compared with
the corresponding observations. For both maximum and minimum temperature, the
RFC or GFS single-value forecast for a given day was used together with the cor-5

responding joint distribution parameter values to estimate the conditional probability
distribution for that day and then derive ensemble members for maximum and mini-
mum daily temperatures. This produced a forecast time series of maximum and min-
imum temperatures for each ensemble member. Each time series was interpolated
to a corresponding time series of 6 h temperature values that are required for input to10

the hydrological forecast model. In this section, only validation statistics for the daily
minimum temperatures are presented.

A few verification statistics have been selected to be presented in this paper, based
on the forecast verification measures described by Wilks (1995), Jolliffe and Stephen-
son (2003) and Herbach (2000). Also the verification statistics obtained for the gen-15

erated ensemble means are compared to the ones for the input single-value forecasts
in order to evaluate the quality of the probabilistic forecast against the quality of the
single-value forecast. Results are presented below for both RFC and GFS single-value
forecasts.

Figures 6a to d present bias statistics for minimum daily temperature forecasts. The20

units of bias are degrees Celsius. Both RFC and GFS single-value forecasts have
seasonally varying biases (Figs. 6a and c). Biases at a given time of year are not
strongly dependent on forecast period. RFC minimum temperature forecasts have
positive biases as large as about 2 degrees Celsius in March and April. Biases in GFS
single value forecasts vary between 2 and 4 degrees Celsius higher than observed.25

One cause of this bias in GFS forecasts is that the average elevation of the GFS grid
element is much lower than the average elevation of the mfac1luf target area. The
corresponding average minimum temperature from the ensemble mean of the proba-
bilistic forecasts generated from the single-value RFC and GFS forecasts is completely
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unbiased as shown in Figs. 6b and d. This is to be expected because the validation
period is the same as the calibration period. This is an indication that the preprocessor
parameters are well calibrated for this period.

Figures 7a to d present RMS error statistics (in degrees Celsius) of the differences
between observations and single-value forecasts (Figs. 7a and c) and ensemble mean5

forecasts (Figs. 7b and d). The RMS errors of the ensemble mean forecasts are less
than the RMS errors of the single value forecasts. The main reason for this is that the
systematic biases (in both means and standard deviations) in the single-value forecasts
have been removed by the preprocessor procedures. The RMS errors in Figs. 7b
and d are substantially smaller than the standard deviations of the observations in10

Figs. 4a and c. This relationship is consistent with the expectation for RMS errors to be
lower than the observed standard deviation, depending on the correlation coefficients
presented in Figs. 5a to d. The RMS errors tend to increase with forecast lead time
(Periods 1–5). But they also are highly temporally scale dependent, depending on
duration of temporal aggregation as well as lead time.15

Figures 8a to d present values of the Continuous Rank probability Skill Score
(CRPSS) for both single-value and generated ensemble forecasts. The CRPSS is a
potentially very useful summary verification statistic. Values of the CRPSS presented
in Fig. 8 are derived from values of the Continuous Rank Probability Score (CRPS).
The CRPS is equivalent to the integral of the Brier Score (BS) over all possible thresh-20

olds of the variable being predicted (e.g. TMIN in this case). Accordingly the units of
the CRPS are the same as the predicted variable (i.e. degrees Celsius herein). The
CRPS can be applied to both single-value and probabilistic forecasts. In the case of
single-value forecasts the CRPS is equal to the mean of the absolute values of the
difference between the forecast and the corresponding observation. In the case of25

probabilistic forecasts the CRPS is a probability-weighted average of all possible abso-
lute differences between forecasts and observations. The CRPS for a perfect forecast
is zero. The CRPSS is computed using a reference value of the CRPS to create a scale
of values ranging from minus infinity to one. The CRPS reference value used here is
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the CRPS corresponding to a single-value forecast equal to the climatological mean
minimum daily temperature. The CRPSS for a perfect forecast has a value of one.
The CRPSS for a climatological single-value forecast has a value of one. A negative
CRPSS suggest a forecast worse than climatology. The CRPS tends to be increased
by forecast bias and reduced by the effects of correlation between forecasts and ob-5

servations. Hersbach (2000) presents two alternative decompositions of the CRPS to
account for the relative contributions of bias, resolution (i.e. correlation in this case)
and climatology (i.e. no forecast skill) to the CRPS.

