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Abstract

In this paper, we address the problem of the recovery of ssteatiextured model
of a scene from a sequence of images, without any prior krdy@either about the
parameters of the cameras, or about their motion. We do goireeany knowledge
of the absolute coordinates of some control points in thaeeste achieve this goal.
First, using various computer vision tools, we establismespondences between the
images and recover the epipolar geometry, from which we dmmwto compute the
complete set of perspective projection matrices for all eapositions. Then, we
proceed to reconstruct the geometry of the scene. We showttaoely on infor-
mation of the scene such as parallel lines or known anglesderdo reconstruct
the geometry of the scene up to respectively an unknown affaimsformation or an
unknown similitude. Alternatively, if this information rgot available, we can still re-
cover the Euclidean structure of the scene through the igebs of self-calibration.
The scene geometry is modeled as a set of polyhedra. Textubesmapped on the
scene polygons are extracted automatically from the imagéesshow how several
images can be combined through mosaicing in order to autcatigtremove visual
artifacts such as pedestrians or trees from the textures.

This vision system has been implemented as a vision servechvprovides to
a CAD-CAM modeler geometry or texture information extracteom the set of
images. The whole system allows efficient and fast prodoatioscene models of
high quality for such applications as simulation, virtuabogmented reality.



1 Introduction

The problem which is tackled in this paper and for which weppise a number of
partial solutions is the following: we want to reconstrutégtured three-dimensional
model of a static environment viewed by one or several casn&rese motions or
relative positions are unknown and whose intrinsic paramsedre also unknown and
may vary.

The sequence of images that is used can be either a videonsegee a film, or
a number of snapshots taken from usually fairly distinctwgeints. In the first two
cases, which we will denote as the M(ovie)-situation, iasexplained in section 3.1
possible to use the continuity in time of the images to heigpéify the problem. In
the third case, which we will denote by the S(napshot)-sitnathis is not possible,
and we must work a little harder, as also explained in the sseugon.

Solving this problem at relatively low cost is extremely iom@ant for such appli-
cations as image synthesis, simulation, virtual and auggdereality. A number of
techniques have been proposed so far for producing 3D irgtiom out of images
in photogrammetry and computer vision. The photogrammabyroach mostly fo-
cuses on accuracy problems, and the derived techniquesgedbree-dimensional
models of high accuracy [1]. However, they generally reglieavy human inter-
action. Some commercial products, suchPdmtomodeleralready integrate these
techniques. In computer vision, people produced a numbautmimatic techniques
for computing structure from stereo or motion ([41] and [26, 12] for reviews).
With these techniques, the three-dimensional models aguped much more eas-
ily, but they are less accurate and potentially contain dldnaation of gross errors.
Recent hybrid approaches aim at reducing the effort in tbeyation of explicit 3D
models of high quality by imposing constraints on the modslesne [9].

Alternate representations have been proposed for realistdering from images.
With image interpolation techniques [13, 39, 45], the saemepresented as a depth
field, or equivalently, as a set of feature correspondencesss two reference im-
ages. Technigues based on an explicit description of thegtDihtensity function
have also been proposed [30]. Though suited to realistidenémg, these techniques
correspond to specific conditions (viewpoints of rendereddes are close to camera
positions) which do not necessarily correspond to our Hygses.

Our techniques build upon the knowledge which has been wsedjin computer
vision and photogrammetry in the last 20 years or so and ctenpally reduce by
a significant factor the amount of manual interaction whghurrently necessary to
get 3-D models of the world in the computer. As was mentiorefdrie, no hypothe-
ses are made upon the relative positions of the camerasirttigisic parameters, all
of them are assumed unknown, or upon the presence in theoement to be mod-
eled of control points with known coordinates in some fixehfe of reference. We
nonetheless show in this article that the complete prajectffine, and Euclidean
geometry (up to a global scale factor) of the scene can beaatety captured by a
combination of techniques which encompass a wide rangeaditinally distinct
subjects such as feature detection (edges, corners, gusgtusing non-parametric
(image-based) and parametric (snake-like) models, tngckf image features in a
sequence of images, geometric modeling of image corregpmed at the projec-
tive, affine, and Euclidean levels with a clear distinctigtvibeen those levels and



the amount of information they require, robust estimatibmalgebraic instantiation
of this geometry (i.e. the perspective projection matjices

In addition to a geometric description of the scene, raaligndering applica-
tions rely on information such as textures or photometrpprties of the scene. In
this article we present the techniques which allow us to dosmmformation from
several images in order to extract obstacle-free textumes the images.

Far from being after a complete automation of the modelintpefscene, we aim
at providing to a human agent working with a CAD system fronetd$ images of
the environment he wants to model, the most advanced to@snputer vision to
help him solve such problems as accurate (i.e. subpixefctien of image features,
matching of those features across views, estimation of dwngtry of the set of
views, computation of the 3-D coordinates of scene pointsyes, and surfaces.
This framework is depicted in figure 1.

Figure 1. approximately here.

In section 2, we give the geometric background which will lsediin the re-
mainder of the article. Section 3 shows the details of thienasion of the projective
geometry of the cameras and the scene. In section 4 we showhalerive affine
and Euclidean geometric models of the scene. In section Shaw Bow textures
are extracted automatically from the images. In section ®uténe our computer-
vision-assisted modeler and show reconstructed modelstio€e7 concludes the
paper.

2 Background

In this section, we briefly review the basic geometric matesihich is essential for
the rest of the article.

2.1 The geometry of cameras

We assume the cameras to follow the stanpanthole model The imagen of a point
M is obtained by perspective projection through dptical centerC' onto theretina
planeR. The line joiningC, m and M is called aroptical ray. With homogeneous
coordinates, projection is represented by the simple equain = PM, whereP
is the3 x 4 so-called perspective projection matrix of the camera,ahquantities
are defined up to an unknown scale factor.

