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PEM Fuel Cell Impedance at Open Circuit
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A physical model for PEM fuel cell impedance Z at open circuit potential (OCP) is developed and analytical expression for Z is
derived. The OCP impedance is a sum of the cathode catalyst layer (CCL) and the gas–diffusion layer (GDL) impedances connected
in series. The GDL impedance differs from the Warburg impedance, which is often used in modeling of fuel cell electrodes. A key
parameter determining the OCP impedance spectrum is the Newman’s dimensionless reaction penetration depth ε. In PEMFCs, ε is
large, which makes the GDL impedance a small “invisible” additive to the CCL impedance. In a solid oxide fuel cell (SOFC) anode,
ε is small, and the GDL impedance forms a well–resolved separate arc in the impedance spectrum at the OCP. In a real PEM fuel
cell, a true OCP regime cannot be achieved due to hydrogen crossover through the membrane. Impedance measurements at zero
current in the load yield an equivalent current density of hydrogen crossover through the membrane.
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Electrochemical impedance spectroscopy (EIS) provides a unique
opportunity for in situ separation of contributions of transport and
kinetic processes into a fuel cell potential. This powerful technique
continuously attracts new researchers: the Scopus database shows that
over the past decade, a number of publications on EIS in chemical
engineering has been growing exponentially. At present, literature list
on EIS in PEM fuel cells accounts several hundred items; the basic
issues are discussed in books of Orazem and Tribollet27 and Lasia.22

In PEMFCs, the anode side impedance is negligible, as the hy-
drogen diffusivity in the anode porous layers is high, these layers are
thin, and the hydrogen oxidation reaction is very fast. The membrane
usually gives a trivial ohmic contribution to the cell impedance. Domi-
nating contribution to PEM fuel cell impedance gives the cathode side,
a two–layer sandwich formed by the cathode catalyst layer (CCL) and
the gas–diffusion layer (GDL). The GDL may contain a thin micro-
porous sub–layer, which improves water management of the cathode
side. However, for simplicity we will treat GDL as a single layer with
an effective oxygen transport parameter (see below).

PEMFC cathode is a strongly nonlinear system with impedance
depending on the working current density j0. Moreover, the cell trans-
port and kinetic parameters may change with j0. For deciphering
impedance spectra fuel cell developers routinely use the transmis-
sion line technique.1,15,24,26 The largest drawback of this technique is
unreliable physical interpretation of the transmission line elements.
This explains growing interest in physical models for the PEMFC
impedance aiming to determine the basic physical parameters of
the cell.2,4–6,9,11,12,14,25,30–32,35,36 It is worth noting that the numerical
impedance models are slow for least–squares fitting of experimental
spectra. Analytical models7,16,19–21 are fast enough for spectra fitting,
but they are limited by the cell currents of about 100 mA cm−2.

One of the key cell parameters is the exchange current density i∗ of
the oxygen reduction reaction (ORR) per unit volume of the electrode.
Impedance of the cell operating at a finite current density does not
depend on i∗: variation of this parameter simply shifts the polarization
curve as a whole along the potential axis, not changing the slope of
the curve. In contrast, at the OCP, the CCL impedance depends on
i∗.17 However, the effect of the GDL transport impedance in PEMFC
at the OCP yet is not fully understood. To the best of our knowledge,
a physical model for the cathode side impedance of a PEMFC at the
open circuit potential has not been developed yet.

In solid oxide fuel cell studies, measuring the cell impedance at
the OCP is a routine procedure.3,10,29,33,37 The OCP impedance of
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a most popular anode–supported SOFC shows two arcs: the high–
frequency (HF) charge–transfer arc, and the low–frequency (LF) arc
due to hydrogen transport through the porous supporting layer (Fig-
ure 1). SOFC anode is a two–layer structure, with a thick (≃ 0.1 cm)
highly porous supporting layer, and a thin (≃ 10 µm), more dense ac-
tive layer, where a dominating part of the electrochemical conversion
occurs.

In contrast to SOFC, PEMFC impedance at open circuit is rarely
measured. Two exceptions are,34 where the PEMFC impedance at the
OCP was measured to determine the ORR exchange current density
and,24 where the OCP impedance of a high–temperature PEM fuel
cell was measured to characterize the cell in terms of resistances and
capacitances. The Nyquist spectra reported in Refs. 24 and 34 exhibit
a single arc (Figures 2, 3).

