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Abstract

In this paper, we address the problem of the recovery of a realistic textured model
of a scene from a sequence of images, without any prior knowledge either about the
parameters of the cameras, or about their motion. We do not require any knowledge
of the absolute coordinates of some control points in the scene to achieve this goal.
First, using various computer vision tools, we establish correspondences between the
images and recover the epipolar geometry, from which we showhow to compute the
complete set of perspective projection matrices for all camera positions. Then, we
proceed to reconstruct the geometry of the scene. We show howto rely on infor-
mation of the scene such as parallel lines or known angles in order to reconstruct
the geometry of the scene up to respectively an unknown affinetransformation or an
unknown similitude. Alternatively, if this information isnot available, we can still re-
cover the Euclidean structure of the scene through the techniques of self-calibration.
The scene geometry is modeled as a set of polyhedra. Texturesto be mapped on the
scene polygons are extracted automatically from the images. We show how several
images can be combined through mosaicing in order to automatically remove visual
artifacts such as pedestrians or trees from the textures.

This vision system has been implemented as a vision server, which provides to
a CAD-CAM modeler geometry or texture information extracted from the set of
images. The whole system allows efficient and fast production of scene models of
high quality for such applications as simulation, virtual or augmented reality.
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1 Introduction

The problem which is tackled in this paper and for which we propose a number of
partial solutions is the following: we want to reconstruct atextured three-dimensional
model of a static environment viewed by one or several cameras whose motions or
relative positions are unknown and whose intrinsic parameters are also unknown and
may vary.

The sequence of images that is used can be either a video sequence, or a film, or
a number of snapshots taken from usually fairly distinct viewpoints. In the first two
cases, which we will denote as the M(ovie)-situation, it is,as explained in section 3.1
possible to use the continuity in time of the images to help simplify the problem. In
the third case, which we will denote by the S(napshot)-situation, this is not possible,
and we must work a little harder, as also explained in the samesection.

Solving this problem at relatively low cost is extremely important for such appli-
cations as image synthesis, simulation, virtual and augmented reality. A number of
techniques have been proposed so far for producing 3D information out of images
in photogrammetry and computer vision. The photogrammetryapproach mostly fo-
cuses on accuracy problems, and the derived techniques produce three-dimensional
models of high accuracy [1]. However, they generally require heavy human inter-
action. Some commercial products, such asPhotomodeler, already integrate these
techniques. In computer vision, people produced a number ofautomatic techniques
for computing structure from stereo or motion ([41] and [10,26, 12] for reviews).
With these techniques, the three-dimensional models are produced much more eas-
ily, but they are less accurate and potentially contain a small fraction of gross errors.
Recent hybrid approaches aim at reducing the effort in the production of explicit 3D
models of high quality by imposing constraints on the modeled scene [9].

Alternate representations have been proposed for realistic rendering from images.
With image interpolation techniques [13, 39, 45], the sceneis represented as a depth
field, or equivalently, as a set of feature correspondences across two reference im-
ages. Techniques based on an explicit description of the 4D light intensity function
have also been proposed [30]. Though suited to realistic rendering, these techniques
correspond to specific conditions (viewpoints of rendered images are close to camera
positions) which do not necessarily correspond to our hypotheses.

Our techniques build upon the knowledge which has been acquired in computer
vision and photogrammetry in the last 20 years or so and can potentially reduce by
a significant factor the amount of manual interaction which is currently necessary to
get 3-D models of the world in the computer. As was mentioned before, no hypothe-
ses are made upon the relative positions of the cameras, their intrinsic parameters, all
of them are assumed unknown, or upon the presence in the environment to be mod-
eled of control points with known coordinates in some fixed frame of reference. We
nonetheless show in this article that the complete projective, affine, and Euclidean
geometry (up to a global scale factor) of the scene can be accurately captured by a
combination of techniques which encompass a wide range of traditionally distinct
subjects such as feature detection (edges, corners, junctions) using non-parametric
(image-based) and parametric (snake-like) models, tracking of image features in a
sequence of images, geometric modeling of image correspondences at the projec-
tive, affine, and Euclidean levels with a clear distinction between those levels and
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the amount of information they require, robust estimation of algebraic instantiation
of this geometry (i.e. the perspective projection matrices).

In addition to a geometric description of the scene, realistic rendering applica-
tions rely on information such as textures or photometric properties of the scene. In
this article we present the techniques which allow us to combine information from
several images in order to extract obstacle-free textures from the images.

Far from being after a complete automation of the modeling ofthe scene, we aim
at providing to a human agent working with a CAD system from a set of images of
the environment he wants to model, the most advanced tools incomputer vision to
help him solve such problems as accurate (i.e. subpixel) detection of image features,
matching of those features across views, estimation of the geometry of the set of
views, computation of the 3-D coordinates of scene points, curves, and surfaces.
This framework is depicted in figure 1.

Figure 1: approximately here.

In section 2, we give the geometric background which will be used in the re-
mainder of the article. Section 3 shows the details of the estimation of the projective
geometry of the cameras and the scene. In section 4 we show howwe derive affine
and Euclidean geometric models of the scene. In section 5 we show how textures
are extracted automatically from the images. In section 6 weoutline our computer-
vision-assisted modeler and show reconstructed models. Section 7 concludes the
paper.

2 Background

In this section, we briefly review the basic geometric material which is essential for
the rest of the article.

2.1 The geometry of cameras

We assume the cameras to follow the stantardpinhole model: The imagem of a pointM is obtained by perspective projection through theoptical centerC onto theretina
planeR. The line joiningC, m andM is called anoptical ray. With homogeneous
coordinates, projection is represented by the simple equation: m = PM, whereP
is the3 � 4 so-called perspective projection matrix of the camera, andall quantities
are defined up to an unknown scale factor.