Values of the CRPSS in Figs. 8b and c for the ensemble forecasts are much im-
proved over the CRPSS values for the single-value forecasts used as preprocessor10

inputs in Figs. 8a and c. This happens for two main reasons. First, the CRPSS for a
probabilistic forecast with reliable probabilities is better than the CRPSS for a single-
value forecast equal to the mean of the probabilistic forecast. Second, the CRPSS for
an unbiased forecast is better than the CRPSS for a biased forecast. In Figure 8c the
white space is for highly biased single-value GFS forecasts with CRPSS below the low-15

est contour level of 0.5. CRPSS values for ensemble forecasts based on single-value
GFS forecasts (Fig. 8d) are better than CRPSS values for ensemble forecasts based
on single-value RFC forecasts (Fig. 8b) because GFS-based forecasts are more highly
correlated with observations than RFC based forecasts (see Figs. 5a and c). Values of
the CRPSS are shown to be highly temporally scale dependent. Larger CRPSS values20

obtain for aggregate forecast periods (Periods 6–8).
A summary measure of the reliability of the probabilities associated with the gener-

ated probability forecasts is presented in Figs. 9a and c. These figures present the
RMS probability error of the daily minimum temperature probability forecasts. They
show that the RMS probability error is less than about 0.05 for all forecasts at any time25

of the year. The RMS probability error is a measure of the information that can be dis-
played in a so-called “reliability diagram” that compares forecast probability values with
the relative frequency of occurrence of the forecast events. In this study, the forecast
non-exceedance probability associated the observation for each forecast event was
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computed using the corresponding event probability forecast. Non-exceedance proba-
bilities were binned into quartiles and the fraction of events occurring for each quartile
was compared to the average non-exceedance probability for that quartile. The RMS
difference between these values is the RMS probability error shown in Fig. 9.

6 Precipitation ensemble example for nfdc1hufuf5

The precipitation ensemble example illustrates the application of RFC 6-h single-value
precipitation forecasts and the application of GFS 24 h ensemble mean precipitation
forecasts to produce probabilistic precipitation forecasts for nfdc1huf. Precipitation in
this area has a very strong seasonal variation. Most precipitation occurs in the cool
season from October through March. There is very little precipitation in the middle of10

summer. The first part of the example presents some parameter estimation results.
The second part presents selected forecast verification results using the same data as
were used to estimate the parameters.

6.1 Precipitation parameters

Precipitation parameters also are estimated using forecast and observation pairs. The15

period used for precipitation analysis in this study is the 5-year period 1998–2002
when both RFC and GFS forecasts and observations were available in the data base.
Archived RFC forecasts and 6 h precipitation observations and corresponding MAP
analyses begin at CNRFC in October, 1997. The archive of GFS precipitation fore-
casts begins in 1979. In this study only the ensemble mean 24 h GFS precipitation20

forecasts are used. The GFS 24 h total forecast is assumed to occur equally in four
6 h periods. The archive of historical MAP analyses (based on NCDC data) begins in
1948. Unfortunately, the statistics of the MAP operational and historical observations
analyses for nfdc1huf have important differences. This happens in part because dif-
ferent precipitation gages are used in the operational network and partly because of25
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differences in the temporal reporting characteristics of the operational vs climatological
gages. Because of these differences the MAP precipitation analyses are not combined
into a composite data base as was done for temperature data, above. Accordingly, the
historical MAP analyses are used to estimate parameters for the GFS forecasts (and
validate them) and the archived MAP analyses are used to estimate parameters for5

the RFC forecasts (and validate them). The common period when all required RFC
and GFS precipitation forecasts and observations are available is the 5-year period
1998–2002.

The joint distribution of precipitation forecasts and corresponding observations has
marginal distributions that are characterized by separate climatologic marginal distri-10

butions of forecasts and observations. The statistics of these marginal distributions of
both forecasts and observations must be estimated from historical archives of forecasts
and observations. Then, the marginal distributions are used to transform the forecast
and observed values to new variables that are assumed have a Bivariate Standard
Normal distribution.15

The joint distribution of precipitation forecasts and observations is a mixture can
be partitioned into four sub-regions as illustrated in Fig. 1. One of these sub-regions
contains events when both forecast and observed values are zero; the fraction of the
total events in this sub-region is P00. Another sub-region contains events when both
forecast and observed values are non-zero; the fraction of the total events in this sub-20

region is P11. The other two sub-regions contain events with either forecast values
of zero and non-zero observed values (P01 fraction) or non-zero forecast values with
observed values of zero (P10 fraction).

The climatologic marginal distributions also are mixtures. Each has three parameters
(pX , µX |X>0 and CVX |X>0) and (pY , µY |Y >0 and CVY |Y >0) that must be estimated from25

forecast and observations pairs. Parameters pX and pY account for the intermittent
behavior of the observations and forecasts. Parameters µX |X>0, µY |Y >0, CVX |X>0, and
CVY |Y >0 allow the method of moments to be used to estimate the parameters of the
distributions for the non-zero events. This limited set of parameters was chosen so that
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the resulting probabilistic model would be as parsimonious as possible, an important
condition considering the limited forecast data available to estimate model parameters.
Parameters CVX |X>0 and CVY |Y >0are the coefficients of variation of the non-zero values
of X and Y and are defined as:

CVX |X>0 = σX |X>0/µX |X>0 and5

CVY |Y >0 = σY |Y >0/µY |Y >0 (13)

The pX and pY parameters of the climatologic marginal distributions are related to the
fraction of events in the four sub-regions as follows: pX= P10 + P11 and pY= P01 +
P11.

