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ABSTRACT: The objective of the study was to develop 
a genomic evaluation for French beef cattle breeds and 
assess accuracy and bias of prediction for different genom-
ic selection strategies. Based on a reference population of 
2,682 Charolais bulls and cows, genotyped or imputed 
to a high-density SNP panel (777K SNP), we tested the 
influence of different statistical methods, marker densi-
ties (50K versus 777K), and training population sizes and 
structures on the quality of predictions. Four different 
training sets containing up to 1,979 animals and a unique 
validation set of 703 young bulls only known on their 
individual performances were formed. BayesC method 
had the largest average accuracy compared to genomic 
BLUP or pedigree-based BLUP. No gain of accuracy was 
observed when increasing the density of markers from 
50K to 777K. For a BayesC model and 777K SNP panels, 
the accuracy calculated as the correlation between genom-

ic predictions and deregressed EBV (DEBV) divided by 
the square root of heritability was 0.42 for birth weight, 
0.34 for calving ease, 0.45 for weaning weight, 0.52 for 
muscular development, and 0.27 for skeletal develop-
ment. Half of the training set constituted animals having 
only their own performance recorded, whose contribution 
only represented 5% of the accuracy. Using DEBV as a 
response brought greater accuracy than using EBV (+5% 
on average). Considering a residual polygenic component 
strongly reduced bias for most of the traits. The optimal 
percentage of polygenic variance varied across traits. 
Among the methodologies tested to implement genomic 
selection in the French Charolais beef cattle population, 
the most accurate and less biased methodology was to 
analyze DEBV under a BayesC strategy and a residual 
polygenic component approach. With this approach, a 
50K SNP panel performed as well as a 777K panel.
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INTRODUCTION

Genomic selection is a way to increase genetic gain 
by improving the accuracy of the breeding value esti-
mates of young selection candidates that do not neces-
sarily have their own performance record or progeny 
information. The improved accuracy provides more 

accurate selection decisions and shorter generation in-
tervals compared to traditional breeding schemes based 
on bulls progeny testing (Schaeffer, 2006) as in all dairy 
breeds or in some beef breeds such as the French beef 
breeds. In dairy breeds, the additional cost of genotyp-
ing has been compensated by the progressive abandon-
ment of progeny testing. Similar benefits could also be 
expected for beef cattle breeds of large population size 
due to an improved accuracy of all selection candidates 
and a shorter generation interval for AI bulls. The ac-
curacy of genomic value estimates is the key to success-
ful application of this technology in beef cattle popula-
tions. Many factors influence the accuracy of genomic 
selection, such as size of training population and marker 
density (Daetwyler et al., 2008; Goddard, 2009; Habier 
et al., 2013). Many other issues are raised before ap-
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plying genomic selection, for example, concerning the 
choice of an accuracy measure (Saatchi et al., 2011), of 
the response variable and its weight (Garrick et al., 2009), 
and of a statistical model (de los Campos et al., 2013).

A large training population of about 2,000 animals 
is now available in French Charolais cattle. Therefore, 
information from this breed was used to determine the 
adequate methodology for developing genomic selec-
tion in beef cattle populations. The aim of this study was 
to investigate the technical conditions that are necessary 
to set up a routine genomic selection in purebred beef 
cattle in France. The objectives of this research were 1) 
to estimate the accuracy and bias of genomic value pre-
dictions and 2) to document how the density of markers, 
the size and the structure of the training population, and 
the prediction methods affect predictive ability.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not ob-
tained for this study because the data were extracted from 
existing national databases for genetic evaluation purposes.

Genotype Data

A total of 2,751 registered French Charolais bulls 
and cows were genotyped either with the Bovine SNP50 
BeadChip (50K) for 2,079 animals or with the BovineHD 
BeadChip (777K) for the 672 main genetic contributors 
to the Charolais breed. The cryopreserved semen or ear 
samples used as material for DNA extraction were pro-
cured by various AI organizations, the Charolais breeder 
association, and INRA. Animals with genotypes incon-
sistent with pedigree information were discarded.

A quality control of SNP genotypes based on 
call rate (90%) and Hardy Weinberg equilibrium test 
(P-value < 10–4) was performed in the same manner on 
the 50K and 777K genotypes. The SNP were mapped 
to the UMD 3.1 build of the bovine genome sequence 
assembled by the Center of Bioinformatics and 
Computational Biology at the University of Maryland 
(College Park, MD).