Basically, each oxygen molecule participating in the ORR must
be transported through the GDL, and hence the PEMFC impedance
at the OCP must contain a contribution due to oxygen transport in the
GDL. Elementary estimate shows that the mass transfer coefficients
in a PEMFC cathode and an SOFC anode are of the same order of
magnitude. However, the separate low–frequency arc corresponding
to the hydrogen transport impedance in SOFC anode is clearly visible
in Figure 1, while in the PEMFC cathode spectra, the oxygen transport
arc is not seen (Figures 2, 3). What happens to the oxygen transport
impedance in a PEM fuel cell at open circuit? The purpose of this work

Figure 1. Experimental Nyquist spectra of the anode–supported solid oxide
fuel cell at the open–circuit potential for the indicated fraction of hydrogen
in the H2 + H2O mixture. Reprinted from Ref. 10 with permission of The
Electrochemical Society.
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Figure 2. Experimental Nyquist spectrum of the PEM fuel cell at the open–
circuit potential. Reprinted from Ref. 34 with permission of Elsevier.

is to calculate the PEMFC impedance at the OCP, and to understand
the difference between the OCP impedances of a standard Pt/C–based
PEMFC and an anode–supported SOFC.

Model

Cathode catalyst layer.—We will ignore oxygen transport through
the CCL. Incorporation of the respective transport equation into the
model leads to very cumbersome equations for impedance.19,20 These
equations can be used in numerical fitting algorithms;19,20 however,
they do not help to clarify the physics. Our goal is understand-
ing the relation between the charge–transfer and the GDL–transport
impedances and below, we will focus on simple analytical solutions.

The transient CCL model thus includes the proton current con-
servation Equation 1 and the Ohm’s law for the proton transport 2:

Cdl
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Figure 3. Experimental (points) and fitted transmission line model (lines)
spectra of a high–temperature PEM fuel cell for the indicated cell temperatures.
Reprinted from Ref. 24 with permission of The Electrochemical Society.

Figure 4. Schematic of the cathode side of a PEM fuel cell and the system of
coordinates.

Here x is the distance through the cell (Figure 4), t is time, η is the
local ORR overpotential, positive by convention, j is the local proton
current density, Cdl is the double layer capacitance, i∗ is the volumet-
ric exchange current density of the electrode (A cm−3), cox and cre f

ox

are the available and reference oxygen concentrations, respectively,
cw and cre f

w are the available and reference water concentrations, re-
spectively, α is the ORR transfer coefficient, and σp is the CCL proton
conductivity.

The first term on the left side of Eq. 1 describes the charg-
ing/discharging of the double layer in the electrode by the proton
current. The first exponent on the right side of Eq. 1 describes the
rate of proton current consumption in the oxygen reduction reaction
(ORR) while the second exponent represents the rate of this current
production in the reverse water electrolysis reaction. Detailed discus-
sion of Eq. 1 can be found in Ref. 8, page 406. Below, we will assume
that the membrane and the oxygen flow are well–humidified, so that
the liquid water concentration in the CCL is close to the reference
value.

To simplify calculations, we introduce dimensionless variables

x̃ =
x

lt

, t̃ =
t

t∗
, c̃ =

c

cre f
, η̃ =

ηα

b1

, j̃ =
jltα

σpb1

,

[3]

l̃b =
lb

lt

, Z̃ =
Zσp

lt

, D̃b =
4F Dbcre f α

σpb1

, ω̃ = ωt∗

where

t∗ =
Cdlb1

2i∗α
[4]

is the characteristic time of double layer charging. Here and below, the
subscript “ox” will be omitted. In Eq. 3, cre f is the oxygen concentra-
tion in the channel (reference concentration), lb is the GDL thickness,
lt is the CCL thickness, ω is the angular frequency of the exciting
signal (ω = 2π f ), Db is the oxygen diffusion coefficient in the GDL,
and b1 = RT/F is the characterisitc potential. The subscripts b and t
mark the values in the GDL and the CCL, respectively.

Substituting 2 into Eq. 1, setting cw = cre f
w , and using 3, we come

to

∂η̃

∂ t̃
− ε2 ∂2η̃

∂ x̃2
= −

1

2

[

c̃ exp (η̃) − exp (−κη̃)
]

[5]

where

κ =
1

α
− 1, [6]

and ε is the Newman’s dimensionless reaction penetration depth:

ε =

√

σpb1

2i∗l2
t α

. [7]

This parameter plays a key role in the discussions below. Physically,
ε2 is a ratio of the characteristic current density for ionic (proton)
transport in the CCL, jp = σpb1/(αlt ), to the superficial exchange
current density of the electrode, j∗ = i∗lt . Parameter ε indicates how
deeply does the electrochemical reaction penetrate into the electrode
due to competition of finite rates of the ORR and ionic transport (see
pp 44–54 in Ref. 8 for more detailed discussion).
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Linearization and Fourier–transform.—At the OCP, the overpo-
tential η̃ is small; it corresponds to the small applied AC perturbation.
Expansion of both exponents on the right side of Eq. 5 in series near
η̃ = 0 yields

−
[

c̃ exp (η̃) − exp (−κη̃)
]

≃ − [c̃(1 + η̃) − (1 − κη̃)]