Values of X and Y are transformed into BSN variables U and V , respectively, using10

the corresponding climatologic distributions. Values of U and V also fall into four sub-
regions of the joint distribution of U and V as illustrated in Fig. 2. The (u, v) events fall
into the same sub-regions in Fig. 2 as the corresponding (x, y) events in Fig. 1. The
joint distribution of U and V is characterized by the correlation parameter ρUV . Esti-
mation of parameter ρUV is difficult because not all of the values of U and V can be15

observed: the values u<u0 and v<v0 cannot be observed. Alternative approaches can
be considered; ultimately it may be best to tune parameter ρUV to maximize certain
forecast verification statistics. In this study, parameter ρUV is estimated as the average
of simple Pearson product-moment correlation coefficient of the untransformed vari-
ables X and Y (including zeros) and the value of ρUV that best fits the values of P10,20

P11, P01 and P11.
Values of daily precipitation parameters vary gradually from day to day during the

year. As with temperature parameters it is not possible to estimate daily parameter
values directly from data for only a given day because the archive of forecast and
observed pairs is not long enough. A data pooling process is used to better estimate25

the distribution parameters based on neighboring events. Therefore, for a given day,
the seven parameters of the daily precipitation joint distribution are estimated from all
the forecast and observed data that have occurred during a time window centered on

684



that day. The width of this window is variable to assure that the number of non-zero
forecasts or observations existing within the window is not smaller than a minimum
threshold. Currently, the parameters are estimated every five days using a moving
window; daily parameter values are estimated by interpolating linearly between these
values to get smoothed parameter values gradually varying during the year.5

Regarding the choice of the marginal distribution function, the values of the coef-
ficient of variation determine the distribution function used to fit observed or forecast
data. If the coefficients of variation were equal to 1.0, the exponential distribution might
be expected to fit the data well since it has a fixed coefficient of variation equal to 1.0.
The coefficient of variation of the observations is greater than 1.0 suggesting that a10

distribution such as the Weibull might be a better choice than the exponential. Another
alternative might be a Gamma distribution. All three of these distributions are exactly
the same if the coefficient of variation is 1.0. Experience with the demonstration basins
has shown that the Weibull distribution is an adequate choice to represent the clima-
tology of the observations. Regarding forecasts, in general it might be expected that15

the coefficient of variation for forecast values would be less than for observed values.
Moreover, it would be expected to decrease toward zero as the skill in the forecast
decreases. Accordingly, we have chosen to represent the climatologic distribution of
forecast values using a Gamma distribution. The choice of distribution function to fit
the sample distributions of forecasts and observations involves a trade-off between20

the goodness of fit and the computational resources required to use the distribution
function. The operational forecast system was developed to support alternative distri-
bution choices. Ultimately, the final choice of distribution should be made based upon
a strategy that optimizes forecast verification statistics.

Figure 10 presents average observation and average forecast precipitation statistics.25

There are four plots in this figure. Figure 10a is for values of the unconditional aver-
age for RFC-based forecasts. Figure 10b is for values of the unconditional average for
RFC-based forecasts. Figure 10c is for values of the unconditional average for GFS-
based forecasts. Figure 10d is for values of the unconditional average for GFS-based
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forecasts. Each plot shows how average minimum temperature forecasts or obser-
vations vary with season throughout the year (vertical axis) for each of eight forecast
periods (horizontal axis). Units are millimeters. The forecasts are for 6hr time steps for
forecast lead days 1–5. Forecast periods 1 to 20 correspond to the 20 6 h time steps in
the 5 day forecast window. Forecast periods 21 to 28 correspond to average forecasts5

for aggregate combinations of periods 1–20. Forecast periods 21–25 represent the
daily average 6 h precipitation for each of the 5 lead days in periods 1–20. Period 26 is
the average for days 1 and 2. Period 27 is the average for days 3–5. Period 28 is the
average for days 1–5.

Figures 10a–d show there are strong seasonal changes in the averages but there10

is very little change in the averages with forecast period at a given time of year, as
is expected. The average precipitation observations for RFC and GFS forecasts in
Figs. 10a and c are similar but not the same because different sets of observations
data were used for these figures. The average RFC precipitation forecasts in Fig. 10b
are much closer to the corresponding average observations (Fig. 10a) than are the15

average GFS precipitation forecasts in Fig. 10d to the corresponding observations in
Fig. 10c. This is because the GFS TN forecasts are for a 2.5 degree grid element that
includes nfdc1huf. But nfdc1huf is in the Sierra Nevada and subject to much stronger
orographic forcing than the corresponding GFS grid element. Figure 10 reinforces the
idea that it is essential to remove biases from atmospheric model forecasts before they20

are used as input to hydrological models. As will be shown below the biases in both
the RFC and GFS forecasts that are indicated in Fig. 10 are removed by the proposed
procedures.

