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Abstract

We introduce a new filtering method for approximate
string matching called the suffix filter. It has some
similarity with well-known filtration algorithms, which
we call factor filters, and which are among the best
practical algorithms for approximate string matching
using a text index. Suffix filters are stronger, i.e.,
produce fewer false matches than factor filters. We
demonstrate experimentally that suffix filters are faster
in practice, too.

1 Introduction

Given a text string of length n, a pattern string of length
m, and a distance k, the approximate string matching
problem is to find all substrings of the text that are
within a distance k of the pattern. The most common
distance measure is the Levenshtein or edit distance, the
minimum number of single character insertions, dele-
tions and replacements required to transform one string
into the other. This is a widely studied problem with nu-
merous applications in text processing, computational
biology, and other areas involving sequential data. An
extensive survey is given in [12].

The survey does not cover the indexed version of the
problem, which allows the use of a precomputed index of
the text. This is an active research area (see [3, 5]) and
a wide range of solutions have been proposed (see [9]
for a brief survey). However, most approaches are not
practical for many applications because the index size
is superlinear (e.g., [6, 9]) or because the search time
is too large for long patterns and high distance limit k
(e.g., [4, 3]).

The best practical methods for high n, m and k are
based on filtering. A filter is an algorithm that quickly
discards large parts of the text using a filter criterion,
leaving the interesting parts, the potential match areas,
to be checked with a proper (non-indexed) approximate
string matching algorithm. These two phases are the
filtration phase and the verification phase. A filter
is lossless if it never discards a true match. Filter
algorithms for indexed string matching are surveyed
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in [14] though some new filtration methods have been
developed since its publication, most notably methods
based on gapped q-grams [2] or spaced seeds [8].

A simple but effective family of filters, which we
call the factor filters, is based on a factorization of the
pattern. A factorization of a string S is a sequence
of strings (factors) whose concatenation is S. In the
simplest case, there are k+1 factors and the occurrence
of one in the text signals a potential match. The
losslessness of the filter is shown by the following lemma.

Lemma 1.1. Let A = A0A1 · · ·Ak be a string that is
the concatenation of k + 1 non-empty factors Ai. If a
string B is within edit distance k from A, then at least
one of the factors Ai is a factor of B.

The lemma follows easily from the fact that at least
one edit operation is needed for each factor of A that is
not a factor of B. An important generalization allows
fewer factors with an approximate occurrence of a factor
signaling a potential match. Some of the best methods
for indexed approximate string matching are based on
factor filters [10, 13].

We present a new family of filters, the suffix filters,
that generalizes and strengthens the factor filters. For
example, the suffix filter version of Lemma 1.1 is this:

Lemma 1.2. Let A = A0A1 · · ·Ak be a string that is
the concatenation of k + 1 non-empty factors Ai. If a
string B is within edit distance k from A, then there is
at least one suffix A′ = AiAi+1 · · ·Ak and a suffix B′ of
B such that, for all j ∈ [i, k], a prefix of B′ is within
edit distance j − i of Ai · · ·Aj.

The condition in the lemma allows k − i errors between
A′ and B′ but has tighter limits for their prefixes, i.e.,
the errors cannot all be in the beginning. We call this
a strong match. Other variants of suffix filters involve
strong matches of suffixes, too.

It is easy to see that Lemma 1.1 is a corollary of
Lemma 1.2 (consider the cases where j = i). Thus,
Lemma 1.2 gives a stronger filter criterion. Other
factor filters have corresponding stronger suffix filters,
too. A stronger filter criterion leads to fewer potential
matches and faster verification phase in approximate
string matching. On the other hand, the new filter
criteria are more complicated, which could make the



filtration phase slower and more difficult to implement.
However, we show that the suffix filters lead to practical
and fast algorithms. As the starting point, we took
an implementation of an index for approximate string
matching based on factor filters described in [13]. Only
a relatively straightforward and isolated modification
was needed to support suffix filters. In particular, the
index structure is not changed at all. We show with
experiments that suffix filters lead to significantly faster
total search times than factor filters.