= − [(c̃ − 1) + (c̃ + κ)η̃)]

and Eq. 5 simplifies to the linear equation

∂η̃

∂ t̃
− ε2 ∂2η̃

∂ x̃2
= −

1

2
[(c̃ − 1) + (c̃ + κ)η̃)] [8]

At zero current density, the static oxygen concentration equals the
reference concentration: c̃0 = 1. Applying small–amplitude harmonic
perturbations

η̃ = η̃1 exp(iω̃t̃)

c̃ = 1 + c̃1 exp(iω̃t̃)

and neglecting the term with the perturbations product, from Eq. 8 we
get a linear equation for the perturbation amplitude η̃1 in the ω̃–space

ε2 ∂2η̃1

∂ x̃2
=

(

iω̃ +
1

2α

)

η̃1 +
c̃1

2
, η̃1(1) = η̃1

1,
∂η̃1

∂ x̃

∣

∣

∣

∣

x̃=1

= 0

[9]
Here and below, the superscripts 0 and 1 mark the static solutions
and small perturbations, respectively. The first boundary condition in
Eq. 9 fixes the applied perturbation of potential η̃1

1 at the CCL/GDL
interface. Linearity of Eq. 9 allows us to apply perturbation at either
boundary not affecting the solution; for simplicity it is convenient to
apply perturbation at x̃ = 1. The second boundary condition in Eq. 9
means zero proton current through the CCL/GDL interface.

Eq. 9 contains the perturbation of the oxygen concentration c̃1

in the CCL. This perturbation must be transported through the gas–
diffusion layer, as discussed in the next section.

Oxygen transport in the gas–diffusion layer.—The oxygen trans-
port in the gas–diffusion layer is described by the oxygen mass con-
servation equation with the Fick’s diffusion flux:

∂cb

∂t
− Db

∂2cb

∂x2
= 0 [10]

where cb is the oxygen concentration in the GDL, and Db is the GDL
oxygen diffusivity. As no oxygen is consumed in the GDL, the right
side of this equation is zero. Fick’s law is a good approximation for
oxygen transport in air, where oxygen constitutes a small fraction in
the mixture of gases, and in pure oxygen. The coefficient Db is the
effective oxygen diffusion coefficient in the porous media. Generally,
this parameter is the oxygen diffusion coefficient in a free space Dfree

corrected by a Bruggemann–type factor for the GDL porosity and
tortuosity.

With the dimensionless variables 3, Eq. 10 reads

µ2 ∂ c̃b

∂ t̃
− ε2 D̃b

∂2c̃b

∂ x̃2
= 0, [11]

where

µ =

√

4Fcre f α

Cdlb1

. [12]

Eq. 11 is linear, and hence an equation for the perturbation amplitude
c̃1

b(x̃, ω̃) has the form

ε2 D̃b

∂2c̃1
b

∂ x̃2
= iω̃µ2c̃1

b, [13]

The boundary conditions for Eq. 13 are

D̃b

∂ c̃1
b

∂ x̃

∣

∣

∣

∣

x̃=1

= j̃1
0 , c̃1

b(1 + l̃b) = 0 [14]

The first condition relates the oxygen flux at the CCL/GDL interface
to the perturbation of the cell current density j̃1

0 (see below). This
condition is consistent with the assumption of fast oxygen transport
through the CCL: any perturbation of the proton current density in
the membrane immediately induces the change in the oxygen flux at
the CCL/GDL interface. The second condition in Eq. 14 means that
the oxygen concentration at the GDL/channel interface is fixed and
hence the oxygen concentration perturbation is zero at this boundary.
Constant oxygen concentration in the channel c = cre f is equivalent
to infinite stoichiometry of the air flow.

Continuity of the oxygen concentration at the CCL/GDL interface
dictates that

c̃1 = c̃1
b(1) [15]

Solutions and impedances.—The system of Equations 9, 13 and
the continuity condition 15 describe the total impedance Z̃ of the
system “CCL + GDL”. The impedance Z̃ is given by the ratio of the
cell potential and current density perturbations. The cell potential per-
turbation equals the overpotential perturbation at the CCL/membrane
interface η̃1(0). From the balance of currents it follows, that the pertur-
bation of electric current at x̃ = 1 (Figure 4) equals the perturbation
of ionic current at the membrane interface. Using the Ohm’s law, the
latter perturbation can be expressed as − ∂η̃1/∂ x̃

∣

∣

x̃=0
. Thus, for Z̃ we

can write

Z̃ = −
η̃1

∂η̃1/∂ x̃

∣

∣

∣

∣

x̃=0

[16]

Physically, all kinetic and transport processes in a cell, whenever
they run, translate into growth of the overpotential η̃ and hence this
parameter represents the system impedance.