After quality control, 708,771 SNP of the 777K SNP 
chip were retained on 664 animals and 45,187 SNP 
of the 50K SNP chip were retained on 2,078 animals. 
Imputation of the 50K genotype data to 777K geno-
types was performed using BEAGLE software (Beagle 
Software, Minneapolis, MN) for these 2,078 animals 
(Browning and Browning, 2009). A detailed description 
of genotype editing and imputation procedure is given 
by Hozé et al. (2013).

In total, 2,742 true or imputed genotypes were avail-
able for the study. Animals without their own perfor-
mance or progeny records were excluded from the study 
leaving 2,682 animals (94% males) for analysis.

Phenotype Data

Five field traits on which national genetic evalua-
tions exist were considered in this study: birth weight, 
calving ease, weaning weight, muscular development, 
and skeletal development.

Information on the number of records and reliability 
of estimated breeding values for each trait are presented 
in Table 1 for the full reference population. We tested 
different scenarios (described below) with different 
training sets. In the reference scenario, 1,979 animals 
born between 1965 and 2011 were used in the training 
set to estimate SNP effects. Across all scenarios, the 
same sample consisting of 703 animals born in 2012 
was used for validation. The animals in the validation 
set had records only on their own performance and not 
on progeny. The birth year distribution of the reference 
population according to the availability of progeny re-
cords is presented in Fig. 1.

Two kinds of response variables were used: EBV and 
deregressed EBV (DEBV) from traditional BLUP genetic 
evaluation. They were considered in weighted analyses to 
account for heterogeneous variances of the response vari-
able due to a variable amount of progeny records among 
genotyped animals: the weight of EBV in the analysis 
was their accuracy (square root of their reliability) and 
the weight of DEBV were derived according to the meth-
od proposed by Garrick et al. (2009). The deregression 

Table 1. Heritability (h2), number of animals in training and validation sets of the full reference population, average 
reliability of EBV, and average corrected reliability of deregressed EBV (DEBV)1 for all studied traits

 
Trait

 
h2

Training set Validation set Total
n Reliability Corrected reliability n Reliability Corrected reliability n

Birth weight 0.36 1,979 0.70 0.60 703 0.53 0.33 2,682
Calving ease 0.09 1,979 0.55 0.40 703 0.37 0.08 2,682
Weaning weight 0.22 1,713 0.60 0.53 670 0.44 0.20 2,383
Muscular development 0.30 1,639 0.63 0.60 676 0.49 0.28 2,315
Skeletal development 0.27 1,639 0.62 0.58 676 0.47 0.25 2,315

1Average reliability of the DEBV excluding the parent average contribution.
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method removed parent average both from the response 
variable and the weight (Garrick et al., 2009).

Statistical Models

Description. Genomic prediction equations were 
derived using 2 different methods: genomic BLUP 
(GBLUP; VanRaden, 2008) and BayesCπ (Habier et 
al., 2011). In these methods, the priors of all SNP ef-
fects are assumed to share the same variance. With re-
gard to GBLUP, the prior used is a normal distribution. 
Concerning BayesCπ approach, the prior is a mixture 
distribution. The effects of SNP are fitted with a prob-
ability π, where π is the fraction of SNP having an effect. 
Here, convergence for the estimation of parameter π 
was not obtained. Therefore, we assumed the parameter 
known and moved to a BayesC strategy (Kizilkaya et al., 
2010). A BayesC approach is known to provide good re-
sults in genomic selection (Croiseau et al., 2012). The π 
parameter was fixed at a value of 0.001 (i.e., 708 mark-
ers with a nonzero effect) when using the 777K chip and 
0.0157 (i.e., 711 markers with nonzero effect) when us-
ing the 50K chip. A traditional BLUP, hereafter named 
pedigree-based BLUP, was also considered to estimate 
nongenomic breeding values based on pedigree and pro-
vide a basis for comparison.

Analyses were performed using the GS3 software 
(Legarra et al., 2013). Initial variances were estimated 
with GS3 with the VCE option. For BayesC, a burn-in 
period of 20,000 iterations was run before saving results 
every 10 iterations out of 50,000. A greater number of 
iterations was also tested (300,000). Results in terms of 
variances and accuracies were found to be similar, so 
only 50,000 iterations were run for all the analyses.

General Model. For each trait, the following model 
was fit to the response variable y (EBV or DEBV) for the 
training populations:

y = 1μ + Ma + e,

in which 1 is a vector of 1, μ is the overall mean, and M is 
an incidence matrix for marker genotypes. The genotypes 
were coded as –1, 0, or 1 depending on the number of cop-
ies of a given marker allele carried by the animal, a is a 
vector of marker effects, and e is a vector of residual effects.