2 Filter Criteria

The edit distance (also known as Levenshtein distance)
of two strings A and B, denoted by ed(A, B), is
the minimum number of single character insertions,
deletions and substitutions required to transform A into
B. A filter criterion for edit distance is a predicate on
two strings A and B that correlates with ed(A, B) being
small. A k-lossless filter criterion is true for every A and
B with ed(A, B) ≤ k.

The factorization of a string A is a sequence of
strings (factors) Ai ∈ Σ∗, i ∈ [0, s), whose concatena-
tion A0A1 · · ·As−1 is A. The following is a well-known
property of edit distance.

Property 2.1. Let A and B be two strings, and let
A0A1 · · ·As−1 be a factorization of A. Then, there
exists a factorization B0B1 · · ·Bs−1 of B such that
ed(A, B) =

∑
i∈[0,s) ed(Ai, Bi).

We call B0B1 · · ·Bs−1 an optimal factorization of B.
An optimal factorization is not unique in general.

The filters we will describe are defined by a string A,
a factorization A0A1 · · ·As−1 of A and s non-negative
numbers ti, i ∈ [0, s). We also define t =

∑
i∈[0,s) ti.

The filters are based on a condition that a string B has
to satisfy to pass the filter and be considered a potential
match for A. The filters rely on the existence of an
optimal factorization of B but the optimal factorization
does not need to be known to test the condition. Here
we are interested in the case where A is the pattern and
B is a substring of the text but other uses of the filters
are possible, see [14].

2.1 Factor filters Before presenting the new suffix
filters, we consider the well-known factor filters. The
factor filters are based on the following lemma.1

Lemma 2.1. ([14]) If ed(A, B) < t, there exists i ∈
[0, s) such that ed(Ai, Bi) < ti.

We get a k-lossless filter criterion if we choose
the ti’s so that t > k; the optimal choice giving the

1Our ti corresponds to ki + 1 in Lemma 2 of [14].

strongest filter is t = k + 1. Based on the lemma, if
ed(A, B) ≤ k < t, B must have a factor whose edit
distance to some Ai is less than ti.

In the filtration phase, the text is searched for ap-
proximate occurrences of the factors using a text index.
In the verification phase, the area around each occur-
rence of a factor is searched for an occurrence of the
full pattern using a non-indexed algorithm. Searching
for factors using an index is generally much faster than
searching for the whole pattern because the factors are
shorter and the distance limits smaller.

The factorization of A and the ti’s have to be chosen
carefully for good performance [13]. In general, the
best choice is to make the factor sizes and distance
limits as even as possible, i.e., the factor sizes are
�m/s� and �m/s�, and the distance limits ti are �t/s�
and �t/s�.2 The remaining free parameter is s, the
number of factors. It is a critical parameter, a difference
of just one can make a big difference in performance.
An extensive analysis is provided in [13], but with the
conclusion that the optimal choice can be found only
experimentally.

2.2 Suffix filters For S ∈ {A, B} and 0 ≤ i ≤
j ≤ s, let S[i, j) denote the string SiSi+1 · · ·Sj−1.
In particular, S[i, s) is a suffix of S. We say that A
and B match on interval [i, j) if ed(A[i, j), B[i, j)) <∑

h∈[i,j) th, and strongly match on [i, j) if they match
on every interval [i, j′), j′ ∈ (i, j], i.e., on every non-
empty prefix of [i, j).

The suffix filters are based on the following result.

Lemma 2.2. If ed(A, B) < t, there exists i ∈ [0, s) such
that A and B strongly match on [i, s).

Proof. Let [0, i) be the longest prefix interval, on which
A and B do not match, i.e., ed(A[0, i), B[0, i)) ≥∑

h∈[0,i) th. It is well defined as i = 0 always satisfies
the condition. Then, A and B strongly match on [i, s).
To show this, assume the opposite, i.e., that there exists
j ∈ (i, s] such that A and B do not match on [i, j). But
then A and B do not match on [0, j) = [0, i) ∪ [i, j),
which contradicts [0, i) being maximal. �

Example. In the situation of the following table, A and
B strongly match on [1, 5) but not on any other suffix
[i, 5).

i 0 1 2 3 4
ti 1 1 2 1 1

ed(Ai, Bi) 1 0 1 2 1

2In [13], the distance limits ti are all �t/s�. Our modification
improved running times significantly.



