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Abstract
Remote sensing techniques have been widely used to map
fire scars in the western United States, but have not been
thoroughly tested in the eastern portion of the country. In this
study, a 1998 Landsat Thematic Mapper (TM) image and a
1999 Enhanced Thematic Mapper (ETM1) image were used to
test different image enhancements and classification algorithms
for mapping wildfire scars in Ocala National Forest, Florida.
Single-date analysis was conducted using the 1999 image,
while both images were used to complete multi-temporal
analysis. Both single- and multi-date datasets were classified
using a traditional method (maximum likelihood classification:
MLC) and a non-parametric technique (classification and
regression trees: CART). Comparison of all techniques showed
that MLC of a single image (1999) resulted in high accuracy
compared to the other methods and that principal components
analysis (PCA) and multitemporal PCA provided the best
spectral separability between burned and unburned areas.

Introduction
Florida is subjected to more lightning strikes than anywhere
else in the U.S., with some areas experiencing more than
100 days each year with thunderstorms. Many of these
lightning strikes result in wildfires, particularly during the
dry, early part of the summer. Fire is an integral part of
Florida’s natural landscape and forest managers use pre-
scribed fire as a management tool (Van Lear, 2000). Monitor-
ing fires (both natural and prescribed) is an important goal
for Florida’s forest management staff in the USDA Forest
Service, Florida Division of Forestry, and other agencies.
Traditional burned area mapping techniques in these forests
can be labor intensive and time-consuming, even when areas
are relatively accessible by road. Automated burned area
mapping could benefit forest managers and reduce the
amount of fieldwork required to keep fire records current.
Such an approach would also allow managers to reconstruct
historical fire records where gaps in information exist.
Remote sensing is a useful tool for burned area mapping,
since it provides a synoptic view of the landscape that
cannot be obtained through field visits and allows direct
input of data into a geographic information system (GIS)
database.

The majority of remote sensing-based fire research and
burned area mapping in the U.S. has focused on states west
of the Rocky Mountains (Cocke et al., 2005; Holden et al.,

2005; Gong et al., 2006), with a few exceptions (e.g., Maingi,
2005). The lack of research in the southeast may be attribut-
able to factors such as more frequent cloud cover and
generally easier accessibility in parts of the east, such as
Florida. However, Florida’s fire-prone vegetation communi-
ties hold many similarities to forest and shrub ecosystems
of the southwestern U.S. and remote sensing may be a viable
technique in these areas, as well. Results of this research
could be applicable throughout pine forests and plantations
of the southeastern United States.

This study investigates the use of satellite-based
remotely sensed data for mapping burned areas in pine
and scrub vegetation communities in Ocala National
Forest, Florida. The following questions are addressed:

• Which techniques are best-suited to mapping burned areas in
pine and scrub communities in Ocala National Forest?

• Which image enhancements best separate burned areas from
unburned areas?

• Does a multi-temporal approach achieve higher accuracy
than a single image?

• Does a non-parametric mapping approach achieve higher
accuracy than traditional image classification techniques?

Background
As in many parts of the U.S., human-induced fire regime
change (suppression and exclusion) has made a dramatic
impact on Florida’s pine forests. Prior to European settle-
ment, many areas burned every two or three years, maintain-
ing an extensive (37 million hectares) longleaf pine (Pinus
palustris) forest over the southeastern coastal plain of the
United States. These forests were home to hundreds of plant
and animal species, many of which are now listed as
endangered or threatened (Alavalapati et al., 2002). It is
currently estimated that only 4 percent of these forests
remain, due to fire suppression, clearing for agriculture and
human development, as well as plantation preference for
other pine species (Alavalapati et al., 2002).

Longleaf pine is a dominant species in Florida’s high
pine ecosystems, which have also been drastically reduced
since European settlement (Christensen, 1991). One of the
largest remaining stands of this type is located in Ocala
National Forest (Myers, 1990). These sandhill communities
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are located on sandy xeric “islands” within a matrix of scrub,
another dwindling ecosystem in Florida. These scrub areas
are dominated by evergreen shrubs such as oaks (Quercus
geminate, Q. myrtifolia) and Florida rosemary (Ceratiola
ericoides), with some scrub communities also having a pine
overstory. Much of the largest area of Florida scrub (the Big
Scrub complex) lies within Ocala National Forest.

Much research has been conducted in Florida’s pine
and scrub ecosystems (Brockway and Outcalt, 1998; Green-
bery, 2003), but less work has been done at the landscape
level (McCay, 2000). Some of this research has used GIS

analysis and aerial photography to monitor historical land-
scape change in the Florida Panhandle (McCay, 2001) and
central east coast (Duncan et al., 1999).

Remote sensing has been used extensively for mapping
fires in the western U.S. (Jakubauskus et al., 1990; White
et al., 1996). Mapping of fires using remote sensing takes
advantage of the distinct spectral reflectance properties
of burned and unburned vegetation. Healthy, living vege-
tation reflects near-infrared energy and absorbs visible
light (especially red wavelengths), while denuded areas
(such as those subjected to a severe fire) typically reflect
comparatively more energy across all of these wavelengths.
These spectral differences allow clear delineation of recent
fires using satellite-based remote sensing. Methods that
exploit these characteristics are routinely used by the
U.S. Forest Service to monitor and map the spatial extent
of fires throughout the United States (for example, see
http://www.geomac.gov), but managers at Ocala National
Forest do not use these methods.