Two-camera systems: The fundamental property of a system with two cameras
is the epipolar geometry: given a point in one image, we can draw a line in the
second image on which its corresponding point necessarily lies. Thisepipolar lineis
the projection on the second image of the optical ray defined by the point in the first
camera (figure 2). It only depends on the position of the pointin the first image and
on the geometric configuration of the cameras.

We will use thefundamentalmatrix representation of the epipolar geometry.
In this representation, two points in correspondence in images 1 and 2 (expressed
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in homogeneous coordinates)m1 andm2 satisfy the following projective relation:mT2 F12m1 = 0. The fundamental matrix is defined up to a scale factor and satisfiesF21e21 = F12e12 = 0, with eij being the epipole in imagei generated by imagej
(or equivalently, the image ini of the optical center of cameraj). (figure 2).

Figure 2: approximately here.

Recently, it has been discovered that the full calibration of the cameras (intrinsic
and extrinsic parameters) is not needed to obtain a useful reconstruction of a scene
viewed by a stereo system [11, 24]: one only needs to know the epipolar geometry
which can be retrieved from point correspondences in pairs of images. Since these
first attempts at an uncalibrated stereovision, a lot of workhas been done on the
estimation of the epipolar geometry of two images [34, 35, 37, 36, 22, 21, 40, 4].
Robust programs which work automatically are now publicly available. We will
consider this problem as solved for the rest of this article;the interested reader is
referred to the bibliography.

Three-cameras systems: It has been shown that the relative geometry of three
images can be captured by a tensor, which imposes a number of trilinear relations
between three image points which represent the same point inspace. These trilinear-
ities [15, 49, 23, 46] yield a very convenient way of predicting the image of a point
or a line in a view given its images in two other views. It has been shown that the
tensor depends on 18 independent coefficients, which can be easily deduced from the
projection matrices.

Finding a suitable representation: The fundamental matrix depends upon
seven parameters [33]. Therefore, the set of all possible fundamental matrices be-
tweenN cameras would depend on7N(N � 1)=2 parameters if there were no con-
straints between them. However, in our simple perspective model, each camera de-
pends on a fixed number of parameters (we use 6 for the pose and orientation and 5
for the intrinsic or internal parameters). This leads toO(N) parameters for the cam-
eras and since the fundamental matrices are represented byO(N2) parameters, there
exist constraints between them. These constraints can be enumerated [15, 16], but
they are rather complex and difficult to use. For analogous reasons, representing the
geometry of more than three images through trifocal tensorsis difficult, because of
the complexity of the constraints between the various tensors. In turn, we prefer the
more compact representation which consists of the projective camera matrices. From
this representation, one can easily derive the fundamentalmatrices and the trifocal
tensors.

2.2 Computing the projection matrices

It has been shown by [32] that given a set of fundamental matrices satisfying the
constraints, one can find corresponding projection matrices. The solution is unique
up to an unknown projective transformation in space if the optical centers are not
aligned.
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The relation of the projection matrices to the fundamental matrices is simple: If
we writePi, the projection matrix of camerai, as[M ijti], the epipoleseij satisfy Eq.
(1) by definition (as images of an optical center).eij = ti �MiM�1j tj (1)

For the fundamental matrices, an elimination scheme leads toFij = [eij]�MjM�1i (2)

where[eij]� is the3� 3 matrix such that for any vectorx, [eij ]�x = eij�x.
It is understood that these equations are projective and therefore are defined only

up to an unknown scale factor. We assume thatMi andMj are invertible. If they are
not, we can always transform them by a proper choice of a projective transformation
to a new frame such that they are invertible and satisfy our assumptions.

2.3 Reconstruction

From the consistent epipolar geometry, we can recover the 3Dscene up to an un-
known projective transformation of space. Various methodshave been compared for
reconstructing points in the projective space. Based on a study given in [43], we use
a SVD-based method.

A projective reconstruction is not as far from a Euclidean reconstruction as it
seems. The set of projection matrices forN cameras depends upon11N � 7 param-
eters in the Euclidean case, whereas only11N � 15 in the projective case.

These 8 additional free parameters are thelow price to pay for not knowing the
internal parameters of the cameras and their relative positions in space. We will later
see how these unknown parameters can be recovered using verylittle information,
either on the cameras or on the scene.

3 Robust recovery of the geometry

In the M-situation, we select (presently manually but we plan to automate this pro-
cess in the near future) a subset of the images in the sequenceso that we end up in
the S-situation. The important difference is that the intermediate images can be used,
as explained below, to simplify the process of establishingcorrespondences between
the views.

3.1 Obtaining correspondences between images

The algorithm used to compute the projection matrices needscorrespondences and
a few epipoles in order to work. We first obtain feature pointsusing a simple corner
detector [20] and we refine their position using a model-based approach [3].

In the S-situation, we then establish correspondences between the corners using
grey-level correlation between neighboring regions of those feature points. For a
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given point in one image several candidate matches are in general possible in another
image. In order to reduce the number of hypotheses, we make use of a relaxation
method [52]. Figure 3(bottom) shows a subset of the correspondences which have
been automatically obtained between the images shown on thetop row.

Figure 3: approximately here.

In the M-situation we track the feature points in the sequence whenever possible
(small motion between frames). If a given point can be tracked all the way between
two of the selected views, a correspondence is established.Tracking of a point of in-
terest is performed by predicting its position from one image to the next and search-
ing in a small neighborhood of the predicted point for an actual point. Like above,
window-based correlation is used to discriminate between potential candidates. An
example of such a tracking is shown in Figure 4.

Figure 4: approximately here.

3.2 Estimating the fundamental matrices between pairs of
images

At this stage, we have obtained a number of correspondences between some im-
ages. Correspondences between pairs of images are input to aprogram calledImage-
Matching that reliably and robustly estimates the fundamental matrices between
those pairs [52]. This program has the capability of rejecting some of the corre-
spondences as outliers. The Image-Matching executable is available at
ftp://krakatoa.inria.fr/pub/robotvis/BINARIES.