Once the marker effects were estimated with either 
GBLUP or BayesC methods, the predicted genomic val-
ue (genomic EBV [GEBV]) of an individual was



1

GEBV
J

i ij j
j

M a
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in which GEBVi is the GEBV for animal i in the valida-
tion population, Mij is the marker genotype of animal i 
at marker j, J the total number of markers, and ja  the 
effect of marker j.

Inclusion of a Polygenic Component. We also con-
sidered a variation of the general model by including a 
residual polygenic component in the analysis. The to-
tal genetic variance was partitioned into 2 components: 
the additive genetic variance explained by the markers 
and the residual polygenic variance. We fixed the re-
sidual polygenic variance at different fractions of the 
total genetic variance of the trait. According to Garrick 
et al. (2009), there are 2 ways to account for the residual 
polygenic component in the analysis: either by account-
ing for a polygenic fraction of the genetic variance in 
the weights (wi) or by explicitly including a polygenic 
component in the model.

To consider the polygenic fraction in the weights of 
the DEBV, the formula derived by Garrick et al. (2009) 
was used:

( ) ( ){ }2 2 2 21 h / 1 / hi i iw c r ré ù= - + -ê úë û
,

in which 2
ir  is the reliability of DEBV, h2 is the herita-

bility of the trait, and c is the polygenic fraction of the 
genetic variance.

When the residual polygenic component was explic-
itly included in the model, the equation became

y = 1μ + Ma + Zu + e,

in which u is a vector of polygenic effects and Z is an 
incidence matrix for the polygenic effects.

For the latter model, the predicted genomic value for 
an individual was defined as the sum of the predicted ef-
fects of the SNP over all the markers and the polygenic 
breeding value:

  
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Figure 1. Number of animals with own or progeny records for birth 
weight in the training set (1965 to 2011) and validation set (2012).
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Validation Criteria

The accuracy of GEBV could be defined as the cor-
relation between true genetic values and GEBV. The 
true genetic values of genotyped animals are not avail-
able in real data sets and consequently an approximation 
must be used to assess the accuracy of GEBV. A good 
approximation of the true breeding value is DEBV when 
the animals in the validation set have records over many 
progenies. However, in beef cattle validation popula-
tions, it may not be the general case. In our situation, 
this is even far from reality because the validation popu-
lation is only known for own performance and DEBV 
is then similar to own phenotype. Therefore, another 
approximation was also considered, which is the tradi-
tional BLUP EBV.

To assess the predictive ability of genomic equa-
tions, the accuracy of genomic prediction was estimated 
for the validation population in 3 different ways:

•	 	 as the Pearson’s correlation between DEBV and 
GEBV,

•		 as this previous correlation divided by the 
square root (h) of the h2 because the expectation 
of the previous correlation is h, and

•		 as the Pearson’s correlation between EBV and 
GEBV assuming that the true breeding value is 
approximated by EBV.

To evaluate the bias of genomic predictions, the re-
gression coefficients of the response variables (DEBV 
or EBV) on GEBV were derived and compared to their 
expected value of 1.

Scenarios

We tested different scenarios listed in Table 2.

1) 	 The reference scenario was used as a basis for 
comparison. It features a BayesC model with 
the 777K SNP panels, with a full data set and 
DEBV as response variable.

2) 	 Variations of the reference scenario were test-
ed by changing the model and marker density 
(BayesC versus GBLUP with 777K or 50K SNP) 
and comparing with pedigree-based BLUP.

3) 	 Three scenarios with half the training population 
were tested to assess the impact of birth year and 
information available for animals in the training 
set on the accuracy of genomic selection. The 
original training population was divided into 2 
with the 50% youngest animals (born between 
2004 and 2011), and the 50% oldest animals 
(born between 1965 and 2003). Each half data-
set was used to estimate the SNP effects. A third 
training set was created by excluding animals 
having only own performance records. Only 
progeny tested animals were kept; they repre-
sented 51% of the complete training population. 
The different training populations are described 
in Table 3. Their average relationship coeffi-
cients within populations and between the train-
ing and the common validation populations are 
presented in Table 4. Out of the 703 young ani-
mals in the validation set, 645 were sired by 77 
bulls of the training set.

4) 	 The scenario with EBV as a response variable 
features EBV instead of DEBV as phenotype to 
estimate the SNP effects.