Figures 11–14 present statistics pX, pY, µX |X>0, µY |Y >0, CVX |X>0,CVY |Y >0 charac-
terizing the marginal distributions of precipitation forecasts and observations. The in-25

termittent nature of precipitation is characterized, mathematically, in terms of events
that are either zero or non-zero. But it is not possible to make accurate measurements
of very small short duration precipitation amounts. Therefore a precipitation threshold
is introduced to distinguish between wet and dry events. Unfortunately the all of the
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statistics , pX , pY,µX |X>0, µY |Y>0, CVX |X>0, CVY |Y>0 are very sensitive to the selection
of this threshold. This happens because a large fraction of the average precipitation
amount is produced by a very small fraction of the total number of precipitation events.
As a result the average precipitation amount during a wet event and the correspond-
ing probability of precipitation (1–p) depend very strongly on the precipitation threshold5

used to define wet and dry events. The conditional coefficient of correlation is also
very sensitive to the threshold, increasing sharply as the threshold assumes very small
values. It is beyond the scope of this study to optimize how this threshold should be
specified. In this study a precipitation threshold of 0.3 mm/6 h is used as a threshold for
6 h precipitation amounts. Lower values were used for average precipitation amounts10

for daily averages and for averages over several days.
Figure 11 shows the Probability of Precipitation (POP) (1-pX , 1-pY ): (a) POP cor-

responding to single-value RFC forecasts, (b) POP for single-value RFC forecasts, (c)
POP for observations corresponding to single-value GFS forecasts, (d) POP for single-
value GFS forecasts. There are major differences between values of POP for the MAP15

observations analyses used for RFC and GFS forecasts. This is partly because of dif-
ferences in the average precipitation amounts in the two MAP analyses as shown in
Figs. 10a and c. But the main difference is in the distribution properties of small precip-
itation amounts in the two data sets. As the precipitation threshold is increased above
0.3 mm/6 h, the POP statistics in Figs. 11a and c become more similar. POP statistics20

of the GFS single-value precipitation forecasts in Figure 11d increase with forecast lead
time from forecast periods 1–20 with a step increase after every fourth period. This is
to be expected because the variance of the precipitation forecasts should decrease as
the forecast skill diminishes with increasing lead time. Accordingly, the fraction of wet
events above the low precipitation threshold of 0.3mm would be expected to increase.25

Corresponding RFC forecast POP statistics in Fig. 11b do not have the same pattern.
This difference occurs because different procedures are used to produce the RFC fore-
casts for days 1–3 and for days 4 and 5. Both the RFC and GFS POP statistics are
highly temporally scale dependent. POP values for the aggregate forecast periods are
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much greater than the pop statistics for the basic 6 h time steps, as is expected.
Figures 12a to d present the conditional average precipitation statistics (µX |X>0,

µY |Y>0) for RFC and GFS observations and forecasts. These statistics have very
strong seasonal variations. They also have important variations with forecast period.
Figures 12a and c show that the conditional average observations are very different5

between the MAP observations analyses data sets used for RFC and GFS forecasts.
The explanation for these differences is the same as given above for the differences
between Figs. 11a and c. The conditional average of the RFC forecasts in Fig. 12b is
very different from the observations in Fig. 12a. The same is true for the GFS forecasts
in Fig. 12d. Also the conditional average of the GFS forecasts is much lower than the10

conditional average of the RFC forecasts because the GFS grid element does not have
as strong orographic forcing as actually occurs in the nfdc1huf area.

Figures 13a to d present the conditional coefficient of variation statistics
(CVX |X>0,CVY |Y >0) for RFC and GFS observations and forecasts. These statistics have
strong seasonal variations. Figures 13a and c show that the conditional coefficients of15

variation are very different between the MAP observations analyses data sets used for
RFC and GFS forecasts. The explanation for these differences is the same as given
above for the differences between Figs. 11a and c. The conditional average of the RFC
forecasts in Fig. 13b is very different from the observations in Fig. 13a. The same is
true for the GFS forecasts in Fig. 13d. The conditional coefficient of variation is also20

temporally scale dependent – values for forecast periods 1–20 are different than those
for the aggregate forecast periods 21–28.