3.3 Estimating the uncertainty of the fundamental matri-
ces

The uncertainty associated with the points of interest (typically between 0.1 and 1
pixel) is propagated to the fundamental matrices. In order to compute an estimate of
this uncertainty, we parameterize the fundamental matrix with the minimum number
of parameters, namely 7, and compute the covariance matrix of the corresponding
vector of size 7. There are several technical difficulties indoing this. First, the
parameterization using 7 parameters is nonlinear, not unique, and has singularities.
We therefore have to find the best one in the sense that it is themost remote from
singularities. Second, the criterion which is minimized inorder to estimate the fun-
damental matrix is also nonlinear and does not provide an analytical expression of
the solution as a function of the point correspondences. We therefore have to use the
implicit function theorem to actually compute the covariance matrix of the parameter
vector of the fundamental matrix. The details of those computations can be found in
[8].
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3.4 Recovering the geometry of theN cameras

Up to this stage in the processing, we have estimated the fundamental matrices of
consecutive pairs of images as well as obtained a number of point correspondences
between the views. Nonetheless, we usually still have falsematches to account for.
The set of false matches for the epipolar geometry between pairs of images is a strict
subset of the false matches for the projective geometry: this simply means that the
images of a point can satisfy the epipolar geometry between pairs of images and still
be incorrect when considering the complete set of images. The geometry estimation
algorithm to be described next has been designed to deal withthis problem.

Since the choice of a particular projective basis does not change the projective
geometry of the scene, we are free to choose one for which the process of estimating
the perspective projection matrices is the most stable numerically. We are going to
use this property to compute our projection matrices. Usingthe theory developed
in [11], from 5 points in correspondence in a pair of images and the epipoles, we
can obtain the projection matrices, expressed in the projective basis defined by those
points. This step is just a matter of writing equations of thetype:mij = PjEi; i 2 f1; : : : ; 5g; j 2 f1; 2g (3)

where theEi represent the canonic 3D projective basis:[0; 0; 0; 1]T , [0; 0; 1; 0]T ,[0; 1; 0; 0]T , [1; 0; 0; 0]T , [1; 1; 1; 1]T . The 20 scalar equations given by (3) need to
be complemented by two equations exploiting the fact that the epipoles are known.

In order to obtain a set of projection matrices, 5 points in correspondence in theN images are selected automatically (We show in section 3.4.2how to proceed when
five correspondences cannot be found over the whole sequence). We then proceed
pairwise. For each consecutive pair of images, we compute the projection matrices
in the basis of the 5 chosen points. For this, we make use of thecoordinates of the
points in the images and of the coordinates of the epipoles that were determined by
the estimation of the fundamental matrices. Of course, there can be conflicts: the
projection matrixPj computed from the pair (j� 1, j) can be different from the one
computed with (j, j + 1). Note that this can only be due to the epipoles, because the
coordinates of the 5 points remain unchanged. We do not consider this as a major
problem because they are usually not very different and because this initial estimate
is just a starting point for a refinement procedure. Only one of the possible projection
matrices is kept.

Of course, running through this process only once has very little chance to suc-
ceed because of the possible outliers. If one of the matches is erroneous, then the
projection matrix of the corresponding camera and its neighbors will be useless.
Note that all other matrices will be correct. This quality oflocalness is desirable and
cannot be achieved with iterative (image after image) techniques. To overcome this
problem, we use robust methods.

3.4.1 Least Median of Squares

The Least Median of Squares (LMedS) is a classic method in outlier detection. A
very good introduction can be found in [44]. We need a qualitymeasure of the set of
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projection matrices for each point. We defineri as the sum taken over all cameras of
the image distances between theith measured point and the reprojection of the 3D
reconstructed point with these projection matrices. In detailri = NXj=1 d(mij ;PjMi) (4)Mi is obtained with the reconstruction algorithms mentioned in section 4. The
LMedS method estimates the parameters, i.e. the projectionmatrices, by solving the
non-linear minimization problem:

min(medi(r2i )) (5)

That is, the estimator must yield the smallest value for the median of squared
residuals computed for the complete set of points. Of course, it is not reasonable
to generate all the possible subsets of 5 point correspondences. Rather, we use a
Monte-Carlo technique [44] to drawm random subsamples ofp = 5 different point
correspondences. For each subsampleJ , we estimate the set of projection matricesPJj by the methods previously described. For each setPJj ; j = 1; ::; N , we can
determine the median of the squared residuals denotedMJ = medi(r2i ), with respect
to the whole set of point correspondences. We retain the estimate of thePj leading
to the minimalMJ . Given this set of projection matrices, we characterize as outliers
the point correspondences for whichri > �, where� is an estimate of the variance
derived from the data [44].

The question now is:how do we determinem? A subsample is considered
good if it consists ofp correct correspondences across theN images. Assuming
that the probability of a point correspondence across 2 images being an outlier is�,
the probability of a point correspondence across theN images being an outlier is1 � (1 � �)N�1. The probability that at least one of them subsamples is good is
given by P = 1� (1� (1� �)(N�1)p)m (6)

In our implementation, we assume that� = 15% (in practice a slightly over-
estimated value), and requireP = 0:99, thusm = 6907. Note that the algorithm
can be sped up by means of parallel computation, because the processing for each
subsample is done separately.