Two-camera systems: The fundamental property of a system with two cameras
is the epipolar geometry: given a point in one image, we canwdx line in the
second image on which its corresponding point necess&#gy Thisepipolar lineis
the projection on the second image of the optical ray defiyetthd point in the first
camera (figure 2). It only depends on the position of the pitihe first image and
on the geometric configuration of the cameras.

We will use thefundamentalmatrix representation of the epipolar geometry.
In this representation, two points in correspondence ingisal and 2 (expressed
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in homogeneous coordinates); andm, satisfy the following projective relation:
m%’me] = 0. The fundamental matrix is defined up to a scale factor ansifigst
Fyiey = Fiyerp = 0, with e;; being the epipole in imagegenerated by imagge

(or equivalently, the image ihof the optical center of cameyd. (figure 2).

Figure 2. approximately here.

Recently, it has been discovered that the full calibratibtihe cameras (intrinsic
and extrinsic parameters) is not needed to obtain a usefahstruction of a scene
viewed by a stereo system [11, 24]: one only needs to knowilmkar geometry
which can be retrieved from point correspondences in pdimages. Since these
first attempts at an uncalibrated stereovision, a lot of wuak been done on the
estimation of the epipolar geometry of two images [34, 35,3, 22, 21, 40, 4].
Robust programs which work automatically are now publichaimble. We will
consider this problem as solved for the rest of this artithes interested reader is
referred to the bibliography.

Three-cameras systems: It has been shown that the relative geometry of three
images can be captured by a tensor, which imposes a numbelinafar relations
between three image points which represent the same pa@ptice. These trilinear-
ities [15, 49, 23, 46] yield a very convenient way of predigtithe image of a point
or a line in a view given its images in two other views. It hagtbshown that the
tensor depends on 18 independent coefficients, which caadilg deduced from the
projection matrices.

Finding a suitable representation: The fundamental matrix depends upon
seven parameters [33]. Therefore, the set of all possibiiddmental matrices be-
tweenN cameras would depend GV (N — 1)/2 parameters if there were no con-
straints between them. However, in our simple perspectiwdat) each camera de-
pends on a fixed number of parameters (we use 6 for the poseriantiation and 5
for the intrinsic or internal parameters). This leadsXaV) parameters for the cam-
eras and since the fundamental matrices are represented5y) parameters, there
exist constraints between them. These constraints canlweerated [15, 16], but
they are rather complex and difficult to use. For analogoasaes, representing the
geometry of more than three images through trifocal tensodifficult, because of
the complexity of the constraints between the various tenda turn, we prefer the
more compact representation which consists of the pregctamera matrices. From
this representation, one can easily derive the fundamema#lices and the trifocal
tensors.

2.2 Computing the projection matrices

It has been shown by [32] that given a set of fundamental pestreatisfying the
constraints, one can find corresponding projection matridéne solution is unique
up to an unknown projective transformation in space if thécap centers are not
aligned.



The relation of the projection matrices to the fundamentatrives is simple: If
we write P;, the projection matrix of cametiaas[M;t;], the epipoles:;; satisfy Eq.
(1) by definition (as images of an optical center).

eij == t7; — MiM;lt]‘ (1)

For the fundamental matrices, an elimination scheme laads t

Fij = [ei;]x M;M; 2

wherele;;]« is the3 x 3 matrix such that for any vectox, [e;;]«x = e;; xx.

It is understood that these equations are projective andftive are defined only
up to an unknown scale factor. We assume MatandM; are invertible. If they are
not, we can always transform them by a proper choice of a giegetransformation
to a new frame such that they are invertible and satisfy csuraptions.

2.3 Reconstruction

From the consistent epipolar geometry, we can recover thec&de up to an un-
known projective transformation of space. Various methuaige been compared for
reconstructing points in the projective space. Based ondygiiven in [43], we use
a SVD-based method.

A projective reconstruction is not as far from a Euclideacorestruction as it
seems. The set of projection matrices Mdicameras depends updh/N — 7 param-
eters in the Euclidean case, whereas dnlyv — 15 in the projective case.

These 8 additional free parameters areltve price to pay for not knowing the
internal parameters of the cameras and their relativeipasiin space. We will later
see how these unknown parameters can be recovered usingjtiterinformation,
either on the cameras or on the scene.

3 Robust recovery of the geometry

In the M-situation, we select (presently manually but wengla automate this pro-
cess in the near future) a subset of the images in the seqgertbat we end up in
the S-situation. The important difference is that the meediate images can be used,
as explained below, to simplify the process of establiskimgespondences between
the views.

3.1 Obtaining correspondences between images

The algorithm used to compute the projection matrices needgspondences and
a few epipoles in order to work. We first obtain feature poutgig a simple corner
detector [20] and we refine their position using a model-Bag®gproach [3].

In the S-situation, we then establish correspondenceseeetthe corners using
grey-level correlation between neighboring regions ofsthéeature points. For a



given point in one image several candidate matches are erglgpossible in another
image. In order to reduce the number of hypotheses, we makefus relaxation
method [52]. Figure 3(bottom) shows a subset of the cormdpaces which have
been automatically obtained between the images shown dojrew.

Figure 3: approximately here.

In the M-situation we track the feature points in the seqeembenever possible
(small motion between frames). If a given point can be trdcéthe way between
two of the selected views, a correspondence is establidivadking of a point of in-
terest is performed by predicting its position from one im&gthe next and search-
ing in a small neighborhood of the predicted point for an akcpoint. Like above,
window-based correlation is used to discriminate betweserdial candidates. An
example of such a tracking is shown in Figure 4.

Figure 4: approximately here.

3.2 Estimating the fundamental matrices between pairs of
images

At this stage, we have obtained a number of correspondere®gebn some im-
ages. Correspondences between pairs of images are inpptdgram calledmage-
Matching that reliably and robustly estimates the fundamental egribetween
those pairs [52]. This program has the capability of rejegtsome of the corre-
spondences as outliers. The Image-Matching executablailable at
ftp://krakatoa.inria.fr/pub/robotvis/ Bl NARI ES.