Figures 14a and c show the correlation coefficient between single-value forecasts
and observations. Figure 14a corresponds to RFC single-value forecasts; Fig. 14c, to
GFS single-value forecasts. For both forecasts the correlations are higher in the coo;25

season than in the warm season. The RFC single-value precipitation forecasts are
generally more highly correlated with observations than the GFS forecasts for forecast
days 1 and 2. Figures 14b and d present the corresponding correlation coefficients
for the ensemble mean of the probabilistic precipitation forecasts generated by the
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proposed preprocessing procedures. The ensemble mean correlations with observa-
tions are almost identical to the single-value forecast correlations for both RFC and
GFS forecasts. This means that the proposed preprocessing procedures preserve the
skill inherent in the single-value forecasts. Figures 14a to d show that the correlation
coefficient tends to decrease with increasing lead time and is highly temporally scale5

dependent. Correlation coefficients for aggregate forecast periods tend to be much
larger than for any of the corresponding 6hr periods.

6.2 Precipitation ensemble validation

Figures 15a to d present bias statistics for precipitation forecasts. The units of bias
are degrees millimeters. Both RFC and GFS single-value forecasts have seasonally10

varying biases (Figs 15a and c) but the biases in the GFS forecasts are much greater
than in the RFC forecasts. Biases at a given time of year are not strongly dependent
on forecast period. One cause of the bias in GFS forecasts is that the average eleva-
tion of the GFS grid element is much lower than the average elevation of the nfdc1huf
target area. The corresponding average precipitation from the ensemble mean of the15

probabilistic forecasts generated from the single-value RFC and GFS forecasts is com-
pletely unbiased as shown in Fig. 15b and d. This is to be expected, partly, because
the validation period is the same as the calibration period. This is an indication that the
preprocessor parameters are well calibrated for this period.

Figures 16a to d present RMS error statistics (in mm) of the differences between ob-20

servations and single-value forecasts (Figs. 10a and c) and ensemble mean forecasts
(Figs. 10b and d). The RMS errors of the ensemble mean forecasts are less than the
RMS errors of the single value forecasts. The main reason for this is that the system-
atic biases (in both means and standard deviations) in the single-value forecasts have
been removed by the preprocessor procedures. The RMS errors tend to increase with25

forecast lead time (Periods 1–20) and they have a diurnal pattern. But they also are
highly temporally scale dependent, depending on duration of temporal aggregation as
well as lead time.
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Figures 17a to d present values of the Continuous Rank probability Skill Score
(CRPSS) for both single-value and generated ensemble forecasts. Values of the
CRPSS presented in Fig. 17 are derived from values of the Continuous Rank Prob-
ability Score (CRPS) in the same way as explained above for temperature forecasts.
Values of the CRPSS in Figs. 17b and d for the ensemble forecasts are much improved5

over the CRPSS values for the single-value forecasts used as preprocessor inputs in
Figs. 17a and c. This happens for two main reasons. First, the CRPSS for a proba-
bilistic forecast with reliable probabilities is better than the CRPSS for a single-value
forecast equal to the mean of the probabilistic forecast. Second, the CRPSS for an
unbiased forecast is better than the CRPSS for a biased forecast. CRPSS values for10

ensemble forecasts based on single-value RFC forecasts (Fig. 17b) are slightly bet-
ter than CRPSS values for ensemble forecasts based on single-value GFS forecasts
(Fig. 17d) for the first two forecast days. Beyond that the CRPSS values of RFC and
GFS forecasts are about the same. Values of the CRPSS are shown to be highly tem-
porally scale dependent. Larger CRPSS values obtain for aggregate forecast periods15

(Periods 21–28).
Figures 18a to d present values of the Continuous Rank probability Skill Score

(CRPSS) for “wet” events only, for both single-value and generated ensemble fore-
casts. Figure 17 includes all events. Only events where observed precipitation oc-
curred in excess of the precipitation threshold are included in Fig. 18. Values of the20

CRPSS presented in Fig. 18 are generally lower than in Fig. 17 indicating that part of
the skill score in Fig. 17 represents the ability of the forecasts to distinguish between
wet and dry events. Values of the CRPSS in Figures 18a and 18c for the single value
forecasts show that the raw single-value forecasts do not predict the magnitude of the
wet events very well. On the other hand Figs. 18b and d for the ensemble forecasts25

show substantial improvement in the CRPSS over the values in Figs. 18a and c. Values
of the CRPSS for wet events are also shown to be highly temporally scale dependent.

Figures 19a and b present values of the Brier Skill Score (BSS) for the ensemble
forecasts of the probability of precipitation. Figure 19a is for ensemble forecasts based

690



on RFC single-value forecasts. Figure 19b is for ensemble forecasts based on GFS
single-value forecasts. BSS values for GFS based forecasts are a little better than for
RFC forecasts for the 6 h forecast periods 1–20. BSS values for aggregate forecast
periods 21–28 are much better for GFS than RFC based ensemble forecasts. BSS
values for GFS based ensemble forecast are highly scale dependent. BSS values for5

both RFC and GFS based ensemble forecasts are much better in the cool season than
in the warm season.