Solution to Eq. 9 reads

η̃1 =
(

η̃1
1 −

c̃1

2φ

)

cos

(√
φ

ε
(1 − x̃)

)

+
c̃1

2φ
[17]

where

φ = −
1

2α
− iω̃ [18]

Solution to the problem 13, 14 is straightforward and it leads to21

c̃1
b(1) = −

j̃1
0 tan

(

µl̃b

√

−iω̃/(ε2 D̃b)
)

µ
√

−iω̃D̃b/ε2
[19]

Substitution c̃1 = c̃1
b(1) into Eq. 17 gives the relation of η̃1 and j̃1

0 . The

latter parameter is eliminated using the equation j̃1
0 = − ∂η̃1/∂ x̃

∣

∣

x̃=0
.

The resulting expression for η̃1(x̃) is used to calculate the impedance
16, which finally yields

Z̃ = −
[√

φ

ε
tan

(√
φ

ε

)]−1

+
tan

(

µl̃b

√

−iω̃/(ε2 D̃b)
)

2(1/(2α) + iω̃)µ
√

−iω̃D̃b/ε2

[20]
The first term on the right side of Eq. 20 is the CCL impedance at

the OCP 21

Z̃ccl = −
[√

φ

ε
tan

(√
φ

ε

)]−1

[21]

and the second term is the GDL impedance at the OCP

Z̃gdl =
tan

(

µl̃b

√

−iω̃/(D̃bε
2)

)

2(1/(2α) + iω̃)µ
√

−iω̃D̃b/ε2
[22]

The GDL impedance differs from the finite–thickness Warburg
impedance by the presence of the term iω̃ in the factor 2(1/(2α)+ iω̃)
in the denominator of Eq. 22. Indeed, omitting iω̃ in this factor, we

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 134.94.122.17Downloaded on 2016-01-20 to IP 



F322 Journal of The Electrochemical Society, 163 (5) F319-F326 (2016)

get the finite–length Warburg impedance Z̃W (Ref. 22, page 106):

Z̃W =
α tan

(

µl̃b

√

−iω̃/(D̃bε
2)

)

µ
√

−iω̃D̃b/ε2
=

α tanh
(

µl̃b

√

iω̃/(D̃bε
2)

)

µ
√

iω̃D̃b/ε2

[23]
The relation between Z̃gdl and Z̃W will be discussed in detail in the
next section.

Calculating the limit of ω̃ → 0 in Eqs. 21 and 22, we find the CCL
and the GDL static resistivities:

R̃ccl =
√

2α ε

tanh
(

1/(
√

2α ε)
) [24]

R̃gdl =
αl̃b

D̃b

[25]

In the limits of small and large ε, Eq. 24 transforms to

R̃ccl =
{√

2αε, ε ≪ 1
1

3
+ 2αε2, ε ≫ 1

[26]

In dimension form, Eqs. 26 and 25 read

Rccl =

{
√

b1

i∗σp
, ε ≪ 1

lt
3σp

+ b1

i∗lt
, ε ≫ 1

[27]

Rgdl =
b1

4F Dbcre f / lb

[28]

and the impedances 21 and 22 read

Zccl =
√

b1/(i∗σp)
√

−1 − iω/ω∗ tan(
√

(−1 − iω/ω∗)i∗l2
t /(σpb1))

[29]

Zgdl =
b1 tan

(

√

−iωl2
b/Db

)

4Fcre f (1 + iω/ω∗)
√

−iωDb

[30]

where ω∗ is the characteristic frequency

ω∗ =
i∗

Cdlb1

. [31]

Results and Discussion

PEMFC cathode.—The right side of the GDL static resistivity,
Eq. 28 is the ratio of the characteristic potential b1 to the limiting
current density due to oxygen transport in the GDL

jlim =
4F Dbcre f

lb

[32]

Thus, in general, at the OCP, the total system static resistivity Rccl +
Rgdl “feels” the limiting current density due to oxygen transport in the
GDL. However, in PEM fuel cells, the parameter ε is large: ε ≃ 102–
103 (Table I) and the contribution of Rgdl appears to be very small.
Indeed, for large ε, the CCL resistivity is given by the large–ε part of
Eq. 27. The first term on the right side of this equation describes the
CCL proton transport resistance, and the second term is the charge–
transfer resistance Rct . With the standard cell parameters (Table I), Rct

is six orders of magnitude larger than Rgdl : Rccl ≃ Rct ≃ 3·104 � cm2,
while Rgdl ≃ 10−2 � cm2 (Figure 5). Furthermore, due to large ε, the
same relation holds for the absolute values of the CCL and GDL
impedances

|Zgdl | � 10−6|Zccl |.
In addition, the characteristic frequencies corresponding to the top of
the CCL and the GDL arcs (the summit frequencies29) are the same,
and this finally completely “masks” the GDL impedance by the CCL
impedance in PEM fuel cells.