Burned Area Mapping in Conifer Forest
The rugged terrain in much of the forested area of western
U.S. has necessitated the development of remote methods
for mapping burned areas. Vast forested areas in the region
are often inaccessible by road and located at high elevations
and on steep slopes. One of the most widely used image
enhancements for mapping wildfires in the western U.S. is
the normalized burn ratio (NBR). This index was developed
by Key and Benson (2003) as a variation of the normalized
difference vegetation index (NDVI). Key and Benson (2003)
replaced the red reflectance value with the mid-infrared
reflectance value to make:

Bare soil reflects mid-infrared energy, so NBR emphasizes that
contrast between bare and vegetated areas. This index has
been adopted by the U.S. Forest Service for its Burned Area
Emergency Response (BAER) teams. Researchers seeking to map
burned areas in forested environments have also added this
image enhancement to the suite of techniques being tested
(Cocke et al., 2005; Roy et al., 2006). Miller and Yool (2002)
tested NBR and other image enhancements to map the Cerro
Grande Fire in New Mexico. Holden et al. (2005) used NBR

and a thermally enhanced version of NBR (NBRT1) to map
burned areas in the Gila National Forest, New Mexico. In
northern California, Pu and Gong (2004) tested NBR and NDVI

in logistic regression and neural networks, and concluded that
NBR and NDVI performed better than the original Landsat TM

bands. In a study to map burn severity in the northern Rocky
Mountains, Brewer et al. (2005) concluded that NBR was a
widely applicable image enhancement that achieved good
accuracy. While this image enhancement has met with success
in the western states, it has not been widely tested in the
ecosystems of the eastern U.S. One implicit objective of this
study was to determine if techniques and enhancements used
in western forests are also useful for similar applications in
Florida.

NBRTM � (TM4 � TM7)/TM4 � TM7).

Burned Area Mapping in Shrubland
Mediterranean shrublands, such as chaparral and coastal
sage scrub communities of southern California, are adapted
to stand-replacing fire regimes. The length of time between
fires varies by dominant species and plant reproductive
strategies. In many areas, fuels have accumulated for longer
periods than had occurred historically and the results are
often disastrous (e.g., San Diego County, 2003). Studies to
map burned areas in Mediterranean regions have relied on
the spectral contrast between healthy and dead, or removed
vegetation (Diaz-Delgado et al., 2004; Garcia and Chuvieco,
2004). The variety of techniques that have been successfully
used to map burned areas in Mediterranean ecosystems
include spectral vegetation indices such as NDVI (Diaz-
Delgado and Pons, 2001; Gong et al., 2001; Vafeides and
Drake, 2005) and NBR (Brewer et al., 2005). Rogan and
Franklin (2001) and Riaño et al. (2002) used spectral
mixture analysis to map burned areas in southern California
chaparral. Another non-traditional method was developed by
Koutsias et al. (2000) to map burned areas in the Mediter-
ranean basin. Their method involved transforming false
color composite images into their intensity-hue-saturation
components. In a savanna ecosystem of South Africa,
Hudak and Brockett (2004) used supervised classification of
principal components analysis (PCA) to map burned areas. In
this study, they also used multitemporal PCA to identify
subtle burn areas when vegetation regrowth obscured burn
evidence (Hudak and Brockett, 2004).

Multi-temporal Approaches to Burned Area Mapping
In addition to using single post-fire images to map burned
areas, some researchers have included pre-fire images and
used change detection methods (Miller and Yool, 2002).
Fisher et al. (2003) used image differencing and PCA to map
burned areas in Western Australia, while Rogan and Yool
(2001) and Brewer et al. (2005) used a multitemporal PCA

approach. The latter approach involves analyzing the
principal components from a single multi-date image (all
bands from both dates together in one file). Higher order
components are expected to indicate changes between the
two dates. Rogan and Yool (2001) also tested a multi-
temporal version of the Kauth-Thomas Transform (MKT) as
developed by Collins and Woodcock (1996). The MKT is a
linear image transformation that generates stable brightness,
greenness, and wetness components from two images, in
addition to change components for brightness, greenness,
and wetness (Collins and Woodcock, 1996). When mapping
burned areas in the Chihuahuan Desert of southeastern
Arizona, Rogan and Yool (2001) obtained their highest
classification accuracies using MKT change components.
Multi-temporal approaches to mapping burned areas
may be particularly advantageous in regions where there
are land-cover types spectrally similar to burned areas
(i.e., clear cuts).