The filter algorithm is identical to factor filters
except instead of searching for separate factors, the
filtration phase will search for suffixes of the pattern
satisfying the strong match condition. That is, it
searches for each suffix A[i, s) with less than

∑
j∈[i,s) tj

errors with additional restrictions on how the errors are
distributed.

To get an intuition on suffix filters, it helps to com-
pare it to factor filters and to searching for the pattern
directly using an index. Consider the (sub)problems of
using the index to find the occurrences of

1. pattern A with less than t errors,

2. factor A0 with less than t0 errors, and

3. suffix A[0, s) under the strong match condition.

In the first case, t errors need to be found to eliminate
a candidate. In the other two cases, only t0 errors
within the first factor is sufficient. This can make a huge
difference when searching using an index as is explained
in Section 3. If those t0 errors within the first factor are
not found, the factor filter lets the candidate pass, but
the suffix filter continues the search on the index and
has further chances for elimination. Thus, the suffix
filter uses the index more effectively.

We have experimentally found that a suffix filter
is faster than a factor filter for the same parameters
(factorization of A and the tis) even if those parameters
are optimized for the factor filter. However, significant
further improvement is achieved with the parameters
optimized for suffix filters.

The basic principle in optimizing the parameters is
to try to make all the suffixes close to equal in behaviour.
This leads to the following three rules:

1. s = k + 1 and ti = 1 for all i. For an explanation,
see below.

2. The last factor Ak is larger than others. This
compensates for the fact that the shortest suffixes
produce more potential matches. We determine the
last factor size � experimentally.

3. Other factor boundaries are distributed evenly so
that each segment of r consecutive factors has the
size �r(m − �)/(s − 1)� or �r(m − �)/(s − 1)�. The
aim is to make the search times of longer suffixes
as even as possible.

As an example, for m = 40 and k = 12 the rules lead
to 13 factors, each with ti = 1, with the following sizes:
3 3 3 3 3 4 3 3 3 3 3 3 6.

This is the best performing filter in our experiments.
To explain the first rule, let us consider the effect of

splitting a factor into two. Let Ai be a factor with error

limit ti > 1, which is split into two factors A′
i and A′′

i . If
we set, t′i = ti and t′′i = 0, the resulting filter is identical
to the original: The suffix starting with A′′

i cannot have
a strong match because t′′i = 0, and other suffixes are
not affected. Thus, we can always make s = k + 1 by
splitting factors or joining factors with distance limit 0
with their predecessor. The principle of making suffixes
equal then favors even distribution of limits, i.e, setting
ti = 1 for all i.

3 Implementation
We have implemented an indexed approximate string
matching algorithm based on suffix filters. The imple-
mentation is a modification of the one in [13], which is
based on the factor filters. Here we describe only the
main ideas and differences to [13].

3.1 Pattern Matching over Suffix Tree/Array
The suffix tree is a widely used full-text index structure
that has linear size and can be constructed in linear
time [15]. The key feature of a suffix tree is that every
substring of the text has a unique position in the suffix
tree: the path from the root to that position spells the
string and the leaves under that position tell all the
occurrences of the substring in the text. The (exact)
occurrences of a string P are easily found by following
the path starting from the root and spelling P to the
position that represents P . Figure 1 gives an example.
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Figure 1: Suffix tree and suffix array for the text
banana$. The suffix tree position and the suffix array
range representing the string an are marked.

A more complex pattern, such as a regular expres-
sion, can be searched, too, if there is an automaton that
recognizes strings that match the pattern. The automa-



ton should read a string one character at a time and at
some point announce a hit or a miss. A hit means that
the string matches the pattern and a miss means that
no continuation of the string can lead to a match. The
next section describes such automata for approximate
string matching. All the occurrences of the pattern in
the text are found by following every path in the suffix
tree starting from the root until the automaton reports
a hit or a miss. By storing intermediate states of the
automaton to allow backtracking, the whole search can
be performed as a limited depth-first search of the tree.