Table I. Typical kinetic and transport parameters of a PEMFC

cathode and of an anode–supported SOFC anode. The last four

rows indicate the respective dimensionless parameters.

Electrode type
PEMFC
cathode SOFC anode

CL ionic conductivity σp , �−1 cm−1 0.02 0.001, Ref. 33

Volumetric exchange current density i∗,

A cm−3
10−3 103, Ref. 33

Double layer capacitance Cdl , F cm−3 20 2.5, Ref. 33

GDL diffusivity Db , cm2 s−1 0.02 0.053, Ref. 10

Catalyst layer thickness lt , cm 0.001 0.002

GDL thickness lb , cm 0.02 0.15, Ref. 10

Transfer coefficient α 1 0.5

Pressure p, atm 1 (air) 0.1 H2 + 0.9H2O

Cell temperature, K 273+70 273 + 700

Tafel slope b, mV 29.55 168

Feed molecules molar concentration

in the channel cre f , mol cm−3 7.36 · 10−6 1.24 · 10−5

ε 547.7 0.145

D̃b 77.2 151

l̃b 20 75

µ 1.97 1.07

To prove these statements we perform asymptotic expansions of
impedances 21 and 22 over large ε:

Z̃ccl ≃
1

3
+

ε2

iω̃ + 1/(2α)
+ O(ε−2), ε → ∞ [33]

Z̃gdl ≃
l̃b

2D̃b(iω̃ + 1/(2α))
+ O(ε−2), ε → ∞ [34]

Figure 5. Model Nyquist spectra of a PEMFC: (a) GDL impedance, and
(b) CCL impedance. The total impedance of the system “CCL+GDL” is in-
distinguishable with the CCL impedance in (b) (see text). Insets show the
high–frequency parts of the spectra. Note quite a significant difference of the
GDL impedance from the classic finite–thickness Warburg impedance.
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At the top point of the respective arc, the following relation holds:
∂ Im (Z̃ )/∂ω̃ = 0. Equating the ω̃–derivatives of the imaginary parts
of Eqs. 33 and 34 to zero, and solving the resulting equations for ω̃,
we get the summit frequencies ω̃∗

ccl and ω̃∗
gdl

ω̃∗
ccl = ω̃∗

gdl =
1

2α
, or ω∗

ccl = ω∗
gdl = ω∗ =

i∗

Cdlb1

[35]

Thus, the summit frequency of the CCL and GDL arcs coincide. This
means, that these arcs almost completely merge, except in the high–
frequency range.

In dimension form, Eqs. 33, 34 read

Zccl ≃
lt

3σp

+
b1

i∗lt (1 + iω/ω∗)
[36]

Zgdl ≃
lbb1

4F Dbcre f (1 + iω/ω∗)
[37]

where ω∗ is given by Eq. 35. Eqs. 36, 37 lead to the static resistivities
given by Eqs. 27 and 28, respectively. However, in the high–frequency
limit, the accuracy of Eqs. 36, 37 progressively worsens with the
growth of ω. At large ω̃, the absolute value of the first truncated term
in the expansion 33 is ω̃/(45ε2), i.e., Eqs. 33, 36 are accurate up to
the frequency satisfying to

ω̃ ≪ 45ε2, or ω ≪
45σp

l2
t Cdl

≃ 4.5 · 104 s−1 [38]

Quite similar analysis of truncated terms leads to the following con-
dition of validity of Eqs. 34 and 37

ω̃ ≪
15D̃3

bε
4

µ4l̃5
b

, or ω ≪
30Cdllt F D3

bcre f

l5
bσpi∗

≃ 5.3 ·107 s−1 [39]

Thus, Eqs. 33, 34 and their dimension versions 36, 37 are valid for
the regular frequencies f below 1 kHz.

Neglecting the small term 1/3 in Eq. 33, and dividing this equation
by Eq. 34, we get

Z̃ccl

Z̃gdl

≃
2D̃bε

2

l̃b

=
jlim

i∗lt

≃ 2.8 · 106 [40]

where jlim is given by Eq. 32. Thus, in the frequency range given
by Eq. 38, the CCL impedance exceeds the GDL impedance by six
orders of magnitude.

Six orders of magnitude smaller than Zccl impedance is hardly
measurable. Theoretically, Zgdl can be measured using the following
technique. Eqs. 37 and 36 show that Zgdl is inversely proportional
to the channel oxygen concentration cre f , while Zccl is independent
of this parameter. Thus, in principle, we can mesure the total cell
impedance Zccl + Zgdl for two oxygen concentrations, e.g., for the
concentration in air ca and in pure oxygen co. In this way, we get two
spectra Zccl + Z a

gdl and Zccl + Z o
gdl . Subtracting one from another, in

accordance with 37 we get the spectrum Z a−o
gdl , which does not contain

large Zccl :

Z a−o
gdl =

lbb1

4F Db(1 + iω/ω∗)

(

1

ca

−
1

co

)

Fitting this equation to the experimental points, we could determine
the oxygen diffusion coefficient in the GDL, Db. However, both the
spectra Zccl +Z a

gdl and Zccl +Z o
gdl must be measured with at least eight

significant digits. With the present state of experimental technique
such measurements seem to be difficult, if not impossible.