The five points of a subsample may be very close to each other. Such a situation
should be avoided because the estimation of the 3D structurefrom such a projective
basis is highly unstable and the result is useless. It is a waste of time to evaluate such
a subsample. Bucketing techniques were developed to ensurethat such configura-
tions are avoided. The images are evenly divided into rectangular regions orbuckets
(in practice, we use 8� 8 buckets), and we impose that the points be drawn from dis-
tinct buckets. The previous formula determiningm still holds under the assumption
that the outliers are uniformly distributed over the image.
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3.4.2 Block estimation

Over a long sequence, it is very difficult or even impossible to find correspondences
for the same five points across the whole sequence of images. We therefore split our
estimation process over different consecutive blocks of images, with the precaution
that the intersection of two consecutive blocks of images contains at least two images.
Knowing the projective bases used in each such pair of blocks, we can compute
the projective transformation from one to the other and apply it to the matrices of
the second block. This process glues the blocks together. Itallows processing of
image sequences where groups of five point correspondences can be found for any
consecutive three images (at least), instead of the whole sequence. This assumption
is in practice very reasonable.

3.5 Refinement

Once a correct set of projection matrices has been computed,we can refine it using
three different methods. Of course, the outliers found at the previous step are marked
as invalid and are not taken into account any further.

Bundle adjustment: This classical method in photogrammetry [5, 6, 18, 19, 47]
is very well suited to our problem. It is based on the observation that due to errors
in the estimation of the projection matrices and on the positions of the 2D points,
the optical rays issued from corresponding image points do not intersect in space,
though in an ideal configuration they should all intersect atone single 3D point.
Through non-linear optimization over the projection matrices and the reconstructed
3D points, the bundle adjustment tries to bring the system asclose as possible to the
ideal situation.

With our initial estimation, the optical rays used in the method approximately
intersect because the reprojections of the 3D points are close to the initial points.
This method has the advantage of being fast. The only modification that we have
made is that instead of reconstructing the actual Euclidean3D points, we reconstruct
the points in a projective basis. Although our problem is over-parameterized (we
allow the projective basis in space to change), the minimization converges because
of the nice properties of the Levenberg-Marquardt algorithm. The average distance
between one point and the reprojection of its reconstruction is initially around 1 pixel
and typically goes down to 0.3 pixels.

Epipolar line adjustment: From the set of projection matrices, we can compute
a consistent set of fundamental matrices. The points that wehave matched must
satisfy the epipolar constraints. We then minimize the sum of the distances between
the points and the epipolar lines generated by their correspondences by varying the
projection matrices. However, this method is slow because we have to recompute
the epipolar lines at each step. In other words, there is no possible decoupling of the
minimization because of its high non-linearity.

Trifocal adjustment: From the set of projection matrices, we can compute the
trilinearities which relate point coordinates in any threeimages of the sequence (cf
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section 2.1. Given three images and two points measured in the first two images, each
trilinear relation defines one line in the third image. The set of all trilinearities defines
nine lines in the third image [28], which would all intersectat the corresponding
point if the point locations were noiseless. The criterion which we measure is the
sum of the squared distances of the point measured in the third image to these lines,
computed from the points in the first two images. The completeresidual is the sum
of this criterion over all point correspondences, for all image triples.

Comparison of the three methods: We compared the three methods on syn-
thetic image points, perturbed with Gaussian noise. Figure5 summarizes the results.
We draw the following conclusions:� Errors have the same order of magnitude in all cases.� Epipolar adjustment is more robust to noise, then bundle adjustment, then tri-

focal adjustment.� Convergence is slower for trifocal adjustment.� The epipolar line adjustment is slower than the bundle adjustment but performs
best in the bad cases when the set of projection matrices is not very well ini-
tialized, except when at least three optical centers are close to being aligned.

Figure 5: approximately here.

Figure 6 shows the epipolar geometry obtained through bundle adjustment on a
set of aerial images. Computation took 6.3 minutes for 10000projective bases tried
for initialization on aSun Sparc 20workstation. The average image error was less
than 0.3 pixels on the 183 points used for the refinement.

Figure 6: approximately here.

4 Recovering Euclidean structure

As mentioned in section 3, the projection matrices that we have determined allow
us to compute three-dimensional structure from image correspondences,up to an
unknown projective transformation. This fact had been first stated in [27] in the case
of two affine cameras (in this case, the unknown transformation in space is affine).
The case of two projective cameras has been presented in [11,24].

From a practical standpoint, this means that from image correspondences, we
can compute three-dimensional points represented by theirhomogeneous coordi-
nates (4-vectors). Knowing the coordinates of a point, we can back-project it onto
any of the cameras for which a projection matrix has been computed. We can even
project it onto an arbitrary virtual camera: this way we can produce new views of
the scene. This process, usually called view transfer [2, 50], has been used for im-
age synthesis[13, 29]. However, for simple reasons, the projective reconstruction
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may not be sufficient: for instance, to perform realistic rendering and virtual walk-
through on today’s fast-rendering hardware, one needs a Euclidean description of the
scene.

Without any additional information, recovering Euclideanstructure is impossi-
ble: all the geometric relations induced by point correspondences have been already
used. We need to use additional information, either on the viewing system, or on the
scene.

4.1 Self-calibration of a moving camera

Approaches have been developed which deal with the case whenthe intrinsic param-
eters of the camera do not vary over a sequence of three imagesor more [38, 33, 14].
In this case, these parameters can be computed from a number of point correspon-
dences in the three views by solving the so-called Kruppa equations. This approach
tends to be sensitive to noise. Only recently have we been able to produce an imple-
mentation which is robust and can deal with an arbitrary (greater than three) number
of images [51]. With input images of good quality (small non-linear distorsion, high
resolution, typically, we use 1536�1024 Photo-CD images) it is now completely
practical and accurate if uncertainty is correctly taken into account as shown in [8].