Burned Area Mapping in Florida
Florida’s ecosystems contain different plant species than
forests of the western U.S. and Mediterranean shrublands,
but they have distinct similarities in fire regime. Ponderosa
pine forests (western U.S.) were historically maintained
through frequent, low-intensity surface fires ignited by
lightning during the late summer rainy season. The frequent
fire kept stands open and clear of surface litter. This regime
of frequent fire is common to the sandhill pine and flat-
woods areas of Florida, including those dominated by
longleaf pine (Pinus palustris), slash pine (P. elliottii), and
pond pine (P. serotina). In contrast, chaparral of southern
California is adapted to relatively infrequent, high-intensity,
stand-replacing fires. This regime of burning all surface
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vegetation is shared by Florida scrub species such as
Florida rosemary (Ceratiola ericoides), scrub oaks (Quercus
geminata, Q. myrtifolia), and even sand pine (P. clausa)
(McConnell and Menges, 2002). The coexistence of these
ecosystems with their distinctive fire regimes presented
a unique opportunity to apply remote sensing techniques
developed elsewhere in a new location. In Florida’s pine
and scrub ecosystems, as in other environments where
burned areas are characterized by a significant reduction
in green vegetation, it is reasonable to expect NBR to be able
to differentiate burned and unburned areas.

There has been no work published on mapping burned
areas in Florida’s national forests using remote sensing.
Current techniques for mapping fires include manual
delineation on aerial photos and walking perimeters of
larger fires with a hand-held GPS unit (Mark Clere, Ocala
National Forest, personal communication). Smaller fires
(�10 acres, or 4.04 ha) are only mapped as points, and
therefore their spatial extents are not delineated. Wildfires
in Ocala National Forest are currently recorded in paper
reports that include details of ignition date and time, point
location, and estimated fire size.

Rule-based Image Classification
Traditional image classification techniques assume that data
follow a Gaussian distribution and can only be used on
continuous data. Rule-based methods, such as classification
and regression trees (CART), do not rely on these assump-
tions and can include ordinal and nominal datasets. This
flexibility allows continuous data such as spectral bands,
vegetation indices, and topographic variables to be used in
conjunction with categorical data, such as land-cover and
some forest stand data. CART techniques do not require
expert knowledge of a study area, but only delineation of
training sites, as in traditional supervised classification
methods. Once training sites have been selected to represent
each land-cover class, a computer algorithm generates rules
based on input datasets. Some CART programs are capable of
winnowing attributes, or excluding input datasets that do
not contribute to the rules. This additional information can
be particularly helpful to the user in determining which
data are most critical in mapping the desired land-cover
classes. Application of CART and other rule-based methods
include studies to map vegetation types in the National
Parks system (Brown de Coulston et al., 2003), Norway
(Vikhamar and Fjone, 2004), Kaibab National Forest,
Arizona (Joy et al., 2003), the Greater Yellowstone Ecosystem
(Lawrence and Wright, 2001), and globally (DeFries and
Chan, 2000). Other studies tested CART for mapping land-
use in Beijing, China (Li et al., 2000), vegetation patterns
in North Carolina (Taverna et al., 2005), and impervious
surfaces in South Carolina (Hodgson et al., 2003). Rogan
et al. (2003) used CART methods to monitor vegetation
changes in San Diego County, California. Pal and Mather
(2003) investigated the effects of training sample size and
data dimensionality on CART techniques and found that for
both parameters, accuracy increased with increasing training
samples and data inputs, but reached a threshold where
additional training samples or input bands did not improve
accuracy. Studies making direct comparisons between CART

classifiers and traditional methods, such as maximum
likelihood classifiers, or MLC (Freidl and Brodley, 1997) have
met with mixed results, depending on land-cover classes
tested and level of detail (Joy et al., 2003). Brewer et al.
(2005) compared multi-temporal mapping methods, includ-
ing CART to map burned areas in southern Montana. It
is clear that more research is needed to determine when
CART methods are appropriate for burned area mapping
applications.

Methods
The goal of this study was to compare burned area mapping
methods in Ocala National Forest. Four techniques were
compared: maximum likelihood classification (MLC),
classification and regression trees (CART) for both single-date
and multi-date analysis. Wildfires from 1998 and 1999 (up
to 23 October 1999) were mapped using these methods.
This approach was taken to determine which classifier
is best suited to the task, whether single- or multi-date
analysis was more effective, and assess which image
enhancements most successfully separate burned and
unburned vegetation. Only supervised classification tech-
niques were tested, due to the specificity of the burned
areas and the small proportion of the landscape that they
represent. The 1998 fire season was chosen due to its
historical significance, as one of the worst fire seasons
on record in Florida. A 1999 image was selected as the
subsequent year for comparison.

Study Area
Ocala National Forest is located in central Florida, approxi-
mately 55 km north-northwest of Orlando (see Figure 1).
The forest contains a range of plant communities such as
pine flatwoods, sandhill pine, and pine scrub. The spatial
distribution of sandhill pine and sand pine scrub is highly
dependent on fire regime. If fires are frequent and low-
intensity, sandhill pine will dominate with stands of
longleaf pine. If fires are infrequent and high-intensity, the
sand pine scrub will be favored. Ocala National Forest is
highly managed and heavily used for recreation purposes,
with roads, campgrounds, and picnic areas found through-
out the forest. A naval bombing range is also located in the
southern district (Seminole District). The Forest Service
maintains an active prescribed burning program with some
areas of the Forest on two- or three-year burn rotation
(longleaf pine).

One of the worst fire seasons on record in Florida was
1998, with over 120,000 ha burned (79.2 percent of which
were lightning ignited). However, Ocala National Forest did
not experience an unusually severe fire season that year. The
aggressive prescribed burning program likely contributed to
the lack of extreme fires. The vegetation communities played a
role as well, since mesic sites tended to be hardest hit that
year (Breininger et al., 2002).