SOFC anode.—In SOFC anode, the dominating part of ionic cur-
rent is converted in the thin anode functional layer, i.e., the fraction of
current converted in the thick supporting layer is vanishingly small.38

This allows us to consider the supporting layer of SOFC anode as an
analog of the gas–diffusion layer in PEMFCs, and to apply the model
above to the anode–supported SOFC anode. The system of Equations
1, 2, 10 remains the same, with the obvious change of the oxygen

Figure 6. The same as in Figure 5 for the anode of the anode–supported
solid oxide fuel cell. Here, GDL stands for the supporting layer of the anode,
the ACL indicates the thin anode catalyst (functional) layer, and σp is the
ionic conductivity of the ACL. Note that the GDL impedance is close to the
finite–thickness Warburg impedance.

concentration to the hydrogen concentration in Eqs. 1 and 10. Note
that in this section, Db in Eq. 10 is the hydrogen diffusion coefficient
in the supporting layer, and the fraction of H2 in the H2 + H2O mixture
feeding the anode is assumed to be small.

A key feature of this electrode is a large value of the exchange
current density, which makes the parameter ε small: ε ≪ 1 (Table I).
A typical operating temperature of SOFC is about 273 + 700 K; an
Arrhenius–type dependence of i∗ on temperature makes the value of
i∗ in an SOFC anode six orders of magnitude larger, than i∗ in a
PEMFC cathode. The impedance spectrum of a small–ε SOFC anode
drastically differs from impedance of a large–ε PEMFC cathode.

Figure 6a shows the anode support (GDL) impedance, and Fig-
ure 6b depicts the anode catalyst layer (ACL) impedance and the total
SOFC anode impedance. These curves are calculated using Eqs. 30,
29, and the data in the last column in Table I. The ACL and the GDL
impedances are represented by the well–separated arcs (Figure 6b,
cf. Figure 1). Note that the GDL impedance is close to the Warburg
impedance (Figure 6a).

Figure 6 suggests, that the small–ε GDL impedance differs from
the Warburg impedance at high frequencies only. To show this, we
calculate the real and imaginary parts of the leading term in the Taylor
series expansion of Eq. 22 over ε at ε = 0 (Appendix):

Z̃gdl,re =
α(1 − 2αω̃)ε

µ
√

ω̃D̃b(1 + 4α2ω̃2)
[41]

Z̃gdl,im = −
α(1 + 2αω̃)ε

µ
√

ω̃D̃b(1 + 4α2ω̃2)
[42]

Note that this expansion is valid at high frequencies only, when
ε2/ω̃ ≪ 1. The Nyquist plot of Eqs. 41, 42 differs from the War-
burg 45◦–slope straight line at high frequencies only (Figure 7). The
spectrum 41, 42 exhibits a curved arc located in the HF domain (Fig-
ure 7). With the decrease in ε, the scale of the Figure 7 decreases,
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Figure 7. GDL impedance, Eq. 22 in the limit of ε → 0, Eqs. 41, 42. The
characteristic frequency, where the real part of impedance becomes negative
is i∗/(Cdl b1). Parameters for the calculations are shown in the last column of
Table I.

as Z̃gdl,re ∼ ε and Z̃gdl,im ∼ ε. In other words, as ε → 0, the solid
curve in Figure 7 gets closer to the Warburg’s 45◦–slope straight line.
Physically, this means that with the decreasing reaction penetration
depth, the system “porous electrode + GDL” tends to the system “pla-
nar electrode + GDL”, which is described by the Warburg impedance.
The frequency ω̃, where the real part of the GDL impedance becomes
negative immediately follows from Eq. 41:

ω̃ =
1

2α
, or ω = ω∗ =

i∗

Cdlb1

[43]

Lower ε corresponds to higher i∗, i.e, with the decrease in ε, the
frequency ω∗ → ∞, Eq. 43. Note that negative Z̃gdl,re does not change

the sign of the real part of the total system impedance Re (Z̃ccl + Z̃gdl ).
Calculations show that this real part remains positive for all system
parameters.