4.2 Self-calibration using information on the environment

If the intrinsic parameters of the camera are not constant throughout the sequence
(e.g. pictures are taken with several cameras), we can stillrecover Euclidean struc-
ture based on some information about the scene:� If we know the coordinates of at least five reconstructed points in general con-

figuration (i.e., a projective basis) with respect to a Euclidean frame, we can
compute the projective transformation which changes projective coordinates
into Euclidean ones. This principle of using a few “anchor points” to derive
Euclidean coordinates is commonly used in photogrammetry [19]. It supposes
that one has performed manual measurements on the real scene, which is rather
constraining.� A Euclidean frame can be characterized as a frame where parallel lines in-
tersect at infinity, and where orthogonal lines are indeed orthogonal (the dot-
product of their direction is zero). The first property characterizes affine struc-
ture, whereas the second one characterizes Euclidean structure up to an un-
known scale. As shown below, using images of parallel lines we can recover
affine structure; Using pairs of orthogonal direction, we then reach scaled Eu-
clidean structure. Less restrictive than the anchor point approach (here, no
manual measurement is performed), this approach is perfectly suited to the re-
quirements ofRealise, because there are in general many images of parallel or
orthogonal lines in views of buildings.

Let us now examine in more detail this last approach. In the first stage, we
recover affine structure, in which parallelism is preserved. In the second one, we
recover Euclidean structure in which orthogonality is preserved as well.
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After the first stage described in the previous section, the world is modeled as a
three-dimensional projective spaceP3. We use the standard embedding of a three-
dimensional affine spaceA3 into P3 obtained by identifyingA3 with P3 n �1,
where�1 is a plane, called the plane at infinity, which can be thought as the set
of directions of lines inA3. In particular, two parallel lines ofA3, seen as lines ofP3 intersect at a point of�1 (called their point at infinity). Such a point is not as
mysterious as it sounds since when viewed by a camera, the images of the two lines
usually intersect at a point (called their vanishing point)which can be thought of as
(in fact in some senseis) the image of the point at infinity of the two lines. Hence,
in order to determine the plane at infinity, it is in principlesufficient to have in the
scene three pairs of non coplanar parallel lines. Once the plane at infinity has been
determined, an affine coordinate system can be chosen and affine coordinates of the
points in the scene computed.

In the remainder of this article, we use the standard embedding of A3 into P3
which maps a point of affine coordinates[x; y; z]T onto its corresponding point ofP3 n �1 of homogeneous coordinates[x; y; z; 1]T . This embedding simply means
that the plane at infinity is the plane of equationT = 0 in the projective space with
homogeneous coordinatesX; Y; Z; T .

4.2.1 Parallel lines: affine structure

Two lines in space are parallel if and only if they intersect each other in the plane at
infinity. A projective transformation preserves affine structure if and only if preserves
parallelism, which means that it leaves the plane at infinity(the set of all points at
infinity) globally invariant.

Thus, the problem of recovering affine structure is equivalent to finding a projec-
tive transformationHa which maps the plane at infinity onto the plane represented
by [0; 0; 0; 1]T . This is a very simple operation provided that we can computethe
coordinates of the plane at infinity in the initial projective frame. For this purpose,
we first need to determine at least three non-aligned points on this plane, i.e. three
non coplanar directions of lines. Since we observe images oflines, each of these
points is computed as the vanishing point of a set of parallellines observed in the
images. This is shown in Figure 7.

Figure 7: approximately here.

In this figure the three pairs of lines(D1;D2), (D01;D02), and(D001 ;D002 ) are re-
spectively parallel and the images of their points at infinity V; V 0; V 00 are the points
of intersectionv; v0; v00 of the pairs of image lines(d1; d2), (d01; d02), (d001 ; d002), respec-
tively.

From a practical standpoint, parallel directions are identified in the images by the
user in a semi-automatic process. First, for each image, we compute a polygonal ap-
proximation of the edge chains extracted with a sub-pixel feature detector. The user
then selects a small number of line segments (at least 3, chosen in at least two distinct
images) representing parallel lines in space. Based on these, the program computes a
first estimate of the corresponding point at infinity in spaceand back-projects it onto
all the images. All the image line segments whose supportinglines are close enough
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to the vanishing point (a simple threshold on the angular criterion described below is
used) are proposed to the user. After potentially editing the program’s selection, the
user runs the complete computation of the vanishing point. Figure 8 shows for one
image the line segments with which points at infinity have been computed.

Figure 8: approximately here.

Computing points at infinity: We compared several methods for estimating
the points at infinity given images of parallel lines in space. Let us assume that we
measure in the images the projections of parallel space lines hDii. hdiji, represented
by the three-dimensional homogeneous vectordij , is the image ofhDii in view j.
We want to compute their point of intersectionV = TihDii which we know to be
in �1. The imagevj of V in view j is the vanishing point of the image linesdij .
The problem that we need to solve is the following: givendij, computeV.

A first method consists of first estimating the vanishing points vj , then recon-
structingV from the obtained vanishing points.vj is obtained as the weighted-least-
squares solution [17] of the homogeneous system :8i dTijvj = 0
This process turns out to be very sensitive to noise, due to the fact that vanishing
points are estimated independently in the different imageswithout enforcing the
epipolar constraints on them. For this reason, we prefer thefollowing direct linear
method: since the image ofV in cameraj lies on linedij, we have:8i; j dTijPjV = 0:
This system of linear, homogeneous equations in the four homogeneous coordinates
ofV is solved using SVD.

This estimate is then used as initial estimate of a NonlinearLeast Squares min-
imization (Levenberg Marquardt). The criterion measured for each measured line
segment is the minimum angle between its supporting line andone of the two lines
joining its extreme points to the projected point at infinity. The sum of squared angles
over all line segments is the minimized value.

Computing the plane at infinity: The previous process can be applied to all
the directions for which parallel lines are observed, yielding points at infinityVk.
Provided that there are at least three non-aligned points atinfinity, we can compute
the plane at infinity�1, represented by the four-dimensional homogeneous vector�1, as the non-zero solution of the linear homogeneous system:8k VTk�1 = 0

Once we know�1, we can compute the point at infinity of any line as long as
this line can be reconstructed in space, by computing the intersection of this line with
the plane at infinity.
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Deriving an affine reconstruction: To define the transformation which maps
the plane at infinity onto[0; 0; 0; 1]T , we proceed as follows:

First, we compute a projective reconstruction of the scene,using standard multi-
camera reconstruction based on SVD (cf. section 2.3).