Figure 1. Location of Ocala National Forest, Florida.
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Data
Landsat Data
One Landsat Thematic Mapper (TM) image and one
Enhanced Thematic Mapper Plus (ETM�) image were
obtained for analysis. The TM image was acquired
31 December 1998 (scene ID: L5016040009836510) and
the ETM� image was acquired 23 October 1999 (scene ID:
L7016040009929650). Low sun angle images were
acquired, because they correspond to the short dry season
in Central Florida. By selecting these images, it was
possible to avoid the cloud cover present in the region
during most of the year. Central Florida’s gently rolling
topography does not produce visible topographic shadows,
so sun angle is not as critical as in areas with rugged
terrain. The 1999 image was selected because it was
earlier in the year (closer to the end of the fire season),
but no matching cloud-free image was available for 1998.
Landsat-5 DNs (1998 image) were transformed to Landsat-7
equivalent DN values prior to pre-processing and analysis
(USGS, 2001). Both images were converted to reflectance
using the COST model (Chavez, 1996), which reduces image
haze effects.

Wildfire Data
Ocala National Forest maintains detailed records of wildfires
occurring within the Forest. These documents include: fire
name, location (description, township and range, latitude
and longitude), point of ignition, time of ignition, time of
discovery, and estimated fire size). The reports are quite
detailed, but are in paper form only and do not include
maps (paper or digital). There are also time periods with
missing or incomplete data. These fire records were used to
identify recently burned areas for selecting training and test
sites. Since the extent of each fire was not spatially explicit,
only fires visible on one or both of the images were used
as training sites. Reports for 1998 and 1999 are considered
fairly complete (Tammy Milton, USDA Forest Service,
personal communication).

USFS GIS Data
Ocala National Forest supplied GIS data including roads,
forest boundary, forest stand data, prescribed burn data, and
elevation data (USGS 30-meter DEM). These data assisted in
location of training and test sites and verified the geospatial
accuracy of the image data (i.e., road locations matched
images, etc.)

Analysis Procedures
Methods varied by which mapping technique was tested.
In this section, these procedures are described in detail.
To clarify the image processing steps, a flow chart outlining
these procedures is shown in Figure 2.

Training Site Selection
Training sites were selected for six land-cover classes: water,
1998 fire, 1999 fire, forest, bare/developed, and riparian
vegetation (see Table 1). Although it was not necessary to
distinguish all of these classes in the mapping procedure,
they were kept separate for training purposes due to spectral
disparities between them (e.g., water versus forest). It was
also important to distinguish fires from other bare areas, so
clear cuts were included in the training procedure. Some
classes (water, forest, riparian vegetation) were easily located
using Landsat TM and ETM� false color composites, while
others were identified using USFS GIS data (e.g., stand data).
Riparian vegetation was listed as a separate class, since it
had a distinctive appearance in the 1998 TM image (due to
phenological differences). Locations of wildfires occurring
in 1998 and 1999 were determined from U.S. Forest Service
reports (see Wildfire Data above). Only fires that were
visibly distinct were used as training sites. Point fire
locations with no visible fire scar were excluded. Training
sites were delineated on-screen using the data sources listed
above, to select a total of 5,606 training pixels.

Image Enhancements
A range of image enhancements were used in this study
to assess the separability of land-cover classes. Single-date
analysis included the Tasseled Cap Transform (KT), Soil
Adjusted Atmospherically Resistant Vegetation Index (SARVI2),
which is a variation of the Normalized Difference Vegetation

Figure 2. Flowchart of image processing procedures.

TABLE 1. CLASSES USED IN THE MAPPING PROCEDURES. PRIOR PROBABILITIES WERE

USED IN MAXIMUM LIKELIHOOD CLASSIFICATIONS

Class name Abbreviation Description # Training pixels Prior probabilities

Water Water Lakes, open water 858 0.10
1998 fire 98fire Fires occurring between 978 0.01

1/1/1998 and 12/31/1998
1999 fire 99fire Fires occurring between 1060 0.01

1/1/1999 and 10/23/1999
Forest Forest Vegetated areas including forest, 1104 0.73

woodland, and shrubland
Bare/developed Bare Recent clear cuts, developed 1257 0.05

areas, roads, exposed soil
Riparian vegetation Rveg Riparian forest, aquatic vegetation 349 0.10
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Index (NDVI), Normalized Burn Ratio (NBR), and Principal
Components Analysis (PCA). The KT Transform applies
coefficients to the Landsat ETM� data to create three new
components: Brightness, Greenness, and Wetness. Each of
these components emphasizes a different aspect of the original
image data. The Brightness image shows bare soil and rock as
bright, but water and vegetation are dark. Greenness shows
vegetated areas as bright and bare areas dark. KT-Wetness
corresponds to moisture content in vegetation, so that healthy
green vegetation appears bright, but dead vegetation appears
dark. Patterson and Yool (1998) successfully mapped fire
severity in the southwest using the KT Transform.