Typically, a suffix tree is dense near the root but
sparse at deeper levels, which is a favorable situation
for searching strong matches. Near the root, the
strong match condition cuts most branches short. The
cumulative distance limit is less restrictive at deeper
levels but there are also fewer branches to take there.

The implementation actually uses a suffix array, a
sorted array of the suffixes, to simulate the suffix tree.
The simulation represents each suffix tree position with
a suffix array interval (see Figure 1). The suffix array is
substantially smaller than the suffix tree and, while the
simulation is theoretically slower by a factor of O(log n),
it is faster in practice [13].

3.2 Automata To recognize approximate factors,
the implementation in [13] uses a non-deterministic fi-
nite automaton (NFA), a well-known method for ap-
proximate string matching [16, 1]. Figure 2 (a) shows
the NFA for recognizing the string “pattern” with at
most three errors. Each row denotes the number of er-
rors seen. Each column represents matching a pattern
prefix. For example, the state in the second row and the
fourth column is active if the string read so far matches
“pat” with one error. Initially only the diagonal start-
ing from the top left corner is active. The automaton
announces a hit when one of the rightmost states is ac-
tivated and a miss when no state is active. We refer to
[13] for more details.

Suffix filters require recognition of strong matches,
which do not allow all errors to occur in the beginning.
The corresponding NFA, which we call the staircase
NFA, is obtained from the standard NFA by eliminating
states that violate the strong match conditions. For
example, consider the following factorization of the
string “pattern”:

factor pa tte rn
ti 1 2 1

Figure 2 (b) shows the staircase NFA for the first suffix
of this factorization. Because the prefix ”pa” allows only
exact matching, we eliminate states in the ith row and
the jth column for i ≥ 2 and j ≤ 3. Because the prefix

a t t e r np

a t t e r np
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Σ Σ Σ Σ Σ Σ Σ Σ
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(a) An NFA for the pattern “pattern” with 3 errors.
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(b) A staircase NFA for suffix filters.

Figure 2: NFAs for recognizing approximate patterns.

k 2  +1 states

1st state

2nd state

i+1st state

staircase automaton

no error

 errorsk

Figure 3: Active area after reading i characters. Only
states within the shaded triangle can be active.

”patte” allows at most 2 errors, we eliminate states in
the ith row and the jth column for i ≥ 4 and j ≤ 6.

We use some heuristics to reduce the time for
simulating an NFA. We do not need to update all states
during the simulation of the (staircase) NFA. After
reading i characters, only states within a triangle whose
peak is the i+1st state of the first row can be active (see
Figure 3). Furthermore, if the top h rows have no active
states, they will stay inactive also in the future, and can
be omitted. This is a significant optimization during a
suffix tree search, because most search branches end in
a miss, a situation with no active states.

A practical implementation of an NFA uses “bit-
parallelism”: the states of the NFA are mapped to bits
in a computer word and are updated in parallel by



operations on the words. We (and [13]) use diagonal-
wise simulation [1] for the standard NFA but row-wise
simulation [16] for the staircase NFA, mainly due to
ease of implementation. In the worst case, a diagonal-
wise simulation step requires O(�k2/w�) time while a
row-wise simulation takes O(k�k/w�) time, where w
is the word size. However, the row-wise simulation
can easily take advantage of the heuristic of omitting
inactive rows but the diagonal-wise simulation can not.
We also tried the row-wise simulation for the standard
NFA but it made the factor filters slightly slower. We
implemented two simulation instances according to how
many words are needed for one row of the staircase NFA:
one word and more than one word. The NFA in [13] was
implemented by five instances according to the lengths
of row and column.