5) 	 In the last scenarios, a residual polygenic com-
ponent, representing different fractions of the 
total genetic variance was considered either in 
the statistical model or through the weights.

Table 2. Presentation of the main features of the tested scenarios

 
 
 
Main features

Name of the scenarios
 
 

“Reference”

“Model  
and  

marker density”

“3 reduced training populations:  
the 50% youngest, the 50% oldest,  

progeny tested animals only”

“EBV as  
response  
variable”

“Residual  
polygenic  

component”
Model and marker density1 BayesC 777K BLUP

BayesC GBLUP
50K, 777K

BayesC
777K

BayesC 777K BayesC
777K

No. of animals in the training set 1,979 1,979 The 50% youngest: 990
The 50% oldest: 989
Progeny tested: 1,016

1,979 1,979

Response variable DEBV2 DEBV DEBV EBV DEBV
Residual polygenic component No No No No Yes: in the model 

or in the weights

150K = 50,000 SNP panel; 777K = 777,000 SNP panel; GBLUP = genomic BLUP.
2DEBV = deregressed EBV.
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RESULTS

Assessing the Accuracy of Genomic Predictions
In our first analysis based on DEBV response vari-

able, we compared different criteria to assess the ac-
curacy of genomic prediction for the validation popula-
tion. They are presented in Table 5 for a BayesC model 
with 777K or 50K genotypes. Whatever the criterion 
considered, accuracy of genomic prediction under 
BayesC was very similar between 777K genotypes or 
50K genotypes. The greatest values of accuracy were 
obtained with the correlations between traditional 
BLUP EBV and GEBV, whereas estimates of accuracy 
based on the correlations between DEBV and GEBV 
had the lowest values.

The best choice of criteria to assess the accuracy 
would depend on what is the best approximation of the 
true breeding value and on the degree of independence 
between training and validation populations. In the next 
sections, we will only present the accuracy derived as 
the correlation between DEBV and GEBV divided by 
the square root of heritability to provide similar crite-
rion of accuracy as in some other publications in beef 
cattle (Saatchi et al., 2011; Elzo et al., 2012; Bolormaa 
et al., 2013).

Different Models and Marker Densities

We compared the accuracies and regression coeffi-
cients of pedigree-based BLUP, GBLUP, and BayesC in 
Table 6. The scenarios with BayesC had a greater ac-
curacy than with GBLUP (of 0.05 to 0.08 depending on 
the marker density) and BLUP (of 0.06). When shifting 
from the 50K to the 777K SNP chip, no gain in accuracy 
was observed with BayesC and a loss of accuracy and an 
increase of bias was observed with GBLUP. Pedigree-
based BLUP showed less biased estimates and greater 
accuracies for birth weight and calving ease but was out-
performed by genomic methods for the other traits.

Different Training Sets and Response Variables

Table 7 presents the accuracies and regression coef-
ficients of genomic predictions for 3 different reduced 
training population sizes (the oldest 50%, the youngest 
50%, and progeny tested animals).

Halving the training set and taking only the oldest 
50% of the animals brought a slightly greater accuracy 
than taking only the youngest 50% (Table 7). The slight 
increase in accuracy depending on the birth periods of 
training animals is due to greater reliabilities of DEBV 
of the oldest bulls compared to the youngest (Table 3), 
which is partially compensated by a greater average re-
lationship between the youngest training population and 
the validation population (Table 4).

The regression coefficients of DEBV on GEBV for 
muscular and skeletal development showed less vari-
ability across scenarios than other traits. The regres-
sion coefficient of muscular development was close to 
1 and therefore showed very little bias. The GEBV of 
birth weight, calving ease, and skeletal development 
were inflated in all scenarios (the regression coefficients 
of DEBV on GEBV were lower than 1). The GEBV for 
weaning weight were underestimated for all scenarios 
except for the one with the youngest 50% training popu-
lation where the GEBV was inflated.

The difference in accuracy between the full train-
ing set and the training set containing only animals with 

Table 3. Number of animals and the average corrected reliability of their deregressed EBV (DEBV)1 for 3 reduced 
training populations: “the 50% youngest,” “50% oldest,”2 and “progeny tested”3

 
Trait

The 50% youngest The 50% oldest Progeny tested animals
n Reliability n Reliability n Reliability n4 of progeny

Birth weight 990 0.50 989 0.70 1,016 0.86 1,314
Calving ease 990 0.27 989 0.53 1,016 0.70 1,313
Weaning weight 864 0.38 949 0.67 926 0.81 862
Muscular development 820 0.46 819 0.73 929 0.84 864
Skeletal development 820 0.43 819 0.72 929 0.83 864

1Average reliability of the DEBV excluding the parent average contribution.
2The 50% youngest animals and the 50% oldest animals of the original training population.
3A training population excluding animals having only own performance records.
4nb = Average number of progeny per animal.