Figures 19c and d present values of the Brier Skill Score (BSS) for the ensemble
forecasts of the probability of precipitation occurring in the upper tercile of the distribu-
tion of wet precipitation events. Figure 19c is for ensemble forecasts based on RFC10

single-value forecasts. Figure 19d is for ensemble forecasts based on GFS single-
value forecasts. Only observed wet events were used to compute the BSS in Figs. 19c
and d and is based on the ensemble probability forecast conditioned on a wet event
occurring. These BSS values are higher in the cool season than in the warm season.
They are also strongly scale dependent being much larger for aggregate forecast peri-15

ods than for the 6 h forecast periods. The RFC based ensemble forecasts had higher
BSS values than the GFS based forecasts for these large wet events. It is interesting to
note that the RFC based ensemble forecasts (Fig. 19c) were much better at predicting
the occurrence of large wet events for aggregate forecast periods than at predicting the
occurrence of wet vs dry events (Fig. 19a). This may partly be an artifact of how the20

precipitation threshold was established.
A summary measure of the reliability of the probabilities associated with the gener-

ated precipitation probability forecasts is presented in Figs. 20a–d. Figures 20a and
b present RMS errors in probability of precipitation forecasts for RFC and GFS en-
semble based forecasts. The RMS probability errors in Figs. 20a and b represent the25

RMS deviation of the reliability diagram from the diagonal. Values of POP were binned
into quartiles and the fraction of wet events occurring for each quartile were compared
to the average POP for that quartile to compute these RMS errors. The RMS error
in the POP forecasts is generally less than about 10 percent except for RFC based
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forecasts for 6 h precipitation events. During the summer period there are almost no
precipitation events so these results may be sensitive to the small sample size of wet
events available for this study. Figures 20c and d present RMS errors in the conditional
probability of precipitation amount, given that precipitation occurs, for RFC and GFS
ensemble based forecasts. The RMS probability errors in Figs. 20c and d represent5

the RMS deviation of the cumulative rank histogram from the diagonal. For each wet
event the ensemble forecast non-exceedance probability associated with the precipita-
tion observation was computed. If the probability forecasts were reliable the distribution
of these non-exceedance probabilities for a large number of events would be uniform.
The RMS deviation of the distribution of non-exceedance probabilities for the observed10

events from a uniform distribution is presented in Figs. 20c and d. Although many of
the forecasts have RMS probability errors less than 10 percent, there are some cases
where the RMS probability error approaches 20 percent, especially for the GFS based
ensemble forecasts in Fig. 20d. The cause of this could be related to the way the
precipitation threshold is established because the parameters of the preprocessor are15

highly sensitive to this and the shape of the conditional distribution of wet events is very
sensitive to this.

7 Conclusions and future work

A procedure is presented to construct ensemble forecasts of precipitation and temper-
ature using existing operational single-value forecasts. This procedure involves con-20

structing the joint distribution of forecasts and observations from a historical archive of
these data. For a given single-value forecast, the forecast distribution of events that
might occur is estimated as the conditional distribution derived from the joint distri-
bution. Ensemble members are subsequently constructed using historical space-time
observations of temperature and precipitation.25

Historically observed values are replaced with values sampled from the forecast dis-
tribution. The replacement procedure matches the ranks of historical and forecast
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values. The procedure is operated independently for each spatial location. In the cur-
rent application these are hydrological sub-areas but the procedure could be applied
to grid locations. At each location the procedure is applied independently to a num-
ber of events. These events represent both a sequence of individual time steps and a
set of optional aggregate events that can be defined to assure that temporal scale de-5

pendency properties of forecast uncertainty are preserved in the ensemble members
created by the procedure. The marginal distributions of ensemble values for these
events are controlled by the current forecast. The procedure to construct precipitation
ensembles is similar to the procedure for temperature, except that additional steps are
needed to deal with the intermittency of precipitation and with skewness in the distri-10

bution of precipitation amounts. This is done using variable transformations to convert
precipitation forecasts and observations to new variables that have a bivariate standard
normal distribution.