The NDVI is calculated as a ratio that accentuates the
differences between red and near-infrared reflectance. Areas
with high amounts of healthy green vegetation appear bright in
an NDVI image. Studies in many different environments have
found relationships between NDVI and canopy cover (Larsson,
1993), sunlit canopy fraction (Hall et al., 1995) and primary
production (Tucker and Sellers, 1986). NDVI has also been used
extensively to evaluate fire-related forest conditions (Marchetti
et al., 1995; White et al., 1996). Several variations of NDVI have
been developed to minimize effects of soil background and
atmospheric attenuation, such as the soil-adjusted vegetation
index (SAVI) and the soil-adjusted atmospherically resistant
vegetation index (SARVI2) (Huete et al., 1997). The normalized
burn ratio (NBR) is a variation of NDVI developed specifically for
burned area mapping (Key and Benson, 2003).

Principal Components Analysis (PCA) is a method that
can be used to reduce dimensionality in a multivariate
dataset. Analyzing image data with this technique results
in image enhancements, as well as information on loadings
for each band (eigenvectors and eigen-matrices). These
loadings are informative in that they reveal which original
inputs are most strongly represented in the transformed
data. While direct interpretation of PCA images can be
difficult (i.e., which component represents which land-cover
type), researchers have found the resulting images to be
useful in distinguishing land-cover (Liu et al., 2003) and
forest types (Maingi and Luhn, 2005).

Multi-date enhancements consisted of a multi-temporal
PCA (MPCA) and multi-temporal KT (MKT). The multi-temporal
version of PCA has similar advantages to those described
above, but inputs consist of data from more than one image
date. Lower order components typically represent stable
aspects of the landscape, while changes appear in the higher
order components. The MKT was developed by Collins and
Woodcock (1996) and results in stable Brightness, Green-
ness, Wetness components for the two dates, plus change
components for each (�B, �G, �W). Collins and Woodcock
(1996) compared MKT to other change detection techniques
and found it was more sensitive to changes in forest con-
ditions (tree mortality) and less affected by atmospheric
differences than other image transformations. For this study,
the three stable components (bands 1, 2, 3 from the output)
and the three change components (bands 7, 8, 9) in separa-
bility tests were used.

Classification Approaches
Single-date analysis used only the 1999 image to detect fires
from both 1998 and 1999. This allowed class consistency
between both single- and multi-date mapping procedures,
enabling direct comparison of the techniques (i.e., 1999 fires
that could not be mapped from 1998 data). Following pre-
processing, the 1999 ETM� image was used to calculate KT,
NBR, SARVI2, and PCA. Jeffries-Matusita (JM) distances were
used to analyze separability of the six land-cover classes for
three groups of data: ETM� bands (ETM1, ETM2, ETM3,
ETM4, ETM5, ETM7), spectral vegetation indices, or SVIs

(KT-brightness, KT-greenness, KT-wetness, NBR, SARVI2), and
PCA (PC1, PC2, PC3, PC4, PC5, PC6). The best four-band
combination consisted of PC1, PC2, PC3, and PC6 (best
minimum separability was 1086.03.) These inputs were used
in a maximum likelihood classification (see below).

Two multitemporal enhancements were applied to the
1998 TM image and 1999 ETM� image: MKT and MPCA. JM

distances were calculated for each set of data and the best
four-band combination used in a maximum likelihood
classification (see below). The best four-band combination
consisted of MKT-G, MKT-W, MKT-4, and MKT-�G (best
minimum separability was 1396.27.)

Using training sites and band combinations discussed
above, MLC was run on both the 1999 ETM� image (PC1,
PC2, PC3, PC6) and the multitemporal data set (MKT-G, MKT-
W, MKT-4, and MKT-�G). Prior probabilities, based on visual
estimates of each cover type’s proportion of the landscape,
were used in both classifications (see Table 1). Fires covered
a very small portion of the landscape, so low probabilities
were assigned to those classes (1998 fires and 1999 fires) to
avoid over-classifying them. All non-fire classes were
condensed into a “no fire” class, so that final classes were
no fire, 1998 fire, and 1999 fire. Accuracy assessment was
run on both resulting maps (single- and multi-date) and is
discussed below.

For the CART mapping procedures, training sites were
used to generate a raster format training layer consisting of
class locations. CART analysis was run on the 1999 ETM�
data using all original bands and generated enhancements
(Table 2), allowing the See5 (C 5.0) program to winnow out
unnecessary layers. The same procedure was run on the
complete multi-date data set (see Table 2 for inputs). All
non-fire classes were condensed into a “no fire” class
following classification to simplify interpretation of the
results. Accuracy assessment was conducted on both CART

maps and is discussed below.

Comparison of Maps
In order to make quantitative comparisons between the four
maps (multi-date versus single-date, CART versus MLC), each
map’s accuracy was assessed using approximately 300
stratified random test points. To avoid bias, no test points
were selected within the training sites. Reference classes were
determined using field observations and visual interpretation
of the TM and ETM� images. For each map, several accuracy
measures were calculated. All maps had overall accuracy
(percentage), overall Kappa, producer’s and user’s accuracy for
each class, and class Kappa. CART maps also had internal
accuracy calculated from the training and test data. All
measures were used to compare maps and determine the best
method for mapping burned areas. Additionally, qualitative
comparisons were made through visual inspection of final
maps. Because burned areas account for such a small portion
of the landscape, this assessment was included to provide a
complete picture of the results.