3.3 Estimating the uncertainty of the fundamental matri-
ces

The uncertainty associated with the points of interesti¢slty between 0.1 and 1
pixel) is propagated to the fundamental matrices. In ord@ompute an estimate of
this uncertainty, we parameterize the fundamental matiilx the minimum number
of parameters, namely 7, and compute the covariance mdtthxeocorresponding
vector of size 7. There are several technical difficultiesiaing this. First, the
parameterization using 7 parameters is nonlinear, notugnignd has singularities.
We therefore have to find the best one in the sense that it imtds remote from
singularities. Second, the criterion which is minimizender to estimate the fun-
damental matrix is also nonlinear and does not provide atyt@cel expression of
the solution as a function of the point correspondences.hafetore have to use the
implicit function theorem to actually compute the covadamatrix of the parameter
vector of the fundamental matrix. The details of those caepens can be found in

[8].



3.4 Recovering the geometry of théV cameras

Up to this stage in the processing, we have estimated theafoedtal matrices of
consecutive pairs of images as well as obtained a numberiof parrespondences
between the views. Nonetheless, we usually still have falaghes to account for.
The set of false matches for the epipolar geometry betwers glamages is a strict
subset of the false matches for the projective geometrg. dimply means that the
images of a point can satisfy the epipolar geometry betwaés pf images and still
be incorrect when considering the complete set of images.gEometry estimation
algorithm to be described next has been designed to deathidtiproblem.

Since the choice of a particular projective basis does nahgé the projective
geometry of the scene, we are free to choose one for whichrtioegs of estimating
the perspective projection matrices is the most stable noally. We are going to
use this property to compute our projection matrices. Uslirggtheory developed
in [11], from 5 points in correspondence in a pair of imaged #re epipoles, we
can obtain the projection matrices, expressed in the pregebasis defined by those
points. This step is just a matter of writing equations oftipe:

m;; = P]'Ei,i € {1, - ,5},]' c {1,2} (3)

where theE; represent the canonic 3D projective bdsid), 0,1]”, [0,0,1,0]7,
[0,1,0,0]%, [1,0,0,0]", [1,1,1,1]T. The 20 scalar equations given by (3) need to
be complemented by two equations exploiting the fact thaegipoles are known.

In order to obtain a set of projection matrices, 5 points irregpondence in the
N images are selected automatically (We show in section Belwto proceed when
five correspondences cannot be found over the whole sequeWsethen proceed
pairwise. For each consecutive pair of images, we comp@ibjection matrices
in the basis of the 5 chosen points. For this, we make use afdbelinates of the
points in the images and of the coordinates of the epipolgsvikre determined by
the estimation of the fundamental matrices. Of coursegtlsan be conflicts: the
projection matrixP; computed from the pairj(— 1, j) can be different from the one
computed with £, 7 + 1). Note that this can only be due to the epipoles, because the
coordinates of the 5 points remain unchanged. We do not den#iis as a major
problem because they are usually not very different andusecthis initial estimate
is just a starting point for a refinement procedure. Only ditb®possible projection
matrices is kept.

Of course, running through this process only once has vilg thance to suc-
ceed because of the possible outliers. If one of the matchesaneous, then the
projection matrix of the corresponding camera and its resgh will be useless.
Note that all other matrices will be correct. This qualityl@¢alness is desirable and
cannot be achieved with iterative (image after image) teples. To overcome this
problem, we use robust methods.

3.4.1 Least Median of Squares

The Least Median of Squares (LMedS) is a classic method ieoudletection. A
very good introduction can be found in [44]. We need a quatigasure of the set of



projection matrices for each point. We defineas the sum taken over all cameras of
the image distances between tlle measured point and the reprojection of the 3D
reconstructed point with these projection matrices. Iradiet

N
ri =Y d(mj;, P;M;) 4)

=1

M, is obtained with the reconstruction algorithms mentionedection 4. The
LMedS method estimates the parameters, i.e. the projectatrices, by solving the
non-linear minimization problem:

min(med (r?)) (5)

That is, the estimator must yield the smallest value for tleslian of squared
residuals computed for the complete set of points. Of cqutgs not reasonable
to generate all the possible subsets of 5 point corresp@edenRather, we use a
Monte-Carlo technique [44] to dram random subsamples pf= 5 different point
correspondences. For each subsamfleve estimate the set of projection matrices
P/ by the methods previously described. For eachBptj = 1,.., N, we can
determine the median of the squared residuals dengtéd= med(r?2), with respect
to the whole set of point correspondences. We retain thmastiof theP ; leading
to the minimal)/ 7. Given this set of projection matrices, we characterizeukens
the point correspondences for which> o, whereo is an estimate of the variance
derived from the data [44].

The question now isthow do we determinen? A subsample is considered
good if it consists ofp correct correspondences across tfidmages. Assuming
that the probability of a point correspondence across 2 @ndiging an outlier is,
the probability of a point correspondence across Ah@nages being an outlier is
1 — (1 — ¢)N=1. The probability that at least one of the subsamples is good is
given by

P=1-(1—- (- Dpm (6)

In our implementation, we assume that= 15% (in practice a slightly over-
estimated value), and requiré = 0.99, thusm = 6907. Note that the algorithm
can be sped up by means of parallel computation, becausadbesging for each
subsample is done separately.