The procedure has been applied to a sub-area in the North Fork of the American
River basin, California. Estimated parameters and dependent validation results are15

presented for minimum temperatures as well as precipitation.
Parameter estimation was based on a data pooling process to get more robust pa-

rameters: the parameter values for a given day were computed from events occurring
within a time window centered on that day. For temperature, the validation results
indicate that daily ensemble forecasts are skillful for the five lead days. Verification20

statistics for minimum temperature suggest that model assumptions that temperature
observations and single value forecasts are distributed according to a bivariate normal
distribution are reasonable and that the probability forecasts are both skillful and reli-
able. Verification statistics for precipitation indicate that there is skill both in the derived
probability of precipitation forecast and in the ensemble mean value of the forecast25

distribution of precipitation amounts given that precipitation occurs. The ensemble pro-
cedure aims at reducing the bias of the single-value forecast even if there is still some
bias in the ensemble mean. The verification statistics show that there is daily skill in
precipitation probabilistic forecasts for at least the first five days. Probability of precip-
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itation forecasts and are shown to be reliable but probability forecasts of conditional
precipitation amount were not as reliable as the probability of precipitation. It was also
shown that probability forecasts for high precipitation amounts (defined as in the upper
tercile of observed precipitation values) have skill, even out to five days. It was shown
that forecast uncertainty in both minimum temperature and precipitation forecasts is5

temporally scale dependent. Verification statistics reflect this scale dependency and
demonstrate that forecasts for aggregate forecast periods tends to be stronger than
for shorter periods. The proposed preprocessor procedures preserve the scale depen-
dency.

Two sources of single-value forecasts were used in this study. One is single-value10

RFC forecasts that are available for forecast periods up to 5 days for precipitation and
up to 7 days for temperature. The other is single-value GFS forecasts for 14 days.
For the first few days both RFC and GFS forecasts are available. In this study they
were used separately. But it may be possible to produce better ensemble results if
either RFC and GFS forecasts were used together in a multivariate approach or if an15

automatic procedure were used to determine which forecast would be used at any
given time of year and for which forecast lead times.

The practical reliability of the procedures proposed here depends on having a long
enough historical archive of forecasts and observations to estimate model parameters.
Typically, only a few years of archive data are available at most RFCs. In the exam-20

ple presented here, a common period of only five years of precipitation forecasts and
observations were available and only four years of temperature were available. Further-
more most RFCs do not have archived precipitation forecasts for day-2 and beyond. A
related concern is that the procedures used to make precipitation and temperature fore-
casts are gradually changing. Especially in the case of atmospheric model forecasts,25

the local effects of changes might be much more dramatic than those that occur on
average over the model domain. These could have very important local hydrological
forecast implications. Another implication of having only limited archive data to esti-
mate model parameters is that resulting ensemble forecasts may not be reliable unless
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the forecast skill is very high. As the correlation parameter ρ decreases, the skill in
the single-value forecast decreases and the forecast distribution should approach the
long-range climatological distribution. But if only a few years of archive data are used
to estimate model parameters the forecast distribution will approach the climatology
of only those few years, not the long-range climatology. Also the single-value forecast5

used to estimate the conditional distribution of future events could be a deterministic
forecast or a mean value of ensemble members. Therefore, techniques are needed to
use other data such as archived atmospheric model ensemble forecast data, to develop
improved parameter estimation procedures. One approach would be to infer param-
eter values using archived global ensemble re-forecast data sets from a fixed model,10

which are available for the entire USA from 1979. Future modifications to the proposed
procedure may also be desirable, especially if there were an estimate of probability of
precipitation available as well as a forecast of precipitation amount.

Further verification work is needed to use independent datasets of forecast and ob-
served pairs for parameter estimation and verification. Also verification of ensemble15