Results and Discussion
The goal of this study was to determine which techniques
are best-suited to mapping burned areas in pine and scrub
communities in Ocala National Forest, Florida. Below, each
specific question from the Introduction is restated and
results summarized.

Image Enhancements Which Best Separate Burned Areas from Unburned
Areas MLC Mapping
JM distances were used to select inputs to the MLC for both
single-date and multi-temporal analysis. For single-date
analysis, data were divided into three datasets: ETM� bands
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Number of Rules

Input Water 98fire 99fire Forest Bare Rveg Total

ETM 1 1 1 1 3
ETM 2 1 1 1 3

ETM 3

ETM 4 1 3 2 4 1 2 13

ETM 5

ETM 7 1 3 3 4 2 13

KT-B 4 1 1 1 7

KT-G

KT-W 1 1

KT-4 1 2 1 4

KT-5

KT-6 1 1

NBR

SARVI2 1 1 2

PC1 1 1 1 3

PC2

PC3 1 2 3

PC4

PC5

PC6

(a)

Number of Rules

Input Water 98fire 99fire Forest Bare Rveg Total

MKT-B 4 1 2 3 10
MKT-G 1 1 1 1 1 5

MKT-W
�KT-B 2 4 6
�KT-G 2 1 2 1 6
�KT-W 3 1 1 2 2 9
MPC1 1 1 2

MPC2
MPC3 1 1 3 2 7

MPC4
MPC5 4 1 1 6 1 13

MPC6

MPC7

MPC8

MPC9

MPC10

MPC11

MPC12

(b)

(1, 2, 3, 4, 5, and 7), spectral vegetation indices (KT-B, 
KT-G, KT-W, NBR, SARVI2), and PCA (PC1, PC2, PC3, PC4, PC5,
PC6). The best four-band combinations from each dataset are
shown in Table 3. The dataset with the best minimum

separability was PCA; PC1, PC2, PC3, and PC6 were selected
based on best minimum separability (JM distance �
1086.03). This band combination provided slightly better
separability than using the ETM� reflectance bands or
spectral vegetation indices (see Table 3). It was difficult to
separate riparian vegetation from forest using the 1999
image, since the riparian vegetation was photosynthetically
active at image acquisition. In the 1998 TM scene, these

TABLE 3. SEPARABILITY FOR EACH DATA SET. NUMBERS SHOWN ARE JEFFRIES-MATUSITA DISTANCES FOR EACH PAIR OF CLASSES. ONLY THE BEST FOUR-BAND

COMBINATIONS FOR EACH DATA SET ARE SHOWN

ETM� Bands: 2 4 5 7 Min. 1068

Forest Bare Water Rveg 99fire 98fire
Forest 0 1376 1414 1068 1412 1400
Bare 0 1414 1401 1411 1298
Water 0 1414 1414 1414
Rveg 0 1414 1405
99fire 0 1312
98fire 0

SVIs: B G W SARVI2 Min. 1061 MKT: G W 4 �G Min. 1396

Forest Bare Water Rveg 99fire 98fire Forest Bare Water Rveg 99fire 98fire
Forest 0 1400 1414 1061 1412 1410 Forest 0 1405 1414 1402 1414 1402
Bare 0 1414 1412 1413 1280 Bare 0 1414 1414 1410 1400
Water 0 1414 1414 1414 Water 0 1414 1414 1414
Rveg 0 1414 1413 Rveg 0 1414 1396
99fire 0 1336 99fire 0 1414
98fire 0 98fire 0

PCA: PC1 PC2 PC3 PC6 Min. 1086 MPCA: PC1 PC2 PC4 PC5 Min. 1382

Forest Bare Water Rveg 99fire 98fire Forest Bare Water Rveg 99fire 98fire
Forest 0 1378 1414 1086 1412 1400 Forest 0 1402 1414 1382 1414 1408
Bare 0 1414 1403 1411 1287 Bare 0 1414 1414 1413 1393
Water 0 1414 1414 1414 Water 0 1414 1414 1414
Rveg 0 1414 1406 Rveg 0 1414 1409
99fire 0 1313 99fire 0 1414
98fire 0 98fire 0

TABLE 2. INPUTS TO CART CLASSIFICATION FOR (A) 1999 IMAGE DATA, AND (B) MULTI-TEMPORAL DATA. NUMBERS INDICATE THE NUMBER OF RULES

USING THAT INPUT
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areas were visually distinct due to phenological changes
(riparian vegetation was senescent). Bare areas were spec-
trally similar to 1998 fires in the 1999 ETM� image, but JM

distances were close to 1300 for all three groups of data.
The PCA bands were selected based on best minimum
separability, but all groups of data provided similar separa-
bility for all classes. All classes were separable (JM distance
near 1414), except for those cases discussed above.