The five points of a subsample may be very close to each otheh &situation
should be avoided because the estimation of the 3D strutturesuch a projective
basis is highly unstable and the result is useless. It is tevedisime to evaluate such
a subsample. Bucketing techniques were developed to etfsatrsuch configura-
tions are avoided. The images are evenly divided into reetian regions obuckets
(in practice, we use & 8 buckets), and we impose that the points be drawn from dis-
tinct buckets. The previous formula determinimgstill holds under the assumption
that the outliers are uniformly distributed over the image.
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3.4.2 Block estimation

Over a long sequence, it is very difficult or even impossiblé&rid correspondences
for the same five points across the whole sequence of imageshatefore split our

estimation process over different consecutive blocks @fges, with the precaution
that the intersection of two consecutive blocks of imagedaias at least two images.
Knowing the projective bases used in each such pair of bjoskscan compute

the projective transformation from one to the other and wjiplo the matrices of

the second block. This process glues the blocks togethallolvs processing of

image sequences where groups of five point correspondeaceBecfound for any

consecutive three images (at least), instead of the whalgesee. This assumption
iS in practice very reasonable.

3.5 Refinement

Once a correct set of projection matrices has been compwedan refine it using
three different methods. Of course, the outliers found epttevious step are marked
as invalid and are not taken into account any further.

Bundle adjustment: This classical method in photogrammetry [5, 6, 18, 19, 47]
is very well suited to our problem. It is based on the obs#wathat due to errors
in the estimation of the projection matrices and on the ostof the 2D points,
the optical rays issued from corresponding image pointsatdriersect in space,
though in an ideal configuration they should all intersecbra single 3D point.
Through non-linear optimization over the projection mags and the reconstructed
3D points, the bundle adjustment tries to bring the systenias® as possible to the
ideal situation.

With our initial estimation, the optical rays used in the huet approximately
intersect because the reprojections of the 3D points aedio the initial points.
This method has the advantage of being fast. The only motiificghat we have
made is that instead of reconstructing the actual Eucli@&apoints, we reconstruct
the points in a projective basis. Although our problem isreparameterized (we
allow the projective basis in space to change), the minitiimeconverges because
of the nice properties of the Levenberg-Marquardt algaritirhe average distance
between one point and the reprojection of its reconstradianitially around 1 pixel
and typically goes down to 0.3 pixels.

Epipolar line adjustment:  From the set of projection matrices, we can compute
a consistent set of fundamental matrices. The points thabhave matched must
satisfy the epipolar constraints. We then minimize the sfithedistances between
the points and the epipolar lines generated by their cooresgnces by varying the
projection matrices. However, this method is slow becausehawe to recompute
the epipolar lines at each step. In other words, there is ssible decoupling of the
minimization because of its high non-linearity.

Trifocal adjustment: From the set of projection matrices, we can compute the
trilinearities which relate point coordinates in any thiegges of the sequence (cf



section 2.1. Given three images and two points measureé iirsh two images, each
trilinear relation defines one line in the third image. Theddall trilinearities defines
nine lines in the third image [28], which would all intersexitthe corresponding
point if the point locations were noiseless. The criterionickh we measure is the
sum of the squared distances of the point measured in thtkithage to these lines,
computed from the points in the first two images. The compieselual is the sum
of this criterion over all point correspondences, for albige triples.

Comparison of the three methods: We compared the three methods on syn-
thetic image points, perturbed with Gaussian noise. Figusemmarizes the results.
We draw the following conclusions:

e Errors have the same order of magnitude in all cases.

¢ Epipolar adjustment is more robust to noise, then bundlesaaient, then tri-
focal adjustment.

e Convergence is slower for trifocal adjustment.

e The epipolar line adjustment is slower than the bundle &ajest but performs
best in the bad cases when the set of projection matrices igemp well ini-
tialized, except when at least three optical centers asedio being aligned.

Figure 5: approximately here.

Figure 6 shows the epipolar geometry obtained through feuadjustment on a
set of aerial images. Computation took 6.3 minutes for 10@@f=ctive bases tried
for initialization on aSun Sparc 2@vorkstation. The average image error was less
than 0.3 pixels on the 183 points used for the refinement.

Figure 6: approximately here.

4 Recovering Euclidean structure

As mentioned in section 3, the projection matrices that wee lgetermined allow
us to compute three-dimensional structure from image spoedencesyp to an
unknown projective transformatioiT his fact had been first stated in [27] in the case
of two affine cameras (in this case, the unknown transfoonat space is affine).
The case of two projective cameras has been presented 8411,

From a practical standpoint, this means that from imageespwndences, we
can compute three-dimensional points represented by httmgitogeneous coordi-
nates (4-vectors). Knowing the coordinates of a point, weltzck-project it onto
any of the cameras for which a projection matrix has been ctedp We can even
project it onto an arbitrary virtual camera: this way we caaduce new views of
the scene. This process, usually called view transfer [, been used for im-
age synthesis[13, 29]. However, for simple reasons, thggiiee reconstruction
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may not be sufficient: for instance, to perform realisticdenng and virtual walk-
through on today’s fast-rendering hardware, one needs kdeaa description of the
scene.

Without any additional information, recovering Euclidestnucture is impossi-
ble: all the geometric relations induced by point corresfmmtes have been already
used. We need to use additional information, either on teeivig system, or on the
scene.

4.1 Self-calibration of a moving camera

Approaches have been developed which deal with the casetivdéntrinsic param-
eters of the camera do not vary over a sequence of three innagesre [38, 33, 14].
In this case, these parameters can be computed from a nurinpeinbd correspon-
dences in the three views by solving the so-called Kruppatieps. This approach
tends to be sensitive to noise. Only recently have we beentaldroduce an imple-
mentation which is robust and can deal with an arbitrarydtgethan three) number
of images [51]. With input images of good quality (small norear distorsion, high
resolution, typically, we use 15361024 Photo-CDimages) it is now completely
practical and accurate if uncertainty is correctly taketo sccount as shown in [8].

