
CHAPTER 8
Failure Analysis and

Prevention

The repetitive loading of engineering materi-
als opens up additional opportunities for struc-
tural failure. Shown here is a mechanical test-
ing machine, introduced in Chapter 6, modified
to provide rapid cycling of a given level of me-
chanical stress. The resulting fatigue failure is a
major concern for design engineers. ( Courtesy
of Instron Corporation)
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Figure 8-1 Charpy test of impact energy. (From H. W. Hayden, W. G. Moffatt,
and J. Wulff, The Structure and Properties of Materials, Vol. 3: Mechanical
Behavior, John Wiley & Sons, Inc., New York, 1965.)
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Figure 8-2 Impact energy for a ductile fcc alloy (copper C23000–
061, “red brass”) is generally high over a wide temperature
range. Conversely, the impact energy for a brittle hcp alloy
(magnesium AM100A) is generally low over the same range.
(From Metals Handbook, 9th Ed., Vol. 2, American Society
for Metals, Metals Park, Ohio, 1979.)
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Figure 8-3 Variation in ductile-to-brittle
transition temperature with alloy com-
position. (a) Charpy V-notch impact
energy with temperature for plain-carbon
steels with various carbon levels (in
weight percent). (b) Charpy V-notch
impact energy with temperature for Fe–
Mn–0.05C alloys with various man-
ganese levels (in weight percent). (From
Metals Handbook, 9th Ed., Vol. 1, Amer-
ican Society for Metals, Metals Park,
Ohio, 1978.)
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Figure 8-4 (a) Typical “cup and cone” ductile fracture surface. Fracture
originates near the center and spreads outward with a dimpled tex-
ture. Near the surface, the stress state changes from tension to shear
with fracture continuing at approximately 45◦. (From Metals Hand-
book, 9th Ed., Vol. 12, ASM International, Metals Park, Ohio, 1987.)
(b) Typical cleavage texture of brittle fracture surface. (From Metals
Handbook, 9th Ed., Vol. 11, American Society Metals, Metals Park,
Ohio, 1986.)
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Figure 8-5 Fracture
toughness test.
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Figure 8-6 A design plot of stress versus flaw size for a pressure vessel
material in which general yielding occurs for flaw sizes less than a
critical size, acritical, but catastrophic “fast fracture” occurs for flaws
larger than acritical.



Figure 8-7 Two mechanisms for improv-
ing fracture toughness of ceramics by
crack arrest. (a) Transformation tough-
ening of partially stabilized zirconia
involves the stress-induced transforma-
tion of tetragonal grains to the mono-
clinic structure which has a larger spe-
cific volume. The result is a local vol-
ume expansion at the crack tip, squeez-
ing the crack shut and producing a resid-
ual compressive stress. (b) Microc-
racks produced during fabrication of
the ceramic can blunt the advancing
crack tip.
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Figure 8-8 Fatigue corresponds to the brittle fracture of an alloy after a total of N cycles to a stress
below the tensile strength.
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Figure 8-9 Fatigue test. (From C. A. Keyser, Materials Science in Engineering,
4th Ed., Charles E. Merrill Publishing Company, Columbus, Ohio, 1986.)
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Figure 8-10 Typical fatigue curve. (Note that a log scale is required for the horizontal axis.)
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Figure 8-11 An illustration of how repeated
stress applications can generate local-
ized plastic deformation at the alloy sur-
face leading eventually to sharp discon-
tinuities.
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Figure 8-12 Illustration of crack growth with number of stress cycles, N , at two dif-
ferent stress levels. Note that, at a given stress level, the crack growth rate, da/dN ,
increases with increasing crack length, and, for a given crack length such as a1,
the rate of crack growth is significantly increased with increasing magnitude of
stress.
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Figure 8-13 Illustration of logarithmic relationship be-
tween crack growth rate, da/dN , and the stress in-
tensity factor range, 1K . Region I corresponds to
nonpropagating fatigue cracks. Region II corresponds
to a linear relationship between log da/dN and log
1K . Region III represents unstable crack growth
prior to catastrophic failure.
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Figure 8-14 Characteristic fatigue fracture surface. (a) Photograph of an aircraft
throttle-control spring (11

2×) that broke in fatigue after 274 h of service. The al-
loy is 17–7PH stainless steel. (b) Optical micrograph (10×) of the fracture ori-
gin (arrow) and the adjacent smooth region containing a concentric line pattern
as a record of cyclic crack growth (an extension of the surface discontinuity shown
in Figure 8–11). The granular region identifies the rapid crack propagation at
the time of failure. (c) Scanning electron micrograph (60×), showing a closeup
of the fracture origin (arrow) and adjacent “clamshell” pattern. (From Metals
Handbook, 8th Ed., Vol. 9: Fractography and Atlas of Fractographs, American
Society for Metals, Metals Park, Ohio, 1974.)
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Figure 8-15 Comparison of fatigue curves for (a) ferrous and
(b) nonferrous alloys. The ferrous alloy is a ductile iron.
The nonferrous alloy is C11000 copper wire. The nonfer-
rous data do not show a distinct endurance limit, but the
failure stress at N = 108 cycles is a comparable parameter.
(After Metals Handbook, 9th Ed., Vols. 1 and 2, American
Society for Metals, Metals Park, Ohio, 1978, 1979.)
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Figure 8-16 Plot of data from Table 8.4 showing how fatigue strength is gener-
ally one-fourth to one-half of the tensile strength.
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Figure 8-17 Fatigue strength is increased by prior mechanical
deformation or reduction of structural discontinuities.
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Figure 8-18 The drop in strength of glasses with duration of load (and without
cyclic load applications) is termed static fatigue. (From W. D. Kingery, In-
troduction to Ceramics, John Wiley & Sons, Inc., New York, 1960.)
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Figure 8-19 The role of H2O in
static fatigue depends on its
reaction with the silicate net-
work. One H2O molecule
and one –Si–O–Si– segment
generate two Si–OH units.
This is equivalent to a break
in the network.
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Figure 8-20 Comparison of (a) cyclic fatigue in
metals and (b) static fatigue in ceramics.
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Figure 8-21 Fatigue behavior for an acetal polymer at various temper-
atures. (From Design Handbook for Du Pont Engineering Plas-
tics, used by permission.)
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Figure 8-22 A schematic of x-radiography.
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Figure 8-23 A schematic of a “pulse echo” ultrasonic test.



(Courtesy of Paramount Pictures and Twentieth Century Fox)