The four-band combinations for each dataset were
selected by their best minimum JM distances. In the case of
the ETM� data, ETM2, ETM4, ETM5, and ETM7 were the
best combination. Exclusion of the blue band (ETM1) is
common (it is highly correlated with green reflectance and
more prone to atmospheric attenuation), but removal of the
red band (ETM3) was unexpected. Red reflectance is often
useful in vegetation studies, especially in combination with
near infrared reflectance, since the “red edge” can be
exploited. Healthy, green vegetation reflects near infrared
radiation and absorbs red light, so the difference between
the two is linked to vegetation health or amount. For the
vegetation indices, reducing the dataset to four bands, meant
excluding only one band (NBR). This was also an interesting
result, since that index was designed specifically for map-
ping burned areas. However, this phase of the analysis
included four non-fire classes, so it appears to be less
advantageous to use NBR to map them. PCA bands included
the first three components, which accounted for 99.3 percent
of the total image variance, and the sixth PC which only
accounted for 0.13 percent of the total image variance.

Multi-date analysis compared two datasets: MKT and
MPCA. The four-band combinations for each dataset were
selected based on best minimum JM distance (see Table 3).
For multi-date MLC, MKT stable components for greenness,
wetness, component 4, and the change in greenness compo-
nent were selected. The MPCA four-band combination with
best minimum separability was PC1, PC2, PC4, and PC5.
PC1 and PC2 accounted for 98.46 percent of the multi-date
image variance (94.01 percent and 4.45 percent, respec-
tively). PC4 and PC5 account for 0.71 percent of the total
variance (0.44 percent and 0.26 percent, respectively). The
last five PCs (PC8 through PC12) accounted for less than
0.1 percent of the total image variance. Both MPCA and MKT

indicated good separability for all classes (minimum JM

distances for both were near 1400). Classes that were
spectrally confused (or less separable) using the 1999 image
were easily separable using the 1998 TM and 1999 ETM�
data together.

CART Mapping
For single-date mapping, C5 winnowed out nine of the
original 20 inputs, including ETM3 (red), ETM5 (mid-
infrared), KT-Greenness, and NBR (Table 2). Higher order PCs
were also excluded from the analysis. The bands/enhance-
ments that were used most often (appeared in the most CART

rules) were ETM4 (near infrared) and ETM7 (mid-infrared).
These bands are useful for assessing vegetation conditions
and distinguishing bare ground from vegetation cover. It
is interesting to note that these two bands are also the
inputs to the NBR, which was excluded from the analysis.
KT-Brightness was also used in several rules, including those
for mapping 1998 fires and 1999 fires.

CART analysis of multi-temporal image enhancements
used all MKT components, except one (Stable MKT-Wetness),
and three of the first six principal components (Table 2). The
enhancement used in the most rules was MPC5. In multi-
temporal PCA, higher order components often represent
change between the two input images. Areas burned in 1998
would have experienced some recovery between the two
images and any new 1999 fires would also appear as a

change. This may explain the apparent usefulness of MPC5.
Stable MKT-Brightness was also used in several rules,
including those for mapping 1998 fires and 1999 fires.

Accuracy of the Multi-temporal Approach versus the Single Image Approach
Accuracy was assessed in several ways for each classifica-
tion. Both MLC and CART accuracy was evaluated using a
traditional error matrix and the Kappa statistic. CART

accuracy was also calculated using internal test data. Results
of each accuracy assessment are shown in Table 4. For MLC,
using the multi-temporal dataset improved accuracy slightly
over the single-date (no change in overall accuracy; Kappa
increased 0.769 to 0.775), but for CART, accuracy decreased
slightly with the multi-temporal dataset (89.86 percent to
89.19 percent and 0.736 to 0.725). However, internal
accuracy was slightly better (0.7 percent, 2.5 percent error
rate, rather than 2.9 percent and 6.3 percent) using the
multi-temporal data.

At the class level, 1999 fires were mapped more accu-
rately than 1998 fires (Table 5) for all maps. Single- and

TABLE 4. SUMMARY OF CLASSIFICATION ACCURACIES

FOR EACH TECHNIQUE

Accuracy Error Rates

Overall Kappa Training Test
MLC/single-date 91.22% 0.769 – –
MLC/multi-date 91.22% 0.775 – –
CART/single-date 89.86% 0.736 2.90% 6.30%
CART/multi-date 89.19% 0.725 0.70% 2.50%
Max – min 2.03% 0.050

TABLE 5. SUMMARY OF ACCURACY ASSESSMENT BY CLASS

MLC 1999 Reference data

No fire 1999 fire 1998 fire Prod acc Users acc Kappa

No fire 215 1 14 95.13% 93.48% 0.724

1999 fire 3 27 0 96.43% 90.00% 0.890

1998 fire 8 0 28 66.67% 77.78% 0.771

MLC Multi Reference data

No fire 1999 fire 1998 fire Prod acc Users acc Kappa

No fire 214 0 11 94.69% 95.11% 0.793

1999 fire 1 27 2 96.43% 90.00% 0.890

1998 fire 11 1 29 69.05% 70.73% 0.659

CART 1999 Reference data

No fire 1999 fire 1998 fire Prod acc Users acc Kappa

No fire 213 3 12 94.25% 93.42% 0.722

1999 fire 3 23 0 82.14% 88.46% 0.873

1998 fire 10 2 30 71.43% 71.43% 0.667

CART Multi Reference data

No fire 1999 fire 1998 fire Prod acc Users acc Kappa

No fire 211 1 12 93.36% 94.20% 0.755

1999 fire 2 27 4 96.43% 81.82% 0.799

1998 fire 13 0 26 61.90% 66.67% 0.612
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Accuracy of a Non-parametric Mapping Approach versus a Traditional
Image Classification Technique
For both multi- and single-date analysis, MLC had slightly
higher accuracy than CART, but the differences are not large
(2.03 percent between best and worst overall accuracy; 0.05
between best and worst Kappa). CART was more likely to
over-classify fires than MLC (see Figure 3). Because the MLC

included prior probabilities (Table 1), the area mapped as
fire in those classifications was much lower.