4.2 Self-calibration using information on the environment

If the intrinsic parameters of the camera are not constautihout the sequence
(e.g. pictures are taken with several cameras), we camrrestitiver Euclidean struc-
ture based on some information about the scene:

¢ If we know the coordinates of at least five reconstructed tsdingeneral con-
figuration (i.e., a projective basis) with respect to a Eledin frame, we can
compute the projective transformation which changes ptvge coordinates
into Euclidean ones. This principle of using a few “anchompsy to derive
Euclidean coordinates is commonly used in photogrammégy; [t supposes
that one has performed manual measurements on the rea) sdeok is rather
constraining.

¢ A Euclidean frame can be characterized as a frame wherelgidiags in-
tersect at infinity, and where orthogonal lines are inded¢ldogional (the dot-
product of their direction is zero). The first property chdegsizes affine struc-
ture, whereas the second one characterizes Euclideariusgug to an un-
known scale. As shown below, using images of parallel linescan recover
affine structure; Using pairs of orthogonal direction, wertlieach scaled Eu-
clidean structure. Less restrictive than the anchor pgipr@ach (here, no
manual measurement is performed), this approach is prfagted to the re-
quirements oRealisg because there are in general many images of parallel or
orthogonal lines in views of buildings.

Let us now examine in more detail this last approach. In tret fitage, we
recover affine structure, in which parallelism is preservéal the second one, we
recover Euclidean structure in which orthogonality is preed as well.
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After the first stage described in the previous section, tbddris modeled as a
three-dimensional projective spae. We use the standard embedding of a three-
dimensional affine spacd?® into P3 obtained by identifying4® with P \ Tl,
wherelIl, is a plane, called the plane at infinity, which can be thoughthe set
of directions of lines in4?. In particular, two parallel lines afl?, seen as lines of
P3 intersect at a point ofl. (called their point at infinity). Such a point is not as
mysterious as it sounds since when viewed by a camera, ttgesma the two lines
usually intersect at a point (called their vanishing pomtlich can be thought of as
(in fact in some sensis) the image of the point at infinity of the two lines. Hence,
in order to determine the plane at infinity, it is in princi@afficient to have in the
scene three pairs of non coplanar parallel lines. Once theepat infinity has been
determined, an affine coordinate system can be chosen and edfordinates of the
points in the scene computed.

In the remainder of this article, we use the standard embedai A® into P3
which maps a point of affine coordinatgs v, 2] onto its corresponding point of
P3\ 1. of homogeneous coordinatgs, v, z, 1]7. This embedding simply means
that the plane at infinity is the plane of equatibn= 0 in the projective space with
homogeneous coordinateés Y, 7, T.

4.2.1 Parallel lines: affine structure

Two lines in space are parallel if and only if they intersesmtle other in the plane at
infinity. A projective transformation preserves affine sture if and only if preserves
parallelism, which means that it leaves the plane at infittlg set of all points at
infinity) globally invariant.

Thus, the problem of recovering affine structure is equiviaie finding a projec-
tive transformationH,, which maps the plane at infinity onto the plane represented
by [0,0,0,1]7. This is a very simple operation provided that we can comze
coordinates of the plane at infinity in the initial projeeiframe. For this purpose,
we first need to determine at least three non-aligned poimthis plane, i.e. three
non coplanar directions of lines. Since we observe imagdmes$, each of these
points is computed as the vanishing point of a set of parliies observed in the
images. This is shown in Figure 7.

Figure 7. approximately here.

In this figure the three pairs of lindd,, D), (D}, D)), and(DY, DY) are re-
spectively parallel and the images of their points at infifit V', V" are the points
of intersectiorw, v', v" of the pairs of image line§l, dy), (d}. d}), (d},dY), respec-
tively.

From a practical standpoint, parallel directions are idieat in the images by the
user in a semi-automatic process. First, for each imageomwgpate a polygonal ap-
proximation of the edge chains extracted with a sub-pixaiuee detector. The user
then selects a small number of line segments (at least 3gphiost least two distinct
images) representing parallel lines in space. Based on,ttiesprogram computes a
first estimate of the corresponding point at infinity in spand back-projects it onto
all the images. All the image line segments whose suppolitiieg are close enough
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to the vanishing point (a simple threshold on the angulaeigon described below is
used) are proposed to the user. After potentially editirgfogram’s selection, the
user runs the complete computation of the vanishing poiiguré 8 shows for one
image the line segments with which points at infinity havenbe@mputed.

Figure 8: approximately here.

Computing points at infinity: We compared several methods for estimating
the points at infinity given images of parallel lines in spatet us assume that we
measure in the images the projections of parallel spacs {iig. (d;;), represented
by the three-dimensional homogeneous vedtgr is the image of D;) in view j.
We want to compute their point of intersectidh = (),(D;) which we know to be
in I1. The imagev; of V in view j is the vanishing point of the image lines;.
The problem that we need to solve is the following: givkn computeV.

A first method consists of first estimating the vanishing [in;, then recon-
structingV” from the obtained vanishing points, is obtained as the weighted-least-
squares solution [17] of the homogeneous system :

This process turns out to be very sensitive to noise, dueadatt that vanishing
points are estimated independently in the different imag#sout enforcing the
epipolar constraints on them. For this reason, we prefefdthewing direct linear
method: since the image & in cameraj lies on lined,;;, we have:

.o T

This system of linear, homogeneous equations in the fourdgemeous coordinates
of V is solved using SVD.

This estimate is then used as initial estimate of a Nonliheaist Squares min-
imization (Levenberg Marquardt). The criterion measureddach measured line
segment is the minimum angle between its supporting linecsedof the two lines
joining its extreme points to the projected point at infinithe sum of squared angles
over all line segments is the minimized value.

Computing the plane at infinity: The previous process can be applied to all
the directions for which parallel lines are observed, yigdpoints at infinity V.
Provided that there are at least three non-aligned poiritdfiaity, we can compute

the plane at infinityil., represented by the four-dimensional homogeneous vector
II.., as the non-zero solution of the linear homogeneous system:

Vi ViII, =0

Once we know I, we can compute the point at infinity of any line as long as
this line can be reconstructed in space, by computing tleesattion of this line with
the plane at infinity.
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Deriving an affine reconstruction: To define the transformation which maps
the plane at infinity ontdo, 0, 0, 1]%', we proceed as follows:

First, we compute a projective reconstruction of the scasmg standard multi-
camera reconstruction based on SVD (cf. section 2.3).