Eqs. 41, 42 are valid provided that ω̃ is sufficiently large, i.e., the
ratio ω̃/ε2 must be large; these equations are not valid in the medium–
and low frequency regions. Numerical calculations lead to a simple
result for the summit frequencies of the ACL and the GDL arcs in the
electrode spectrum (Figure 6):

ω̃∗
ccl =

1

2α
, or ω∗

ccl =
i∗

Cdlb1

[44]

ω̃∗
gdl =

2.54ε2 D̃b

µ2l̃2
b

, or ω∗
gdl =

2.54Db

l2
b

[45]

In contrast to the large–ε electrode, here, the summit frequencies of
the ACL and the GDL arcs are given by quite different equations,
and these arcs are typically well separated. Eq. 45 has long been
known for the finite–length Warburg impedance (Ref. 23, page 89).
Thus, if an experimental spectrum is available, Eq. 45 gives the feed
molecules (hydrogen) diffusion coefficient in the anode supporting
layer. Note that the frequency 45 is independent of the feed molecules
concentration. It is also worth noting that comparing Eqs. 43 and 44
we see, that the top of the ACL arc is achieved at the frequency, where
the real part of the GDL impedance becomes negative.

PEMFC cathode and hydrogen crossover.—A feature of real
PEMFCs is hydrogen crossover through the polymer membrane. The
crossover turns the cathode operation into a regime with the virtual an-
ode. This regime has been analyzed in detail for a direct methanol fuel
cell cathode,18 where methanol crossover leads to the same effects.
Virtual anode means that a small part of the cathode thickness located
at the membrane surface works as an anode, i.e., it converts incoming
hydrogen molecules into protons. The conversion is extremely fast
due to a very high polarization potential for the hydrogen oxidation
on the cathode side. The rest part of the electrode thickness works as
a normal cathode converting the proton current into electron current.

Figure 8. Temperature dependence of the equivalent current density of hy-
drogen crossover through the membrane in a high–temperature PEMFC. The
plot is obtained using the model above and the data from Ref. 24.

In PEM fuel cells, the characteristic current density of H2 crossover
is about several mA cm−2 (Ref. 13). It is easy to verify that at this
current density, the cathode operates in the Tafel regime with the expo-
nential dependence of current on the overpotential. In other words, a
true OCP regime in a real PEMFC cannot be achieved due to hydrogen
crossover.

In the Tafel regime, the static resistivity of the cathode is given
by21

RTafel
ccl =

lt

3σp

+
b1

αjcross

[46]

where jcross is the equivalent current density of crossover. Comparing
this equation to the large–ε branch of Eq. 27 we see that instead of
the the term b1/(i∗lt ), in Eq. 46 we get the term b1/(αjcross). Typi-
cally, jcross ≫ i∗lt , and hence in the quasi–OCP state, the static cell
resistivity corresponds to the crossover current density.

Indeed, with jcross ≃ 1 mA cm−2, the second term in Eq. 46 greatly
dominates. A typical Tafel slope of the ORR electrode is b1/α =
RT/(αF) = 0.03 V and from Eq. 46 we get RTafel

ccl ≃ 30 � cm2. This
agrees with the DC resistivity of 5.7 · 4.4 ≃ 25 � cm2, which exhibits
the spectrum in Figure 2.34 Here, the factor 4.4 cm2 is the cell active
surface in Ref. 34.

It is worth noting that in the Tafel regime, the summit frequency
(corresponding to the top of the faradaic arc) is given by21

ω∗
ccl =

αjcross

Cdlb1lt

[47]

Equations 46 and 47 can be used to calculate jcross in the cell. Figure 3
shows the impedance spectra of a high–temperature PEM fuel cell
measured at the quasi–OCP for different operating temperatures.24

The static cell resistivity dramatically decreases with the tempera-
ture growth (Figure 3). The charge–transfer resistivity Rct data re-
ported in Ref. 24 and the transfer coefficient for the HT–PEMFC
cathode α = 0.7 (Refs. 20, 32) allow us to calculate jcross in the cell,
jcross ≃ b1/(αRct ) (Figure 8). As can be seen, in this temperature
range, the crossover current linearly increases with the cell tempera-
ture. The range of crossover current densities in Figure 8 agrees with
the measurements28 for a similar cell.

As discussed above, the crossover current density is three orders of
magnitude larger, than the ORR exchange current density; nonethe-
less, the GDL transport resistivity is three orders of magnitude less,
than the CCL charge–transfer resistivity. This means, that even in
the quasi–OCP state, the GDL impedance is masked by much larger
CCL impedance, and no separate GDL arc is seen in Figure 2. Finally
we note that the main result of this Section stems from comparison of
Eqs. 46 and 27. Eq. 46 was reported in Ref. 21, while Eq. 27 seemingly
has not been derived so far.
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Conclusions

A model for the fuel cell impedance at open circuit potential is
developed and analytical expressions for the impedance of the catalyst
layer and the gas–diffusion layer are obtained. These impedances are
connected in series. In general, the GDL transport impedance differs
from the Warburg impedance.