One reconstructed point of the scene, denoted byC, is chosen as the origin: in
the new frame, it has coordinates[0; 0; 0; 1]T . Then, three arbitrary independent di-
rections are selected as coordinate axes, and their points at infinity VX ;VY ;VZ
are computed using the method described above. They are respectively mapped onto[1; 0; 0; 0]T ,[0; 1; 0; 0]T , [0; 0; 1; 0]T . To define a projective transformation in space, we need
a fifth point mapping. We select another reconstructed pointS, which does not lie
on any of the three planes defined by the origin and two of the three axes. In the new
frame, this point is assigned arbitrary non-zero coordinates [�; �; 
; 1]. The choice
of the two points, the three directions and the coefficients�; �; 
] is completely au-
tomatic. By default, all the coefficients are set to 1. However, the user may override
this and enter his own selection of points, lines and/or coefficient values.Ha is then computed as the projective transformation which maps the initial
projective basisVX ;VY ;VZ ;C;S onto the final one. SinceVX ;VY ;VZ are all
mapped onto points whose fourth component is zero, any pointof the plane at infinity
will also be mapped onto a point whose fourth component is zero, which is precisely
what is needed for the reconstruction to be affine. Figure 9 shows an example of
affine reconstruction. Two of the three directions chosen ascoordinate axes form a
very small angle (left). This implies a strong affine skew effect on the reconstructed
scene (right).

Parameters�; �; 
 have a simple meaning: they represent scale factors along the
three coordinate axes. For instance, if� is multiplied by a non-zero factor, then the
reconstructed scene will be stretched by the same scale factor along theVX axis.
This is visible in Figure 11, which displays two affine reconstructions which differ
by only one scale factor (along the direction of the top edge of the roof).

Figure 9: approximately here.

4.2.2 Euclidean structure up to three scale factors

As we have seen in Figure 9, the choice of non-orthogonal reference directions may
cause severe affine distortion of the reconstructed scene. Afirst step toward the
recovery of Euclidean structure is to use three pairwise orthogonal directions.

In this case, illustrated by figure 11, the directions of edges parallel to the ref-
erence directions are preserved. In fact, the recovered structure is equivalent to Eu-
clidean structure scaled with three scale factors along thethree coordinate axes. As a
consequence, two edges aligned with two orthogonal coordinate axes remain orthog-
onal in the final affine reconstruction, for any value of the scale parameters�; �; 

(e.g. previous section). This is for instance the case of theroof on which the two
horizontal directions have been defined (left). The relative values of the scale factors
used for the two displayed affine reconstructions (middle,right) are very different.

14



This modifies drastically the aspect of the reconstructed roof (at the bottom-right in
each view), but the principal directions remain orthogonalin both reconstructions.

Of course, angles between lines which are not aligned with the coordinate axes
are not preserved. In particular, orthogonality is not preserved for such directions
(see the roof on the bottom-left). We will now see how this property can be used for
recovering Euclidean structure up to one global scale factor.

4.2.3 Euclidean structure up to one scale factor

We now assume that some pairs of orthogonal lines are known a priori. The points at
infinity of these lines,Vi, are computed as described above. In a Euclidean frame,
linesi; j are orthogonal if and only ifVTi Vj = 0.

If we consider the orthogonal frame defined in the previous paragraph, finding
Euclidean structure is equivalent to finding relative values of the scale parameters�; �; 
 for which the dot-productsVTi Vj are zero for all pairs(i; j) of orthogonal
lines.

If the three reference axes used for affine reconstruction are not orthogonal, three
additional parameters (“skew” parameters) are introducedwhich account for the non-
orthogonality of the reference affine frame. More precisely, instead of using the
mapping defined in 4.2.1, we respectively mapVX ;VY ;VZ onto [1; 0; 0; 0]T (this
has not changed),[�; 1; 0; 0]T , [�; �; 1; 0]T .

We end up with the following criterion to be minimized over the scale parameters
and the skew parameters: :E(�; �; 
; �; �; �) = Xi;j orthogonal

(VTi Vj)2
The global scale of the scene cannot be recovered. So, we search for the par-

ticular solution for which� = 1. Minimizing E(1; �; 
; �; �; �) with the standard
Levenberg-Marquardt iterative technique (the initial values of the five parameters are
the ones used for affine reconstruction), we end up with a Euclidean reconstruction
up to a global scale factor (see Figure 12).

Thus, we now have a way of computing a Euclidean reconstruction of the scene
without any knowledge of the camera parameters, nor of the scene coordinates. This
is a major difference with the method presented in [9], whereknowledge of the in-
trinsic parameters of the camera is required. Only informations about point and line
matches, parallelism and angular relations have been used.Moreover we can even
in some cases obtain a Euclidean reconstruction without using this information, by
self-calibration [8]. In practice we have found it useful tocombineall the available
information to obtain robust results. Once the mappings which bring points from
projective to affine and Euclidean space have been computed,the projection matri-
ces are updated so that image point correspondences are directly reconstructed in the
Euclidean space.

The structure of the process that recovers the Euclidean structure of the scene
is shown if figure 10 which clearly shows that this can be done in two ways, either
through the use of a priori geometric information about the scene, e.g. parallel lines,
angles and ratios of lengths, or through the use of a priori information about the
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internal parameters of the cameras, e.g. in the most generalcase that they are constant
but unknown.

Figure 10: approximately here.

Figure 11: approximately here.

Figure 12: approximately here.