One reconstructed point of the scene, denote®bys chosen as the origin: in
the new frame, it has coordinatés 0,0, 1]7. Then, three arbitrary independent di-
rections are selected as coordinate axes, and their pdimtsirdaty Vx,Vy,V
are computed using the method described above. They arctesgly mapped onto
[1,0,0,0]7,

[0,1,0,0]", [0,0,1,0]". To define a projective transformation in space, we need
a fifth point mapping. We select another reconstructed g®jihich does not lie

on any of the three planes defined by the origin and two of treethxes. In the new
frame, this point is assigned arbitrary non-zero coordisét, 3,~, 1]. The choice

of the two points, the three directions and the coefficients, v] is completely au-
tomatic. By default, all the coefficients are set to 1. Howgthee user may override
this and enter his own selection of points, lines and/orfaehnt values.

H, is then computed as the projective transformation which sriae initial
projective basisV x, Vy, V2, C, S onto the final one. Sinc¥ x, Vy,V; are all
mapped onto points whose fourth component is zero, any pbthe plane at infinity
will also be mapped onto a point whose fourth component is, 2ehich is precisely
what is needed for the reconstruction to be affine. Figure®vshan example of
affine reconstruction. Two of the three directions chosencasdinate axes form a
very small angle (left). This implies a strong affine skeweetfon the reconstructed
scene (right).

Parameters., 3, v have a simple meaning: they represent scale factors aleng th
three coordinate axes. For instancey ifs multiplied by a non-zero factor, then the
reconstructed scene will be stretched by the same scaler falcing theV x axis.
This is visible in Figure 11, which displays two affine recwuastions which differ
by only one scale factor (along the direction of the top edgé®roof).

Figure 9: approximately here.

4.2.2 Euclidean structure up to three scale factors

As we have seen in Figure 9, the choice of non-orthogonaterée directions may
cause severe affine distortion of the reconstructed scendrstAstep toward the
recovery of Euclidean structure is to use three pairwiskagonal directions.

In this case, illustrated by figure 11, the directions of edparallel to the ref-
erence directions are preserved. In fact, the recoveredtate is equivalent to Eu-
clidean structure scaled with three scale factors alonghttee coordinate axes. As a
consequence, two edges aligned with two orthogonal coateliaxes remain orthog-
onal in the final affine reconstruction, for any value of thalsgarameters, 3,
(e.g. previous section). This is for instance the case ofdbé& on which the two
horizontal directions have been defined (left). The retatiglues of the scale factors
used for the two displayed affine reconstructions (midijbty are very different.
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This modifies drastically the aspect of the reconstructed (@t the bottom-right in
each view), but the principal directions remain orthogandloth reconstructions.

Of course, angles between lines which are not aligned welhctordinate axes
are not preserved. In particular, orthogonality is not presd for such directions
(see the roof on the bottom-left). We will now see how thisgenty can be used for
recovering Euclidean structure up to one global scale facto

4.2.3 Euclidean structure up to one scale factor

We now assume that some pairs of orthogonal lines are knowiora I he points at
infinity of these linesV;, are computed as described above. In a Euclidean frame,
linesi, j are orthogonal if and only iV V; = 0.

If we consider the orthogonal frame defined in the previousgraph, finding
Euclidean structure is equivalent to finding relative valoé the scale parameters
a, 3,~ for which the dot-productd/ 7V ; are zero for all pairgi, j) of orthogonal
lines.

If the three reference axes used for affine reconstructiemar orthogonal, three
additional parameters (“skew” parameters) are introdweedh account for the non-
orthogonality of the reference affine frame. More preciséhgtead of using the
mapping defined in 4.2.1, we respectively még, Vy, V; onto(1,0,0,0]" (this
has not changed)), 1,0, 0], [x,v,1,0]".

We end up with the following criterion to be minimized oveetbcale parameters
and the skew parameters: :

E(a, B,y )= > (VIVy)?
i,5 orthogonal

The global scale of the scene cannot be recovered. So, wehskearthe par-
ticular solution for whicha = 1. Minimizing E(1, 3,~, A, i, v) with the standard
Levenberg-Marquardt iterative technique (the initialues of the five parameters are
the ones used for affine reconstruction), we end up with aiéeesh reconstruction
up to a global scale factor (see Figure 12).

Thus, we now have a way of computing a Euclidean reconstiucif the scene
without any knowledge of the camera parameters, nor of theescoordinates. This
is a major difference with the method presented in [9], wHerewledge of the in-
trinsic parameters of the camera is required. Only inforomst about point and line
matches, parallelism and angular relations have been Wdeckover we can even
in some cases obtain a Euclidean reconstruction withoagusiis information, by
self-calibration [8]. In practice we have found it usefuldmmbineall the available
information to obtain robust results. Once the mappingsctviiring points from
projective to affine and Euclidean space have been compilieghrojection matri-
ces are updated so that image point correspondences ariydiezonstructed in the
Euclidean space.

The structure of the process that recovers the Euclideastste of the scene
is shown if figure 10 which clearly shows that this can be doantvo ways, either
through the use of a priori geometric information about ttene, e.g. parallel lines,
angles and ratios of lengths, or through the use of a pridarmation about the
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internal parameters of the cameras, e.g. in the most gerasalthat they are constant
but unknown.

Figure 10: approximately here.

Figure 11: approximately here.

Figure 12: approximately here.

