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Abstract: A dynamic model for the transmission of a microring modulator
based on changes in the refractive index, loss, or waveguide-ring coupling
strength is derived to investigate the limitations to the intensity modulation
bandwidth. Modulation bandwidths approaching the free spectral range
frequency are possible if the waveguide-ring coupling strength is varied,
rather than the refractive index or loss of the ring. The results illustrate
that via controlled coupling, resonant modulators with high quality factors
can be designed to operate at frequencies much larger than the resonator
linewidth.
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1. Introduction

Because of their compact sizes and potential for low power consumption, microring resonator
modulators have attracted significant scientific and technological interest in recent years. A
waveguide-coupled microring resonator, such as the one shown in Fig. 1, can be used as an
amplitude or phase modulator. Amplitude modulators based on microrings have been demon-
strated in polymeric [1], lithium niobate [2], silicon [3, 4], and compound semiconductor ma-
terials [5, 6, 7], with typical modulation rates in the range of tens of gigahertz. Microring phase
modulators have also been demonstrated, but less commonly than amplitude modulators [8].

Thus far, many discussions on resonator modulators have relied on static, steady-state mod-
els and come to the conclusion that the modulation rate is limited by the resonator quality factor
(Q) [1, 9, 10]. However, to completely understand the limitations of these devices, a fully dy-
namical analysis of the modulation is required. In this article, we present a dynamical analysis
of ring resonator modulators to show that, contrary to general expectations, the Q factor need
not impose a limitation on modulation rates.

The resonator modulator configuration we shall focus on is shown in Fig. 1: a continuous-
wave (CW) incoming optical wave is modulated by varying certain physical parameters of the
microring resonator. In principle, three parameters can be varied to achieve modulation: 1. the
refractive index of the microring, 2. the loss of the microring, and 3. the coupling strength be-
tween the microring and the bus waveguide. Experimentally, most demonstrations of microring
modulators have relied on the modulation of the index of the microring waveguide [1, 2, 3, 7].

This article is organized as follows. In Section 2, we will describe a time-dependent model

C(t)

B(t)A

D(t)

κ, σ

Fig. 1. Schematic of a ring resonator modulator.
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of the microring. We will then analyze the modulation characteristics of the microring when the
loss (Section 3), index (Section 4), and waveguide-ring coupling (Section 5), is varied. To gain
a better intuitive understanding of the resonator modulation characteristics, we will derive small
signal limits from our complete model. Our dynamical model reveals that to achieve modulation
rates beyond that imposed by the resonator Q, the coupling coefficient, not the refractive index
or loss of the ring resonator waveguide, should be modulated.

2. Time-dependent microring transmission

In this section, we shall derive a general expression to describe the dynamics of the micror-
ing modulator illustrated in Fig. 1. The electric field at the various locations in Fig. 1 can be
expressed as Eξ (t) = ξ (t)exp(iω0t), where ξ = B, C, D and is a slowly varying amplitude,
and ω0 is the frequency of the input optical wave. The input amplitude is constant, such that
EA(t) = Aexp(iω0t).

In the presence of an index and/or loss modulation, the phase-shift, φ , and attenuation, a,
experienced by a circulating wave at a frequency ω after each round-trip in the resonator can
be expressed by

φ(t,ω) = ωτ +
ω
n

∫ t

t−τ
η(t ′)dt ′, (1a)

a(t) = a0 +
1
τ

∫ t

t−τ
γ(t ′)dt, (1b)

where τ = nL/c is the resonator round-trip time, n is the effective index, L is the ring circum-
ference, and

ni(t) = n+ η(t), (2a)

ai(t) = a+ γ(t) (2b)

are the instantaneous refractive index and attenuation coefficient respectively.
Each frequency component of C(t) propagates around the ring and experiences a different

phase-shift, such that

D(t) =
a(t)
2π

∫ ∞

−∞
C̃(Ω)exp[−iφ(t,ω)]dΩ, (3)

where Ω = ω −ω0 and C̃(Ω) is the Fourier transform of C(t). To simplify Eq. (3), we assume
that φ(t,ω)≈ φ(t,ω0)+Ωτ , which is equivalent to approximating that the change in the phase-
shift of each frequency component circulating in the resonator due to the index modulation,
the η(t) term in Eq. (1a), is the same or is negligible compared to Ωτ . This assumption is
reasonable since typical index changes are on the order of ∼ 10−3. With this approximation,
Eq. (3) simplifies to