A key parameter determining the relation between the CL and the
GDL impedances is ε, Eq. 7. In PEMFCs, ε ≫ 1, and the faradaic and
GDL transport impedances merge. Furthermore, the GDL impedance
appears to be six orders of magnitude smaller, than the CCL (faradaic)
impedance, which makes the GDL impedance completely “invisible”.
In the anode of an anode–supported SOFC, the parameter ε is small,
ε ≪ 1, and the impedances of the anode catalyst layer and of the anode
supporting layer (GDL) form well–separated arcs. Furthermore, in
SOFC anode, the GDL transport impedance is close to the Warburg
finite–length impedance.

In real PEMFCs, hydrogen crossover turns the cathode side into
the Tafel regime of operation, i.e., a true OCP state in these cells
cannot be achieved. The impedance spectra measured at zero current
in the load correspond, in fact, to the crossover current density jcross

flowing in the cathode. These spectra can be used to calculate jcross .

Appendix: GDL Impedance at Small ε

A formal Taylor series expansion for the general GDL impedance Eq. 22 over ε

cannot be obtained by the standard procedure due to the terms of the form sin(y/ε), which

rapidly oscillate as ε → 0. However, the leading term of the expansion can be derived as

following.

Separating the real and imaginary parts of Eq. 22, we come to

Z̃gdl,re =
α(1 + 2αω̃)ε sin(ξ) cos(ξ)

µ
√

ω̃D̃b(1 + 4α2ω̃2)(cosh2 ξ − sin2 ξ)

+
α(1 − 2αω̃)ε sinh(ξ) cosh(ξ)

µ
√

ω̃D̃b(1 + 4α2ω̃2)(cosh2 ξ − sin2 ξ)
[A1]

Z̃gdl,im =
α(1 − 2αω̃)ε sin(ξ) cos(ξ)

µ
√

ω̃D̃b(1 + 4α2ω̃2)(cosh2 ξ − sin2 ξ)

−
α(1 + 2αω̃)ε sinh(ξ) cosh(ξ)

µ
√

ω̃D̃b(1 + 4α2ω̃2)(cosh2 ξ − sin2 ξ)
[A2]

where

ξ =
µl̃b

√
ω̃

ε
√

2D̃b

[A3]

From Eq. A3 it follows, that for ε → 0 and sufficiently large ω̃, we have ξ → ∞. The

first terms on the right side of Eqs. A1 and A2 contain trigonometric functions of ξ in the

numerator, and a single hyperbolic cosh ξ in the denominator. Thus, these terms vanish

as ξ → ∞. In the denominator of the second terms on the right side of Eqs. A1 and A2

we can neglect sin2(ξ) as compared to the exponentially growing hyperbolic cosh2(ξ).

Further, for ξ → ∞, we have sinh ξ ≃ cosh ξ ≃ exp(ξ)/2, which finally leads to Eqs. 41

and 42.

List of Symbols

˜ Marks dimensionless variables
b1 Characteristic potential b1 = RT/F , V
Cdl Double layer volumetric capacitance, F cm−3

c, cox Oxygen molar concentration in the CCL, mol cm−3

cb Oxygen molar concentration in the GDL, mol cm−3

cre f Oxygen molar concentration in the channel, mol cm−3

Db Effective oxygen diffusion coefficient in the GDL,
cm2 s−1

F Faraday constant, C mol−1

f Regular frequency, Hz
j0 Local cell current density, A cm−2

i Imaginary unit
i∗ Volumetric exchange current density, A cm−3

lb Gas–diffusion layer thickness, cm
lt Catalyst layer thickness, cm
Rccl Static differential resistivity of the CCL, � cm2

Rgdl Static differential resistivity of the GDL, � cm2

t Time, s
t∗ Characteristic time of double layer charging, s, Eq. 4
x Coordinate through the cell, cm
Z Total impedance of the cathode side, � cm2

Zccl CCL impedance, � cm2

Zgdl GDL impedance, � cm2

Greek

α Transfer coefficient
ε Newman’s dimensionless reaction penetration depth,

Eq. 7
η ORR overpotential (positive by convention), V
κ Dimensionless parameter, Eq. 6
µ Dimensionless parameter, Eq. 12
ξ Dimensionless parameter, Eq. A3
σp CCL ionic conductivity, �−1 cm−1

φ Dimensionless parameter, Eq. 18
ω Angular frequency (ω = 2π f ), s−1

ω∗ Characteristic angular frequency, s−1, Eq. 31

Subscripts

0 Membrane/CCL interface
1 CCL/GDL interface
b GDL
ccl CCL
gdl GDL
t Catalyst layer
∗ Characteristic value

Superscripts

0 Steady–state value
1 Small–amplitude perturbation
in Oxygen channel inlet
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