Table 4. Average relationship coefficients1 and their SD 
within and between groups for the 4 training populations 
and the common validation population
 
Population

 
Within group

Between training  
and validation set

Full training population 0.020 ± 0.032 0.026 ± 0.028
50% youngest animals 0.026 ± 0.034 0.028 ± 0.030
50% oldest animals 0.018 ± 0.036 0.022 ± 0.026
Progeny tested animals 0.026 ± 0.036 0.028 ± 0.030
Validation population 0.040 ± 0.048

1Average relationship coefficients derived from the pedigree.
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progeny records was 0.02 on average, with the largest in-
crease occurring for birth weight (+0.05; Table 7) in the 
full data set. This means that doubling the training popu-
lation by adding animals having only their own perfor-
mance recorded brought little additional information.

The accuracies were similar when using DEBV or 
EBV as response variables to fit the genomic prediction 
equations, with a slightly greater accuracy on average 
for DEBV (+0.02; Table 7) due to a clearer advantage 
of DEBV as response variable for muscular and skel-
etal development scores only. Bias was slightly reduced 
when using EBV.

Table 5. Three different criteria to assess accuracy of 
genomic prediction under a BayesC model applied to 
the complete training population genotyped either for 
777K or 50K1

 
 
 
 
 
Trait

Pearson’s 
correlation 
between  

DEBV and 
GEBV2

Pearson’s correlation 
between DEBV  

and GEBV divided  
by the square root  

of heritability

Pearson’s 
correlation 
between  

EBV and GEBV

777K 50K 777K 50K 777K 50K
Birth weight 0.25 0.23 0.42 0.38 0.53 0.50
Calving ease 0.10 0.10 0.34 0.34 0.64 0.63
Weaning weight 0.21 0.21 0.45 0.45 0.65 0.63
Muscular development 0.29 0.30 0.52 0.54 0.59 0.59
Skeletal development 0.14 0.14 0.27 0.27 0.52 0.52
Mean 0.20 0.20 0.40 0.40 0.59 0.57

1777K = 777,000 SNP panel; 50K = 50,000 SNP panel.
2DEBV = deregressed EBV; GEBV = genomic EBV.

Table 6. Accuracy1 and regression coefficient2 of pre-
dicted EBV3 under BayesC, genomic BLUP (GBLUP),4 
and BLUP models

 
Trait

BayesC GBLUP BLUP
777K 50K 777K 50K –

Accuracy
Birth weight 0.42 0.38 0.33 0.40 0.45
Calving ease 0.34 0.34 0.25 0.21 0.41
Weaning weight 0.45 0.45 0.42 0.45 0.40
Muscular development 0.52 0.54 0.34 0.38 0.23
Skeletal development 0.27 0.27 0.26 0.31 0.22
Mean 0.40 0.40 0.32 0.35 0.34

Regression coefficient
Birth weight 0.71 0.64 0.55 0.74 1.15
Calving ease 0.53 0.54 0.40 0.36 0.91
Weaning weight 1.13 1.09 0.97 1.12 1.19
Muscular development 0.95 1.00 0.69 0.81 0.61
Skeletal development 0.64 0.64 0.63 0.82 0.69
Mean 0.79 0.78 0.65 0.77 0.91
Average deviation5 from 1 0.26 0.25 0.35 0.28 0.23

1Accuracy is measured by Pearson’s correlation between observed der-
egressed EBV (DEBV) and predicted EBV in the validation population di-
vided by the square root of heritability.

2Regression coefficient of observed EBV on predicted DEBV. A coeffi-
cient of 1 is expected.

3Predicted EBV are GEBV for BayesC and GBLUP methods.
4BayesC and GBLUP were run with 777K (777,000) and 50K (50,000) 

SNP panels.
5Average absolute deviation of the regression coefficient from 1.