forecasts is an important new topic. Some obvious verification statistics exist. However
careful attention is needed to develop better statistics and to understand the properties
of both existing and new statistics. In addition, the hydrology community needs to work
together to agree on a few key statistics that normally would be included in any new
study.20
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Fig. 1. Schematic diagram showing the four sub-regions of the joint distribution of precipitation
forecasts and observations. Forecast is variable X , observation is variable Y . Symbols P00,
P01, P10, and P11 correspond to the fraction of forecast and observation pairs that lie in each of
the corresponding sub-regions.
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Fig. 2. Joint distribution of transformed values of precipitation forecasts and observations.
Forecast variable X is transformed to variable U . Observed variable Y is transformed to variable
V . The four sub-regions in Fig. 1 are shown in this figure. In normal space, only the P11 fraction
of forecast and observed pairs can be represented with points. Value U=u0 corresponds to
value X=0. Value V =v0 corresponds to value Y =0.
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Fig. 3. Average Minimum Temperatures: (a) Average observation corresponding to RFC fore-
casts, (b) Average RFC Forecast, (c) Average observation corresponding to GFS forecasts, (d)
Average GFS Forecast.
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Fig. 4. Standard Deviation of Minimum Temperatures: (a) Standard deviation of observations
corresponding to RFC forecasts, (b) Standard deviation of RFC Forecasts, (c) Standard devia-
tion of observations corresponding to GFS forecasts, (d) Standard deviation of GFS Forecasts.
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Fig. 5. Correlation Coefficients between Minimum Temperature Forecasts and Observations:
(a) Single-value RFC forecasts, (b) Ensemble mean forecasts based on RFC single-value fore-
casts, (c) Single-value GFS forecasts, (d) Ensemble mean forecasts based on GFS single-
value forecasts.
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Fig. 6. Minimum Temperature Forecast Bias: (a) Single-value RFC forecasts, (b) Ensemble
mean forecasts based on RFC single-value forecasts, (c) Single-value GFS forecasts, (d) En-
semble mean forecasts based on GFS single-value forecasts.
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Fig. 7. Minimum Temperature Forecast RMS Errors: (a) RMS error of single-value RFC fore-
casts, (b) RMS error ensemble mean forecasts based on single-value RFC forecasts, (b) RMS
error of probability forecasts based on single-value GFS forecasts, (c) RMS error of single-value
GFS forecasts, (d) RMS error ensemble mean forecasts based on single-value GFS forecasts.
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Fig. 8. Minimum Temperature Forecast Continuous Rank Probability Skill Score: (a) Single-
value RFC forecasts, (b) Ensemble mean forecasts based on RFC single-value forecasts, (c)
Single-value GFS forecasts, (d) Ensemble mean forecasts based on GFS single-value fore-
casts.
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Fig. 9. Minimum Temperature Forecast RMS Probability Errors: (a) RMS error of probability
forecasts based on single-value RFC forecasts, (b) RMS error of probability forecasts based
on single-value GFS forecasts.
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Fig. 10. Average Precipitation (mm/6 h): (a) Average observations corresponding to single-
value RFC forecasts, (b) Average of single-value RFC forecasts, (c) Average of observations
corresponding to single-value GFS forecasts, (d) Average of single-value GFS forecasts.
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Fig. 11. Probability of Precipitation (POP): (a) POP corresponding to single-value RFC fore-
casts, (b) POP for single-value RFC forecasts, (c) POP for observations corresponding to
single-value GFS forecasts, (d) POP for single-value GFS forecasts.

708



Fig. 12. Conditional Average Precipitation (during wet events) (mm/6 h) : (a) Conditional av-
erage observations corresponding to single-value RFC forecasts, (b) Conditional average of
single-value RFC forecasts, (c) Conditional average of observations corresponding to single-
value GFS forecasts, (d) Conditional average of single-value GFS forecasts.
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Fig. 13. Conditional Coefficient of Variation of Precipitation (during wet events): (a) Condi-
tional coefficient of variation of wet observations corresponding to single-value RFC forecasts,
(b) Conditional coefficient of single-value RFC forecasts, (c) Conditional coefficient of varia-
tion of observations corresponding to single-value GFS forecasts, (d) Conditional coefficient of
variation of single-value GFS forecasts.
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Fig. 14. Correlation Coefficients between Precipitation Forecasts and Observations: (a) Single-
value RFC forecasts, (b) Ensemble mean forecasts based on RFC single-value forecasts, (c)
Single-value GFS forecasts, (d) Ensemble mean forecasts based on GFS single-value fore-
casts.
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Fig. 15. Precipitation Forecast Bias (mm/6 h): (a) Single-value RFC forecasts, (b) Ensem-
ble mean forecasts based on RFC single-value forecasts, (c) Single-value GFS forecasts, (d)
Ensemble mean forecasts based on GFS single-value forecasts.
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Fig. 16. Precipitation Forecast Bias (mm/6 h): (a) Single-value RFC forecasts, (b) Ensem-
ble mean forecasts based on RFC single-value forecasts, (c) Single-value GFS forecasts, (d)
Ensemble mean forecasts based on GFS single-value forecasts.
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Fig. 17. Continuous Rank Probability Skill Score: (a) Single-value RFC forecasts, (b) Ensemble
forecasts based on RFC single-value forecasts, (c) Single-value GFS forecasts, (d) Ensemble
forecasts based on GFS single-value forecasts.
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Fig. 18. Continuous Rank Probability Skill Score for Wet Events: (a) Single-value RFC fore-
casts, (b) Ensemble forecasts based on RFC single-value forecasts, (c) Single-value GFS
forecasts, (d) Ensemble forecasts based on GFS single-value forecasts.
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Fig. 19. Brier Skill Scores: (a) Probability of precipitation based on RFC forecasts, (b) Proba-
bility of precipitation based on GFS, (c) Probability of precipitation greater than upper tercile of
conditional precipitation distribution using RFC forecasts, (d) Probability of precipitation greater
than upper tercile of conditional precipitation distribution using GFS forecasts.
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Fig. 20. RMS Probability Errors: (a) RFC based probability of precipitation amount during wet
events, (b) GFS based probability of precipitation amount during wet events, (c) Probability of
precipitation based on RFC forecasts, (d) Probability of precipitation based on GFS forecasts.
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