3.3 Verification We have described how approxi-
mate occurrences of factors or suffixes are found using
the index. Each occurrence marks an area around it as a
part of the potential match area, and the union of these
areas is formed by sorting. The potential match area
is then searched sequentially using Myers’ bit-parallel
simulation of the dynamic programming matrix [11, 7],
which is one of the fastest algorithms. We implemented
four simulation instances according to how many words
are needed for one column of the matrix: one, two,
three, and more than three words. The implementation
in [13] used a slower algorithm. This change actually
benefited factor filters more than suffix filters.

4 Experimental Results
In this section we present results from experiments
testing the performance of the suffix filter algorithm
described in the previous section and comparing it
against the factor filter algorithm.

We used three texts: English, DNA, and random
data. English and DNA were obtained from Pizza&Chili
Corpus web-site (http://pizzachili.dcc.uchile.cl/) and
truncated to length 16Mbytes. Random texts are of
length 64M with various alphabet sizes. In each test,
100∼10000 patterns of the same length m were selected
randomly from text and searched with k errors. We
often report the error level α = k/m instead of k.

Our machine is a 2.6Ghz Pentium IV with 2GB of
RAM, running Linux. We used the gcc compiler version
4.0.2 with option “-O3”.

4.1 Suffix filter parameters Section 2.2 describes
a method for choosing the suffix filter parameters, which
leaves one parameter, the last factor size �, to be
determined experimentally. Figure 4 (a) illustrates the
effect of � in one case. In this example, the best � is 6
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Figure 4: Performance of suffix filter on DNA data for
m = 40, k = 12, and 200 queries.

and other factor sizes are 3 and 4. As � gets smaller
than optimal, the verification time increases rapidly.
With larger than optimal �, filtration time increases
but at a more modest rate. The behaviour in other
cases is similar. The results indicate that using the
absolutely optimal � is not crucial but it is better to
err in the too large direction. This is in contrast to
factor filters, where having the free parameter s off by
one in either direction can have a dramatic effect in the
running time [13].

The method of Section 2.2 sets the number of
factors s to k+1 but we experimented also with smaller
values of s (larger values would mean that ti = 0 for
some i). Figure 4 (b) shows the results in one case.
Here the last factor size � is fixed to 6, its distance limit
ts−1 to 1, and the other factor sizes and distance limits
are as even as possible. The results in this and in other
cases, too, show that s = k + 1 is the best choice.

4.2 Suffix filter vs. factor filter In this section, we
compare suffix filters to factor filters. The parameters
are chosen as described in Sections 2.1 and 2.2. For
suffix filters the last factor size �, and for factor filters
the number of factors s were optimized experimentally.
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Figure 5: The effect of error level for m = 30 and 100
queries.

First, we show the effect of error level in Figure 5.
The curve “on-line” represents the time for verifying
the whole text without a filtering step. The figure
illustrates that indexing becomes useless when the error
level grows too large. Figure 6 shows up to which error
level each filtering method wins upon on-line search, as
a function of m. For suffix filters this limit of usefulness
is substantially higher than for factor filters.

Figure 6 also indicates that the advantage of suffix
filters over factor filters increases for longer patterns.
More clearly this effect can be seen in Figure 7. In both
figures, there is a notable jump when the pattern length
goes from 90 to 100. This is caused by the verification
stage, which switches from a fast implementation that
can handle patterns up to length 96 to a slower imple-
mentation that has no limit on the pattern length. As
can be seen in Figure 7, suffix filters are less sensitive
to the speed of the verification stage than factor filters.

Finally, we give a more comprehensive comparison
between the suffix and factor filters. Table 1 shows
the ratios of the running times. The suffix filters are
significantly faster than the factor filters except in some
extreme cases. With small alphabet and short patterns,
searching the full pattern directly using an index is
competitive with filtering, and this is reflected in the
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Figure 6: The error levels up to which each indexing
method wins upon online search.

filter parameters (� is large for suffix filters and s = 1 for
factor filters). With small alphabet and large error level,
filtering is no more competitive with on-line searching.
With large alphabet and low error level, the filters are
highly effective and having a more effective filter does
not help anymore.
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