D(t) = a(t)exp[−iφ(t,ω0)]C(t − τ). (4)

To analyze the fundamental limitations imposed by the device structure itself, we remove
any material specific dependencies and neglect the coupling between the refractive index and
absorption through the Kramers-Kronig relations. This simplifying assumption allows us to
isolate the effect of each resonator parameter. In this approximation, the instantaneous field
amplitudes are

B(t) = σ(t)A+ iκ(t)a(t)exp[−iφ(t)]C(t − τ), (5a)

iκ(t)C(t) = σ(t)B(t)−A, (5b)

where φ(t) = φ(t,ω0) and κ(t) and σ(t) are the resonator-waveguide coupling and transmission
coefficients, and σ 2(t)+ κ2(t) = 1 for a lossless coupler.
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Equation (5) gives steady-state or static transmission [11]:

Tss ≡
B
A

=
σ −aexp(−iφ)
1−aσ exp(−iφ)

. (6a)

|Tss|2 =
σ2 +a2 −2aσ cos(φ)

1+a2σ2 −2aσ cos(φ)
. (6b)

We observe that a and σ are interchangeable in |Tss|2. The situation when σ = a is referred to
as critical coupling. At critical coupling, the wave in the bus waveguide destructively interferes
with the wave coupled out of the ring to result in zero transmission [11, 12]. To have complete
extinction of the input wave, the modulator must thus operate near the critical coupling condi-
tion. Moreover, to use small changes in the index, loss, or coupling to cause large changes in
the output intensity, the Q of the resonator must be high (a, σ ≈ 1), so that a circulating wave
can, in essence, experience any small changes in device parameters many times before being
dissipated.

For a general expression of the dynamical transmission, T (t), we eliminate C(t) in Eq. (5),
to arrive at

T (t) ≡
B(t)
A

= σ(t)+
κ(t)

κ(t − τ)
a(t)exp[−iφ(t)][σ(t − τ)T (t − τ)−1]. (7)

If a(t), κ(t), σ(t), and φ(t) are periodic with a period equal to τ , then T (t) is equal to Tss but
with the static parameters replaced by their time-dependent counterparts. Sinusoidally periodic
modulation of the refractive index of ring resonators at the free spectral range (FSR) has been
recently demonstrated in electro-optic polymers [13]. However, to solve Eq. (7) for general
forms of modulation, we can express it as a Fredholm integral equation of the second kind,
which possesses a Neumann series solution [14]. The Fredholm integral equation form of Eq.
(7) is

T (t) = σ(t)−
κ(t)

κ(t − τ)
a(t)exp[−iφ(t)]+

∫ ∞

−∞

κ(t ′ + τ)
κ(t ′)

a(t ′ + τ)σ(t ′)exp[−iφ(t ′ + τ)]δ [t ′ − (t− τ)]T (t ′)dt ′.
(8)

In the following sections, we will use the Neumann series solution of Eq. (8) to model the
modulation response of the microring resonator.

3. Loss modulation

We first consider the case of loss modulation, where a(t) varies in time, but φ , σ , and κ are
constant. The solution of Eq. (8) for the transmission with loss modulation, Ta(t), is

Ta(t) = σ −a(t)e−iφ +
∞

∑
n=1

σne−inφ [
σ −a(t−nτ)e−iφ] n−1

∏
m=0

a(t −mτ). (9)

The first two terms in the above equation are the “instantaneous” response of the resonator,
while the summation represents the “memory” effect of the resonator or the modulation prior
to time t. Each prior round-trip is weighted by σe−iφ , so that for high Q resonators, a large
number of terms in the summation will be significant to Ta(t).

Equation (9) can account for arbitrary loss modulation in both magnitude and time, and, in
general, must be solved numerically. However, to gain an intuition of the modulation charac-
teristics, we can derive a small signal approximation to Eq. (9).
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3.1. Small-signal approximation

We begin by considering a sinusoidal loss modulation of the form a(t) = a 0 + a′ cos(Ωmt),
where Ωm is the modulation frequency, and a ′/a0 � 1. The Fourier transform of a(t) is

ã(Ω) = a0δ (Ω)+
a′

2
[δ (Ω−Ωm)+ δ (Ω−Ωm)]. (10)

Substituting Eq. (10) into the Fourier transform of Eq. (7), gives

T̃a(Ω)
[
1−a0σe−i(φ+Ωτ)

]
−

a′

2
σe−i(φ+Ωτ)

[
T̃a(Ω−Ωm)eiΩmτ + T̃a(Ω + Ωm)e−iΩmτ

]

= (σ −a0e−iφ )δ (Ω)−
a′

2
e−iφ [δ (Ω−Ωm)+ δ (Ω + Ωm)] ,

(11)

where T̃a(Ω) is the Fourier transform of Ta(t). Since we consider a sinusoidal modulation,
T̃a(Ω) consists only of the Ω = 0 component and the harmonics of Ω m.