4.3 Building a polyhedral description

The problem of constructing a polyhedral representation ofthe scene is by no means
trivial and we have in fact not attempted to solve it directlyfrom scratch. What
we have done is to extend the capabilities of a number of modellers to allow them
to use the 3D information provided by a set of images. The mainadvantage of
this approach is that we benefit from all the functionalitieswhich are available in
currently available 3D modellers, e.g. levels of representations, interaction, display,
bookkeeping and simply enhance them with the ability to use the state of the art
computer vision procedures, some of them described in this paper.

In slightly more detail, the scene is reconstructed as a set of polygons in space.
The user defines the topology of the model, and is helped by thesystem in defining its
geometry. This is done at several levels, which differ by their degree of interaction.

At the lowest level, the user defines a 3D vertex by specifyingits position in
two or more images. In this process, he gets visual help from the system which can
display epipolar lines, perform trifocal transfer, etc...

At a slightly higher level, the user can restrict his or her attention to only one
image: typically he or she will select or outline roughly a visually prominent detail
such as a vertex, a line, or a closed contour and the vision server will use the cur-
rently available calibration information to obtain correspondences for these features
in other images, perhaps after some refinement of their position in the original im-
age, thereby providing 3D information to the modeller and usually also an update of
the calibration. At this stage several vision algorithms may be selected and put in
competition by the system which can evaluate their results according to a variety of
criteria ranging from a simple consideration of the uncertainty and completeness of
the results to a more elaborate criticism of how they fit with the current model.

Because this part of the system is presently not completely stabilized, we prefer
to postpone its full discussion to a future paper.

5 Texture extraction

Once a polyhedral description of the scene has been derived,our system automati-
cally extracts from the images the textures attached to the polygons. For each planar
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polygon, we compute a rectifiedtexture image, i.e., a bitmap related to a system of
coordinates attached to the supporting plane of the polygon, and the corresponding
two-dimensionaltexture coordinatesof the polygon vertices.

In the favorable cases, an obstacle-free, complete texturecan be extracted from
one single image. However, it often happens that the textureis not completely visible
in any of the images: Some part of the polygon may project outside of the image,
or there might be visual obstacles in front of the polygon. Toaddress these prob-
lems, we developed a technique inspired from mosaicing [48,25]. It is based on
the fact that since the polygon is planar, it induces homographic (linear, projective)
correspondences between the images. The approach consistsof first computing the
homographies – in practice, homogeneous 3�3 matrices – from the texture image to
each view, then generating the texture image. At each pixel,the computed texture
value is a combination of the values read in the different images at the corresponding
pixels.

Let us now describe in more detail all the stages involved in the texture compu-
tation of one polygon.

5.1 Texture coordinates

First, a reference image is selected. By default, the systemchooses the image in
which the polygon is observed from the angle closest to its normal. Let us denote byPr its corresponding projection matrix.

Second, a normalized coordinate system is chosen for the texture image. For this,
we introduce a new orthonormal system of coordinates(O0;X 0; Y 0; Z 0) such that theZ 0 axis is normal to the plane of the polygon, theX 0 axis is aligned with the longer
edge of the polygon, and the originO0 lies in the plane of the polygon.

In this new coordinate system, the equation of the plane of the polygon isZ 0 = 0.
In other words, if the change of coordinates corresponds to the rigid transformation(R; t), for any point(X;Y;Z) belonging to the plane of the polygon we have[X 0; Y 0; 0; 1]T = � R t0T3 1 � [X;Y;Z; 1]T
CoordinatesX 0; Y 0 describe the position of the point within the polygon plane.They
are rescaled (scale factorsku; kv) and shifted (translation�u; �v) in order for the
transformed polygon vertices to have coordinates between 0and 1. The resulting
normalized texture coordinates, denoted byun; vn, satisfy the following relation:[un; vn; 1]T = 24 �u 0 �u0 �v �v0 0 1 35 [X 0; Y 0; 1]
Thus, the space coordinates of a point lying on the plane of the polygon can be
computed from its normalized texture coordinates:[X;Y;Z; 1]T = K[un; vn; 1]T with K = � R t0T3 1 ��1 2664 1 0 00 1 00 0 00 0 1 377524 �u 0 �u0 �v �v0 0 1 35�1
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The homography which transforms normalized texture coordinates into coordinates
in the reference image is then: Hr = PrK:

The resolution of the texture image can be chosen arbitrarily. We constrain the
polygon in the texture image to have the same area as the polygon in the reference
image, which implies that both polygon textures will approximately have the same
level of detail. We finally derive the homographyHr which maps a point in the
texture image onto its corresponding point in the referenceimage.

5.1.1 Accurate image-image registration

From the projection matrices and the three-dimensional coordinates of the polygon
vertices, we can easily derive the homography, denoted byH0ri, from the reference
image to any imagei. However, there might be small errors in the image-to-image
registration, due to slight imprecision in the calibrationand reconstruction processes.
These errors are typically of the order of one or two pixels. To address this problem,
we use the following refinement technique: We extract Harriscorners [20], which
we denote byck. The homography gives us a pixel-wise correspondence between a
square window centered atck in the reference image, and a skewed window aroundH0rick in imagei. Translating the skewed window within a small neighborhoodof
this point, we find the pointc0ik for which cross-correlation of the intensity distribu-
tions within the windows is maximal. Finally, we computeHri which minimizesmed �d(c0ik;Hrick)2�
whered(:; :) is the image distance (in pixels). The least-median-of-squares estimator
allows us to get rid of the wrong point correspondences caused by visual obstacles.

5.1.2 Compensation for intensity variations

In a second stage, we compensate for global intensity and contrast differences across
the images. For this purpose, we extract a number of pointsek in the reference
image, and we estimate the affine function which best maps intensitiesIr(ek) in
imager onto intensitiesIi(Hriek) in imagei. Once again, we use a least-median-
of-squares estimator to get rid of outliers. Here, it is better to choose pointsek such
that intensity varies slowly around them. In practice, we compute the points which
locally minimize the module of the Harris criterion.