At the class level, MLC had slightly higher Kappa values
for both 1998 fires and 1999 fires (Table 5). There was a
greater difference between multi-temporal CART and multi-
temporal MLC: almost 10 percent higher accuracy for MLC

mapping of 1999 fires, with a smaller difference between
them for 1998 fires. MLC also had higher user’s accuracies
for both single-date and multi-temporal classification. Visual
comparison of the maps indicates that fires were over-
classified by all techniques, but both CART maps classified
more areas as fires than the MLC (Figure 3).

Conclusions and Recommendations
As would be expected, recent fires were more accurately
mapped than older fires. Vegetation recovery following fire

multi-date MLC maps had the same accuracy for 1999 fires,
with the single-date MLC slightly higher for 1998 fires (based
on user’s accuracy and Kappa). The single-date CART map
had higher user’s accuracy and Kappa than the multi-date
CART map for both 1998 and 1999 fires.

Visual inspection of the maps (Figure 3) shows that all
methods over-classified fires, particularly 1998 fires. Of the
four known fire locations indicated on the map, two were
clearly identified (one from 1998, one from 1999). Two
others were not mapped as fires and may have been very
small or of low intensity. Either situation could allow
sufficient vegetation growth that would obscure the burned
area. Grass-dominated areas such as longleaf pine/wire
grass “islands” were often mistakenly mapped as fires due
to senescent grasses being spectrally confused with burned
areas. When prescribed burns were removed from the
maps, many “non-fires” disappeared (Figure 4). Prescribed
burns were not included as training sites in this study,
since fire intensity and consequent landscape characteris-
tics are quite disparate for wildfires and prescribed burns.
The map most changed by removal of prescribe burns
appears to be the MLC multi-temporal map, while the multi-
temporal CART map still showed several incorrectly
mapped 1999 fires.

Figure 3. Spatial subset of resulting wildfire scar maps: (a) single-date MLC, (b) single-date CART,
(c) multi-temporal MLC, and (d) multi-temporal CART.
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is especially rapid in Florida due to warm temperatures
and high moisture levels throughout the year. As a result,
only high severity burned areas persist on the landscape.
This was especially evident in the class accuracies, where
the best mapping technique only obtained a Kappa of
0.771 for 1998 fires (77.78 percent user’s accuracy). The
highest accuracies for 1999 fires (Kappa � 0.890, user’s
accuracy � 90 percent) were obtained using MLC. In this
case, single- and multi-date MLC had identical accuracies
for 1999 fires. One could argue that the multi-temporal
MLC was slightly better, since most of the confusion for
1999 fires occurred with 1998 fires, rather than “no fire.”
These results show that using a more complex algorithm
does not always translate to higher accuracy. For many
applications CART and multi-temporal analysis are superior
(e.g., mapping forest types with subtle spectral differ-
ences), but researchers should choose their methods
carefully.

Image enhancements that have been used in one region
are not necessarily transferable to other regions. NBR has
been widely used to map burned areas in the western U.S.,
but for this application was not found to be as useful as
other enhancements. Rapid vegetation recovery in this
humid subtropical climate may have contributed to this

trend, since NBR uses bare soil as an indicator of burned
areas.

Accuracy differences between single- and multi-date
techniques were mostly small, although accuracies for
single-date mapping were slightly higher. These findings
suggest that using single-date imagery to inventory fires
for a particular year would be the best course of action.
Using one image (rather than multi-temporal analysis)
eliminates the problem of relative or absolute radiometric
correction between dates, spatial registration errors,
frequent cloud cover, and phenological differences. MLC

performed better than CART in almost every comparison,
from overall accuracy to class-level Kappa. MLC is also an
algorithm that is simple to perform in most image process-
ing software packages, whereas CART is not as widely
available. For the landscape studied in this research,
wildfires only represent a small fraction of the landscape.
Using MLC with prior probabilities has the flexibility to
allow users to define this variable. While accuracy levels
are high, it is clear from visual inspection that some fires
were missed and other areas were incorrectly mapped as
fires, even in the maps with the highest accuracy. Future
work could compare maps in quantitative ways other than
accuracy measures.

Figure 4. Portion of resulting wildfire scar maps with prescribed burns from 1998 and 1999 removed:
(a) single-date MLC, (b) single-date CART, (c) multi-temporal MLC, and (d) multi-temporal CART.
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Other future research could test similar procedures with
different image dates and different seasons (if cloud-free
images are available). It would also be helpful in the future
to collect burn severity data in order to assess how long
particular burned areas persist on the landscape and how
long they can be detected from satellite sensors. Additional
data on weather conditions and other factors controlling
regeneration could also provide insight into the limitations
of mapping burned areas in this environment. Finally, other
novel approaches to land-cover mapping could be tested,
such as spectral mixture analysis and object-oriented
classification.
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