We solve T̃a(Ω) order by order in a ′. We obtain an approximate solution by keeping only the
terms up to O(a′) to find that

T̃a(0) =
σ −a0e−iφ

1−a0σe−iφ δ (0), (12)

which is simply the steady-state transmission coefficient, and

T̃a(Ωm) =
a′

2
e−iφ [σ T̃a(0)− δ (0)]
1−σa0e−i(φ+Ωmτ) (13a)

T̃a(−Ωm) =
a′

2
e−iφ [σ T̃a(0)− δ (0)]
1−σa0e−i(φ−Ωmτ) . (13b)

We can neglect the higher harmonic terms since they are of higher orders of a ′. Eqs. (12) and
(13) show that when the input wave is near resonance so that exp(−iφ) ≈ 1 and the modula-
tion amplitude is small, the output intensity of the ring resonator is sinusoidal with the same
frequency as the loss modulation but with a constant offset determined by the static response
of the resonator. Eqs. (12) and (13) can also be used to study the distortion of a signal and the
linearity of the modulator by evaluating the relative magnitudes and phases of T̃a(±Ωm) and
T̃a(0).

Next, we will use Eqs. (12) and (13) to determine the modulation depth as a function of Ω m.
The modulation depth of a signal is defined as

Δ =
f (t)max − f (t)min

f (t)max + f (t)min
, (14)

where f (t)max and f (t)min are the maximum and minimum amplitudes of the signal. Comparing
the Fourier transform of a sinusoidally modulated signal with Eq. (14), we find, after some
algebra, that

Δ = 2

∣∣∣∣ T̃ ∗(−Ωm)
T̃ ∗(0)

+
T̃ (Ωm)
T̃ (0)

∣∣∣∣ , (15)

where T̃ (Ω) is the Fourier transform of T (t).
For loss modulation, substituting Eqs. (12) and (13) into Eq. (15), the modulation depth, Δ a,

is

Δa = 2a′(1−σ 2)
∣∣∣∣ σ cosφ −a0 + σa0e−iΩmτ(a0 cosφ −σ)
(a2

0 + σ2 −2a0σ cosφ)(1+a2
0σ2e−i2Ωmτ −2a0σ cosφe−iΩmτ )

∣∣∣∣ . (16)
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For Ωmτ � 1, Eq. (16) shows that the modulation depth decreases with increasing modulation
frequency. By taking the derivative of Δa with respect to Ωmτ , we find that for a, σ ≈ 1, there
exists a special condition when the modulation depth is maximum: φ + Ω mτ ≈ 2pπ , where p
is an integer, i.e. when one of the sideband frequencies is on resonance. We shall refer to this
situation as a modulation resonance. The output distortion when the modulator operates close
to a modulation resonance is dictated by the relative amplitudes and phase of the resonant and
non-resonant sidebands.

When the input wavelength is on resonance, for Ωmτ � 1, the modulation depth simplifies
to

Δa,res = 2a′
(1−σ 2)
|σ −a0|

[
1

(1−a0σ)2 +a0σ(Ωmτ)2

] 1
2

, (17)

with a 3 dB roll-off at a frequency

Ωa,3dB,res =
1−a0σ

τ

√
3

a0σ
. (18)

Ωa,3dB,res is higher for lower Q resonators with smaller values of a0 and σ . Therefore, for loss
modulated microrings, the modulation bandwidth is limited by the resonator Q.

3.2. Numerical results

In this section, we compare our small signal approximation results with the exact Neumann
series solution. For all calculations in this work, we take the ring radius to be 10μm and the
waveguide index to be n = 3, resulting in a round-trip time of 0.628 ps. For the summation in
the Neumann series [Eq. (9)], we include terms up to O(10−5).