5.1.3 Texture image generation

Finally, we generate the texture image. For each pixel in thetexture image, we
compute the intensities at the corresponding pixels in the images, using the estimated
homographies and the affine functions for intensity adjustment. We obtain a vector
of intensity valuesI1; :::; In. In an ideal case, e.g. lambertian surfaces, constant
lighting conditions and constant sensitivity of the imaging device, all these should
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be equal, except for values corresponding to visual obstacles. So, we compute the
subset ofp values among then which have minimum variance (typically, we usep = 2 for n 2 f3; 4g, p = 3 for n > 4 amongn), and set the texture pixel value to
the median of thesep values.

The same computation can be extended to color images in a straightforward man-
ner, by considering three-component values for the intensities. Figure 13 shows an
example of texture generated from 4 images.

Figure 13: approximately here.

6 Results

The whole system was developed according to the server/client architecture men-
tioned in section 1. At Inria, we developed the vision procedures, which were in-
tegrated within the vision server by our partners from Thomson-Syseca. Our part-
ners from the Fraunhofer Institut (Darmstadt) developed a client, i.e., an interactive
image-oriented 3D modeler capable of requesting information from the vision server.
A brief description of the system and its applications to virtual reality is given in [31].
In order to test the vision procedures, we developed anotherclient based upon the
TargetJrimage understanding environment developed by GE. In the current system,
the vision procedures which are used in order to help the end-used are the following:� Features such as corners, edges, line segments are accurately localized using a

model-based approach [3].� When building primitives such as polygons or polyhedra, we can rely upon
edge matches automatically produced by a multi-image curvematching algo-
rithm based on [42]. This speeds up the modeling process by allowing us to
define accurate 3D objects while interacting with only one image.� In cases when the previous method fails, the user can still build the model man-
ually. He is assisted in this task by the fact that he can observe simultaneously
in all images the effects of his actions (display of the epipolar lines correspond-
ing to the cursor position, or for a fixed optical ray, displayin all the images of
the corresponding points along the epipolar lines). This relies on epipolar and
trifocal geometry.� Textures are automatically extracted from the images.

6.1 Qualitative assessment of the results

The system has now been run on many sets of images to reconstruct tens of models.
We only show here two examples of three-dimensional wireframe and textured mod-
els that we have produced. In figures 14 (respectively 15), the top row shows two
images of the 10-image (respectively 15-image) sequence, with the reconstructed
wireframe model superimposed; the bottom row shows two views of a reconstructed
textured model. Of course, the models have been obtained from all the views, not
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only the two shown (in the case of the wireframe example), which explains why
some of the features in the wireframe model may be hidden in the chosen views.

Figure 14: approximately here.

Figure 15: approximately here.

6.2 Quantitative assessment of the results

Beside the qualitative assessment of the quality of the produced models which was
presented in the previous section, we have also tested our results against actual mea-
surement. For example, we show in figure 16 a number of line segments in one of
the images of the “Arcades” sequence. These segments correspond to actual physical
features in the scene whose lengths as well as some of their angles we could mea-
sure. Table 1 shows a comparison of the real, i.e. measured, lengths and angles with
the estimated ones. In the case which is presented here, the Euclidean structure of
the scene was obtained from self-calibration, the internalparameters of the camera
being constant but unknown (see section 4.1). Similar results are shown for the

Figure 16: approximately here.

“Church” sequence in figure 17 and table 2. In both cases the results are satisfactory,
considering the fact that no a priori information about the scenes has been used.

7 Conclusion

We have described in this article the skeleton of a system based on computer vi-
sion that is going to be used to partially automate the 3-D CADmodeling of urban
scenes. The system can use any number of cameras and images ofthe scenes to
be modeled and proceeds to estimate automatically the perspective projection ma-
trices corresponding to all the images by matching image features such as corners,
junctions, lines. The resulting matrices do not in general allow recovery of a metric
model of the scene since no metric information has been used so far, only a projec-
tive one which can be used for some applications. In order to go further, the system
can do two things: 1) make some assumptions about the internal parameters of the
cameras, for example that they do not significantly vary overat least three frames
and use the self-calibration methods introduced in [38, 33,14] and recently made
more robust to image noise [8] and 2) use information provided by the user about
the actual affine or Euclidean structure of the scene, such asparallel lines, ratios of
lengths, and angles. This information allows the system to specialize its representa-
tion of the environment from projective to affine and finally Euclidean. The whole
system uses sophisticated computer vision tools and has been developed as a flexible
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Table 1: approximately here.

Figure 17: approximately here.

server, a vision server, that can be queried by a human user who is using a CAD
system to develop a 3-D textured model of the scene.

One of the advantages of this system is that it does not require any prior knowl-
edge about the cameras, which is handy in applications like video-based modeling
for example. The user is then allowed to use his camera the wayhe likes, without
any special set-up, or to use images of unknown source. This is in sharp contrast
with systems that have been proposed in the past by other groups. We have already
discussed in section 4.2.3 why we thought that our system wasmore flexible than the
one described in [9]. We should also mention the fact that it is much more flexible
and robust than the ones that could possibly be built on top ofthe results described
in [41] and [7]. There, the authors can only cope with one calibrated affine camera
and use structure from motion as the basic ingredient for recovering 3D. As shown
in this paper, we can deal with uncalibrated cameras performing full perspective pro-
jection and use large baseline stereo for recovering 3D. We have found in particular
that for the kinds of views shown in figures 14 and 15, the perspective effects were
quite large and hard to account for with an affine camera model. This is of course at
the cost of adding some limited human interaction in the system but we think that it
buys us a lot more accuracy and robustness.

We believe that neither the theory, nor the technology are ready for fully auto-
matic 3D modellers but we are convinced that the time has cometo build and sell
systems that offer unsophisticated users the possibility to use interactively highly
sophisticated computer vision tools.
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Table 2: approximately here.
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