4.3 Building a polyhedral description

The problem of constructing a polyhedral representatioth@fcene is by no means
trivial and we have in fact not attempted to solve it diredtlgm scratch. What
we have done is to extend the capabilities of a number of nerdelo allow them
to use the 3D information provided by a set of images. The madwvantage of
this approach is that we benefit from all the functionalitigsich are available in
currently available 3D modellers, e.g. levels of represtons, interaction, display,
bookkeeping and simply enhance them with the ability to igestate of the art
computer vision procedures, some of them described in #pgep

In slightly more detail, the scene is reconstructed as afggblggons in space.
The user defines the topology of the model, and is helped bgygtem in defining its
geometry. This is done at several levels, which differ byrtlegree of interaction.

At the lowest level, the user defines a 3D vertex by specifyisgoosition in
two or more images. In this process, he gets visual help ftwsystem which can
display epipolar lines, perform trifocal transfer, etc...

At a slightly higher level, the user can restrict his or hdeation to only one
image: typically he or she will select or outline roughly awally prominent detail
such as a vertex, a line, or a closed contour and the visioresaiill use the cur-
rently available calibration information to obtain copesdences for these features
in other images, perhaps after some refinement of theiripogit the original im-
age, thereby providing 3D information to the modeller andally also an update of
the calibration. At this stage several vision algorithmsyrba selected and put in
competition by the system which can evaluate their resuiteraing to a variety of
criteria ranging from a simple consideration of the undatigand completeness of
the results to a more elaborate criticism of how they fit witl turrent model.

Because this part of the system is presently not completebjilzed, we prefer
to postpone its full discussion to a future paper.

5 Texture extraction

Once a polyhedral description of the scene has been demedystem automati-
cally extracts from the images the textures attached todhgpns. For each planar
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polygon, we compute a rectifigdxture imagei.e., a bitmap related to a system of
coordinates attached to the supporting plane of the polygod the corresponding
two-dimensionatexture coordinatesf the polygon vertices.

In the favorable cases, an obstacle-free, complete tegamebe extracted from
one single image. However, it often happens that the teiduret completely visible
in any of the images: Some part of the polygon may projectideitef the image,
or there might be visual obstacles in front of the polygon. atidress these prob-
lems, we developed a technique inspired from mosaicing 288, It is based on
the fact that since the polygon is planar, it induces honiga(linear, projective)
correspondences between the images. The approach caidisss computing the
homographies — in practice, homogeneous3natrices — from the texture image to
each view, then generating the texture image. At each pilelcomputed texture
value is a combination of the values read in the differenigesaat the corresponding
pixels.

Let us now describe in more detail all the stages involvedhéntexture compu-
tation of one polygon.

5.1 Texture coordinates

First, a reference image is selected. By default, the systeooses the image in
which the polygon is observed from the angle closest to iteab Let us denote by
P, its corresponding projection matrix.

Second, a normalized coordinate system is chosen for tharéeinage. For this,
we introduce a new orthonormal system of coordin&t®s X', Y’, Z') such that the
Z'" axis is normal to the plane of the polygon, thé axis is aligned with the longer
edge of the polygon, and the origi¥ lies in the plane of the polygon.

In this new coordinate system, the equation of the planesgptilygon isZ’ = 0.
In other words, if the change of coordinates correspondbeaigid transformation
(R, t), for any point(X, Y, Z) belonging to the plane of the polygon we have

R t

ARV T _
[X7) 70a1] _|:0g“ 1

} Xy, 21"

CoordinatesY’, Y’ describe the position of the point within the polygon plafibey
are rescaled (scale factoks, k,) and shifted (translatios,,, 6,) in order for the
transformed polygon vertices to have coordinates betweand0l. The resulting
normalized texture coordinatedenoted by.,,, v,,, satisfy the following relation:

ke 0 8y
[, vn, 1]T = | 0 Ky 6, | [X, Y]]
0 0 1

Thus, the space coordinates of a point lying on the plane efptilygon can be
computed from its normalized texture coordinates:

1 0 0
1 Ky 0 8y
[X7 Y7 Z7 1]T = K[“ﬂw”n? 1}71 with K = RT ¢ oLy 0 Ky 6“
ol 1 000 ||, o

0 0 1
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The homography which transforms normalized texture cowmtigis into coordinates
in the reference image is then:

H, =P, K.

The resolution of the texture image can be chosen arbitravile constrain the
polygon in the texture image to have the same area as the@oinghe reference
image, which implies that both polygon textures will appmoately have the same
level of detail. We finally derive the homograpi¥, which maps a point in the
texture image onto its corresponding point in the referénege.

5.1.1 Accurate image-image registration

From the projection matrices and the three-dimensionatdinates of the polygon
vertices, we can easily derive the homography, denoteHY)y from the reference
image to any image. However, there might be small errors in the image-to-image
registration, due to slight imprecision in the calibratexmd reconstruction processes.
These errors are typically of the order of one or two pixels.a@idress this problem,
we use the following refinement technique: We extract Hamoswers [20], which
we denote by,. The homography gives us a pixel-wise correspondence betae
square window centered e} in the reference image, and a skewed window around
HYc; in imagei. Translating the skewed window within a small neighborhobd
this point, we find the point’;;, for which cross-correlation of the intensity distribu-
tions within the windows is maximal. Finally, we compuE.; which minimizes

med (d(CliIm Hrick)Q)

whered(., .) is the image distance (in pixels). The least-median-ofsegiestimator
allows us to get rid of the wrong point correspondences ahbgesisual obstacles.

5.1.2 Compensation for intensity variations

In a second stage, we compensate for global intensity artdasbulifferences across
the images. For this purpose, we extract a number of peipts the reference
image, and we estimate the affine function which best magnsities’/, (e;) in
imager onto intensitied;(H,;e;) in imagei. Once again, we use a least-median-
of-squares estimator to get rid of outliers. Here, it is éetb choose points; such
that intensity varies slowly around them. In practice, wenpate the points which
locally minimize the module of the Harris criterion.