Figure 2 shows the modulation depth as a function of Ω m calculated using the small signal
approximation, Eq. (17), and the exact expression, Eq. (9), when the loss of the microring is
modulated between 2 dB/cm and 5 dB/cm (a0 = 0.9975, a′ = 0.0011) while σ = 0.9928. The
3 dB roll-off frequency is 4.3 GHz, in good agreement with Eq. (18). Figure 2(b) shows the
presence of the modulation resonance when the input wavelength is detuned from resonance
by fm. The ratio between the modulation resonance and Δ a(Ωm = 0) is larger for an input
wavelength that is greater detuned from resonance. As evidenced by the figures, there is good
agreement between the small signal approximation and the exact equation at frequencies below
the modulation resonance. At higher frequencies, higher order (harmonic) terms become more
significant.

4. Index modulation

We now proceed to consider the modulation of the refractive index, where φ(t) varies in time
and a and σ are constant. The Neumann series solution of Eq. (8) for the transmission coeffi-
cient, Tφ (t), is

Tφ (t) = σ −ae−iφ(t) +
∞

∑
n=1

σnan
[
σ −ae−iφ(t−nτ)

] n−1

∏
m=0

e−iφ(t−mτ). (19)

As in the case of loss modulation, the expression for Tφ (t) consists of an instantaneous response,
which is given by the first two terms, and a summation of memory terms where each preceding
round-trip is weighted by σa.
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Fig. 2. Modulation depths of a microring resonator with sinusoidal loss modulation between
2 dB/cm and 5 dB/cm. a0 = 0.9975, a′ = 0.0011, and σ = 0.9928. (a): The input is on
resonance. (b): Detuned input, with the modulation resonance frequency at fm.

4.1. Small-signal approximation

Similar to Section 3.1, we shall find the small signal modulation characteristics of the resonator
transmission. The round-trip phase-shift can be expressed as

φ(t) = φ0 −φ ′ cos(Ωmt). (20)

The phase-shift can be expanded into Bessel functions using the Jacobi-Anger identity:

e−iφ(t) = e−iφ0
∞

∑
n=−∞

inJn(φ ′)einΩmt . (21)

For φ ′ � 1, only the J0 and J1 terms dominate and J0(φ ′) ≈ 1 and J1(φ ′) ≈ φ ′/2. Therefore,

e−iφ(t) ≈ e−iφ0 + iφ ′e−iφ0 cos(Ωmt). (22)

We substitute Eq. (22) into Eq. (7) and take the Fourier transform of the resulting equation
to obtain

T̃φ (Ω)[1−aσe−i(φ0+Ωτ)]− i
φ ′

2
aσe−i(φ0+Ωτ)[T̃φ (Ω−Ωm)eiΩτ + T̃φ (Ω + Ωm)e−iΩτ ]

= (σ −ae−iφ0)δ (Ω)− i
φ ′

2
ae−iφ0 [δ (Ω−Ωm)+ δ (Ω + Ωm)].

(23)

Equation (23) can be solved to first order in φ ′. T̃φ (0) = T̃a(0) = Tss, which is the static response
of the resonator, and

T̃φ (Ωm) = i
φ ′

2

ae−iφ0 [σ T̃φ (0)− δ (0)]
1−σae−i(φ0+Ωmτ) , (24a)

T̃φ (−Ωm) = i
φ ′

2

ae−iφ0 [σ T̃φ (0)− δ (0)]
1−σae−i(φ0−Ωmτ) . (24b)
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Finally, the modulation depth, Δφ , can be found using Eq. (15) to be

Δφ =2φ ′
[

σa(1−σ 2)sin(φ0)
σ2 +a2 −2σacos(φ0)

]
×

[
1+a4−2a2 cos(Ωmτ)

(1−σ 2a2)2 + 4σ 2a2[cos(φ0)− cos(Ωmτ)]2 −4σa(1−σa)2 cos(φ0)cos(Ωmτ)

] 1
2

.

(25)

If the input is on resonance, Eq. (25) gives Δ φ = 0. Intuitively, this is because the resonance
wavelength is at the minimum of the static transmission spectrum. Thus, to first order in φ ′,
there is no modulation in the transmission amplitude, and the microring operates as a phase
modulator rather than an intensity modulator. As a, σ → 1, the 3 dB roll-off frequency de-
creases, so the modulation bandwidth is again Q limited. By taking the derivative of Eq. (25),
we find that for high Q resonators where a, σ ≈ 1, a modulation resonance also exists for index
modulation, with the modulation depth reaching a maximum at φ 0 +Ωmτ ≈ 2pπ , where p is an
integer.

4.2. Numerical results

Figure 3 shows Δφ versus the modulation frequency for a sinusoidally index modulated micror-
ing resonator. The figure compares the results of the small signal modulation depth from Eq.
(25) and the exact solution from Eq. (19). For the calculations, φ 0 = 0.039477 and φ ′ = 0.005,
which corresponds to an index change of 2× 10−5 at a wavelength of 1.55 μm. The two sets
of calculations in Fig. 3 are identical except the values of a and σ are interchanged. The low
frequency modulation depth is identical between the two cases and is therefore symmetric in
a and σ , as can be seen in Eq. (25). However, at higher frequencies, the modulation depth is
slightly larger for the over-coupled (σ < a) ring.

There is good agreement between the small signal approximation and the exact solution for
low modulation frequencies. The modulation depth at the modulation resonance can be much
greater than the low frequency modulation depth. At higher frequencies near and greater than
the modulation resonance, the deviation of the small signal analysis from the series solution
becomes more severe due to the presence of the higher order sidebands which can be near or
on resonance at other frequencies. The presence of higher order harmonics distorts the output.

5. Coupling modulation

Finally, we consider the case where the coupling strength between the waveguide and the res-
onator is modulated, while a and φ are constant in time. The solution of Eq. (8) for T σ (t) is

Tσ (t) = σ(t)−
κ(t)

κ(t − τ)
ae−iφ + κ(t)

∞

∑
n=1

ane−inφ

κ(t −nτ)[
σ(t −nτ)−

κ(t −nτ)
κ(t − (n+ 1)τ)

ae−iφ
] n

∏
m=1

σ(t −mτ).
(26)

We can immediately note an important difference between Eq. (26) and Eq. (9) or Eq. (19). In
Eq. (26), the memory terms embodied by the summation are multiplied by κ(t), the instanta-
neous value of the coupling coefficient – such a term is absent in Eq. (9) and Eq. (19). This, as
we shall further demonstrate, implies that coupling modulation does not suffer from the same
limitations as loss and index modulation.
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Fig. 3. Modulation depths of a microring resonator with a sinusoidal index modulation.
φ0 = 0.039477 and φ′ = 0.005. The input is detuned from resonance, with the modulation
resonance frequency at 10 GHz.

5.1. Small-signal approximation

We now analyze a small amplitude sinusoidal modulation of the coupling strength to obtain
a simplified expression for the modulation characteristics from Eq. (26). For simplicity, we
assume that the resonator is high Q, such that κ � 1 and σ ≈ 1. We take the coupling coefficient
as

κ(t) = κ0 + κ ′ cos(Ωmt), (27)

where, |κ ′/κ0| � 1. For |σ(t)|2 + |κ(t)|2 = 1 to O(κ ′), it follows that

σ(t) = σ0 + σ ′ cos(Ωmt), (28)

where σ ′ = −κ0κ ′/σ0 and |σ ′/σ0| ≈ κ ′κ0. Substituting Eq. (27) and (28) into Eq. (7) up to
O(κ ′), and taking the Fourier transform results in

κ0T̃σ (Ω)[1−aσ0e−i(φ+Ωτ)]+
κ ′

2
T̃σ (Ω−Ωm)

[
e−iΩmτ −ae−i(φ+Ωτ)

(
σ0eiΩmτ −

κ2
0

σ0

)]

+
κ ′

2
T̃σ (Ω + Ωm)

[
eiΩmτ −ae−i(φ+Ωτ)

(
σ0e−iΩmτ −

κ2
0

σ0

)]

= κ0[σ0e−iΩτ −ae−iφ ]δ (Ω)+
κ ′

2

(
σ0e−iΩτ −

κ2
0

σ0
e−i(Ω−Ωm)τ −ae−iφ

)
δ (Ω−Ωm)

+
κ ′

2

(
σ0e−iΩτ −

κ2
0

σ0
e−i(Ω+Ωm)τ −ae−iφ

)
δ (Ω + Ωm).