5.1.3 Texture image generation

Finally, we generate the texture image. For each pixel intéxéure image, we
compute the intensities at the corresponding pixels inrtteges, using the estimated
homographies and the affine functions for intensity adjestin\We obtain a vector

of intensity valuesly, ..., I,,. In an ideal case, e.g. lambertian surfaces, constant
lighting conditions and constant sensitivity of the imagutevice, all these should
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be equal, except for values corresponding to visual oletacko, we compute the
subset ofp values among the which have minimum variance (typically, we use
p = 2forn € {3,4}, p = 3 for n > 4 amongn), and set the texture pixel value to
the median of thesg values.

The same computation can be extended to color images inghdtoaward man-
ner, by considering three-component values for the intiessi Figure 13 shows an
example of texture generated from 4 images.

Figure 13: approximately here.

6 Results

The whole system was developed according to the servertdiehitecture men-
tioned in section 1. At Inria, we developed the vision praged, which were in-
tegrated within the vision server by our partners from ThomSyseca. Our part-
ners from the Fraunhofer Institut (Darmstadt) developetlemt; i.e., an interactive
image-oriented 3D modeler capable of requesting inforomatiom the vision server.
A brief description of the system and its applications tduat reality is given in [31].

In order to test the vision procedures, we developed anatifeant based upon the
TargetJrimage understanding environment developed by GE. In theusystem,

the vision procedures which are used in order to help theused-are the following:

e Features such as corners, edges, line segments are alycloedézed using a
model-based approach [3].

¢ When building primitives such as polygons or polyhedra, \&a cely upon
edge matches automatically produced by a multi-image amatehing algo-
rithm based on [42]. This speeds up the modeling processlayial us to
define accurate 3D objects while interacting with only onage

e In cases when the previous method fails, the user can silill the model man-
ually. He is assisted in this task by the fact that he can ebssmultaneously
in all images the effects of his actions (display of the efaiptines correspond-
ing to the cursor position, or for a fixed optical ray, dispiall the images of
the corresponding points along the epipolar lines). THiesen epipolar and
trifocal geometry.

e Textures are automatically extracted from the images.

6.1 Qualitative assessment of the results

The system has now been run on many sets of images to reazirsing of models.
We only show here two examples of three-dimensional wireéand textured mod-
els that we have produced. In figures 14 (respectively 18)tdb row shows two
images of the 10-image (respectively 15-image) sequenith, thhe reconstructed
wireframe model superimposed; the bottom row shows two viefxa reconstructed
textured model. Of course, the models have been obtained dtbthe views, not

19



only the two shown (in the case of the wireframe example),civtexplains why
some of the features in the wireframe model may be hiddeneichiosen views.

Figure 14: approximately here.

Figure 15: approximately here.

6.2 Quantitative assessment of the results

Beside the qualitative assessment of the quality of theymed models which was
presented in the previous section, we have also tested sults@gainst actual mea-
surement. For example, we show in figure 16 a number of linensats in one of
the images of the “Arcades” sequence. These segmentsponie$o actual physical
features in the scene whose lengths as well as some of thggsawe could mea-
sure. Table 1 shows a comparison of the real, i.e. measwegths and angles with
the estimated ones. In the case which is presented hereutiieléan structure of
the scene was obtained from self-calibration, the intepaahmeters of the camera
being constant but unknown (see section 4.1).  Similar tesuk shown for the

Figure 16: approximately here.

“Church” sequence in figure 17 and table 2. In both cases thdtgeare satisfactory,
considering the fact that no a priori information about tberges has been used.

7 Conclusion

We have described in this article the skeleton of a systeradbas computer vi-
sion that is going to be used to partially automate the 3-D GAdieling of urban
scenes. The system can use any number of cameras and imatlpesscenes to
be modeled and proceeds to estimate automatically the guigp projection ma-
trices corresponding to all the images by matching imagtifea such as corners,
junctions, lines. The resulting matrices do not in geneltaixarecovery of a metric
model of the scene since no metric information has been wséat,sonly a projec-
tive one which can be used for some applications. In ordepttugher, the system
can do two things: 1) make some assumptions about the ihfganameters of the
cameras, for example that they do not significantly vary atdeast three frames
and use the self-calibration methods introduced in [38,133,and recently made
more robust to image noise [8] and 2) use information pravibg the user about
the actual affine or Euclidean structure of the scene, sugai@dlel lines, ratios of
lengths, and angles. This information allows the systenpéziglize its representa-
tion of the environment from projective to affine and finallydidean. The whole
system uses sophisticated computer vision tools and hasdeveloped as a flexible
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Table 1: approximately here.

Figure 17: approximately here.

server, a vision server, that can be queried by a human userisvbsing a CAD
system to develop a 3-D textured model of the scene.

One of the advantages of this system is that it does not requy prior knowl-
edge about the cameras, which is handy in applications itkeovbased modeling
for example. The user is then allowed to use his camera thehwdikes, without
any special set-up, or to use images of unknown source. $hissharp contrast
with systems that have been proposed in the past by othepgirdlle have already
discussed in section 4.2.3 why we thought that our systermveas flexible than the
one described in [9]. We should also mention the fact that mhuch more flexible
and robust than the ones that could possibly be built on tapeofesults described
in [41] and [7]. There, the authors can only cope with onebtated affine camera
and use structure from motion as the basic ingredient faywexing 3D. As shown
in this paper, we can deal with uncalibrated cameras perfayfiull perspective pro-
jection and use large baseline stereo for recovering 3D. &Ve found in particular
that for the kinds of views shown in figures 14 and 15, the pmatye effects were
quite large and hard to account for with an affine camera mddes is of course at
the cost of adding some limited human interaction in theesydbut we think that it
buys us a lot more accuracy and robustness.

We believe that neither the theory, nor the technology aaeydor fully auto-
matic 3D modellers but we are convinced that the time has donbeild and sell
systems that offer unsophisticated users the possibdityse interactively highly
sophisticated computer vision tools.
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