(29)

We can solve for T̃σ (0), T̃σ (Ωm), and T̃σ (−Ωm) in the same fashion as was done for index
and loss modulation. To O(κ ′), T̃σ (0) = Tss, the static response of resonator. Using Eq. (15) to
solve for the modulation depth, we obtain

Δσ = 2σ ′
∣∣∣∣ (1−a2e−iΩmτ )[σ0 −acosφ +aσ0(a−σ0 cosφ)e−iΩmτ ]
(σ2

0 +a2 −2aσ0 cosφ)(1+a2σ2
0 e−2iΩmτ −2aσ0 cosφe−iΩmτ)

∣∣∣∣ . (30)
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To simplify Eq. (30), we take the input wavelength exactly on resonance, such that exp(iφ) =
1, and Ωmτ � 1 to arrive at

Δσ ,res = 2σ ′
[

(1−a2)2 +a2(Ωmτ)2

(σ0 −a)2 [(1−aσ0)2 +aσ0(Ωmτ)2]

] 1
2

. (31)

Equation (31) shows that the frequency response of the modulator depends strongly on the
relative magnitudes of a and σ0. At low modulation frequencies, Ωmτ � (1− aσ0)/

√
aσ0,

Δσ ,res is approximately constant and equal to 2σ ′(1−a2)/[|σ0−a|(1−aσ0)]. At high frequen-
cies such that Ωmτ 
 (1− aσ0)/

√
aσ0, the modulation depth is also constant and equal to

2σ ′
√

a/σ0/|σ0 −a|. Thus, there is no frequency roll-off to the modulation depth.

5.2. Numerical results

Figure 4 compares the modulation depths for resonant and detuned inputs of two sinusoidally
coupling modulated microring resonators: one under-coupled and the other over-coupled. The
loss of the rings is taken to be 4 dB/cm, a = 0.9971. The series solutions, Eq. (26), closely fol-
low the predictions of Eqs. (30) and (31). The low frequency modulation depth is smaller than
the high frequency value for over-coupled ring resonators and vice-versa for under-coupled res-
onators. In addition, the results show that for both resonant and detuned inputs, the modulation
depth is roughly constant at large frequencies. However, comparing Fig. 4 (a) with Fig. 4 (b),
we can see that the input wavelength should be close to resonance to achieve large modulation
depths. Fig. 4 (b) also shows the existence of modulation resonance for coupling modulation
with the input detuned from resonance.

We can understand the modulation characteristics by examining the amplitude of the waves
that interfere to produce the output, B(t), in Fig. 1. The modulation of the coupling constant,
similar to index or loss modulation, generates frequency sidebands to the input frequency, ω 0,
that also circulate in the microring. The amplitude of these sidebands diminish with increasing
modulation frequency or increasing Q, which leads to the roll-off in the modulation depth for
index and loss modulation. In contrast, for coupling modulation, as can be seen in Eq. (26), a
factor of κ(t) is applied to any light that exits the cavity. Therefore, the output of the modulator
is determined by the instantaneous modulation of the frequency components at ω 0 and the
sidebands.

At low modulation frequencies, both the sidebands and ω 0 components are modulated si-
multaneously. However, there will be a modulation frequency range over which the sideband
amplitudes diminish, leaving only the instantaneous modulation of ω 0, which is independent of
modulation frequency. The flat high frequency modulation responses in Fig. 4 are due to this
instantaneous modulation. The higher the Q factor is, the lower the modulation frequency needs
to be for the modulator to reach the flat high frequency response, i.e. Ω mτ 
 (1−aσ0)/

√
aσ0

in Eq. (31). It is as though there is a “low frequency limit” to the operation of the coupling-
modulated microring.

6. Discussion

Intuitively, we may understand the lack of a modulation frequency roll-off for coupling mod-
ulation as follows. Consider the static scenario in which a CW wave is input to the microring.
Initially, κ �= 0, which results in a certain transmission amplitude. If κ is suddenly reduced to
zero, immediately, no light can exit or enter the resonator. This leads to an instantaneous change
in the transmission that is not limited by the resonator Q, but only the response of the coupler.
On the other hand, if the loss or index of the resonator is changed suddenly, light that was
circulating inside the resonator can continue to escape from the resonator. The rate at which
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Fig. 4. Modulation depths of a microring resonator with a sinusoidal modulation of the
coupling strength. Over-coupled: σ′ = 0.0013 and σ0 = 0.9902. Under-coupled: σ′ =
3.5× 10−4 and σ0 = 0.999. The loss of the ring is 4 dB/cm, a = 0.9971. (a): The input
is on resonance. (b): The input is detuned from resonance, with the modulation resonance
frequency at 5 GHz.

the amplitude of the light in the resonator decays is inversely proportional to the Q factor. In
the steady-state intensity transmission, Eq. (6b), σ and a are interchangeable. Therefore, a sta-
tic description of the resonator would not distinguish between changes in a and σ . It is only
through a dynamical description of the resonator that the differences in the modulation rate
limits can be revealed.

To further illustrate the difference between coupling modulation and index/loss modulation,
we shall briefly examine a “large” modulation of the input CW wave. Due to the complicated
nature of the interference that occurs at the output when device parameters are modulated, it is
unlikely that the output from an arbitrary modulation waveform would simply be a superposi-
tion of the small signal sinusoidal outputs presented earlier.

Figure 5 illustrates the outputs attainable with a Gaussian pulse modulation of the index, loss,
and coupling calculated using Eqs. (9), (19), and (26). The full-width half-maximum widths of
the modulating pulses are 42 ps, 21 ps, and 8 ps. The output pulses generated from loss and
index modulation suffer from distortion and time delays relative to the modulation waveform,
which are considerably worse for smaller pulse widths. In addition, the amplitudes of the output
pulses decrease significantly with shorter index or loss pulse widths.

In contrast, the output pulses in Fig. 5(f) generated from coupling modulation do not decrease
in amplitude with shorter modulation pulse widths. However, the output pulses are shorter
than the modulation pulses in Fig. 5(c). This distortion is due to the low frequency limit of a
coupling modulated microring resonator suppressing the tails of the Gaussian pulse. The Q of
the resonator must be very large to produce pulses that closely resemble the coupling strength
pulse shape. This is the opposite requirement compared to loss or index modulation which
suffer from high frequency limitations and thus require low Q resonators for undistorted output
pulses.

The modulation depth does not remain constant at arbitrarily high modulation frequencies
of the coupling strength. If the device parameters are modulated with a periodicity of τ in Eq.
(7), the resonator output is identical to the low frequency response, neglecting any averaging of
device parameters that occur as a result of Eq. (1). Therefore, the response of a coupling mod-
ulated microring resembles the low frequency response at modulation frequencies approaching
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Fig. 5. Device parameters (top) and the corresponding output intensities (bottom) ver-
sus time for single-pulse modulated microring resonators. (a), (d): Loss modulation, σ =
0.9928, and the input is resonant. (b), (e): Index modulation, φ0 = 0.039477, σ = 0.9928,
and a loss of 4 dB/cm. (c), (f): Coupling modulation, the loss is 4 dB/cm, and the input is
resonant.

the FSR of the resonator. However, for microring resonators, the FSR is on the order of ∼ 1
THz, sufficient for most communication applications. Moreover, throughout this analysis, we
have neglected the frequency, amplitude, and phase response of the coupler itself. The ultimate
modulation rate would be determined by the modulation response of the coupler, which need
not be a resonant device. For example, state-of-the-art electro-optic polymer Mach-Zehnder
interferometric switches can operate at > 100 GHz [15, 16].

The main advantage of a resonant modulator is that in contrast to its non-resonant coun-
terpart, only very small changes in the device parameters are required for a high extinction
ratio. In Fig. 5(f), the change in κ is only of the order of 10 −3, i.e. the loaded Q is almost
constant. Therefore, a high Q, microring modulator based on variable coupling can still be low
power and compact in size. Recently, microrings integrated with a variable coupler have been
proposed and demonstrated [17]-[22]. Those with non-resonant couplers, similar to the con-
figurations presented in [17]-[20], would appear to be the most promising for ultra-high speed
operation.

7. Conclusion

In summary, we have presented a dynamical analysis of a microring modulator in which the
loss, index, or waveguide-ring coupling strength is modulated. We extended our fully rigorous
results to small signal approximations to show that when the waveguide-ring coupling coeffi-
cient is modulated, the modulation bandwidth of the microring approaches the FSR. We com-
pared pulse modulation of the loss, index, and coupling strength, to find that variable coupling
is the most promising for generating short pulses with minimal distortion. Coupling modula-
tion has the potential of leveraging the resonant nature of high Q microresonators to realize low
loss, low power, and compact modulators which also possess a high modulation bandwidth.
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Our model can be extended to incorporate the dynamic effects of the coupler and to analyze
other properties of microring modulators, such as the chirp, linearity, and extinction ratio.
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