Table 7. Accuracy1 and regression coefficient2 of predicted genomic EBV (GEBV) under BayesC model with 777K 
SNP panel3 for the reference scenario, the scenarios with 3 different reduced training population sizes, and the sce-
nario with EBV as a response variable

 
Trait

Reference
scenario

Reduced training population sizes EBV as response 
variableThe 50% youngest The 50% oldest Progeny tested animals

Accuracy
Birth weight 0.42 0.37 0.35 0.37 0.42
Calving ease 0.34 0.15 0.32 0.32 0.33
Weaning weight 0.45 0.37 0.35 0.44 0.45
Muscular development 0.52 0.37 0.41 0.51 0.47
Skeletal development 0.27 0.17 0.22 0.27 0.22
Mean 0.40 0.28 0.33 0.38 0.38

Regression coefficient
Birth weight 0.71 0.90 0.71 0.64 0.82
Calving ease 0.53 0.44 0.55 0.52 0.60
Weaning weight 1.13 1.51 0.88 1.11 1.04
Muscular development 0.95 0.93 0.92 1.01 1.01
Skeletal development 0.64 0.63 0.61 0.66 0.52
Mean 0.79 0.88 0.74 0.79 0.80
Average deviation4 from 1 0.26 0.32 0.26 0.26 0.22

1Accuracy is measured by the Pearson’s correlation between deregressed EBV (DEBV) and GEBV divided by the square root of heritability.
2Regression coefficient of DEBV on GEBV.
3777K = 777,000 SNP panel.
4Average absolute deviation of the regression coefficient from 1.
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Polygenic Component

Accuracies and regression coefficients were present-
ed in Table 8 when a polygenic component was included 
in the model or in the weights of the response variable. 
Accuracies were more robust than regression coeffi-
cients to changes of the residual polygenic fraction. The 
accuracy increased slightly for birth weight and calving 
ease when a polygenic component was included. This 
increase was slightly greater when the polygenic com-
ponent was included in the model than in the weights. 
For the other traits, accuracy remained constant or even 
decreased slightly when considering a polygenic com-
ponent either in the model or in the weights.

Bias was reduced when considering a residual poly-
genic component for birth weight, calving ease, and skel-
etal development. It was also reduced for muscular de-
velopment but only when the polygenic component was 
included in the model. Reduction of the bias concerned 
traits for which the regression coefficient of DEBV on 
GEBV is lower than 1. In the case where the pure ge-
nomic model led to a likely underestimation of the GEBV 
(i.e., regression coefficient of DEBV on GEBV > 1 of 
weaning weight), including a polygenic component in the 
analysis worsened the underestimation, especially when 
considering high (>20%) residual polygenic component 
in the weights of the response variable.

The optimal percentage of polygenic variance seems 
to vary across traits and methods, from 0% for weaning 
weight to 50% for calving ease (with both methods of ac-
counting for a residual polygenic component). These ob-
servations are in accordance with the accuracy obtained 
for a 100% polygenic model (BLUP in Table 6), which 
gave a greater accuracy for calving ease and lower accu-
racy for weaning weight compared to genomic methods.

The other traits are on an intermediary scale. For 
birth weight, the optimal percentage of polygenic vari-
ance in the model was 40% when the polygenic fraction 
was included in the model and 20% when it was includ-
ed in the weights of the response variable. For muscular 
development, it was 10 or 20% in the model and 0% in 
the weights. For skeletal development, it was 50% in the 
model and 30% in the weights.

DISCUSSION

Statistical Methods
Our results show that the method with BayesC and a 

residual polygenic component is the best approach tested 
for genomic selection in the French Charolais seedstock 
population. The density of markers (between 50K and 
777K) is of little importance with BayesC. On the oppo-
site, GBLUP was less accurate and more biased with 777K 
marker density than with 50K, probably because the meth-

Table 8. Accuracy1 and regression coefficient2 of predicted genomic EBV (GEBV) under BayesC model with 777K 
SNP panel3 for the reference scenario (polygenic fraction of 0%) and the scenario with a residual polygenic compo-
nent in the model (or in brackets average results for a residual polygenic component integrated through the weights 
of the deregressed EBV [DEBV] response variable)
Polygenic fraction of the genetic variance 0% 10% 20% 30% 40% 50%
Accuracy

Birth weight 0.42 0.43 0.44 0.46 0.48 0.47
Calving ease 0.34 0.34 0.37 0.38 0.40 0.41
Weaning weight 0.45 0.45 0.45 0.45 0.45 0.45
Muscular development 0.52 0.52 0.52 0.51 0.50 0.49
Skeletal development 0.27 0.27 0.27 0.27 0.27 0.27
Mean
(in the weights)

0.40
(0.40)

0.40
(0.40)

0.41
(0.40)

0.42
(0.40)

0.42
(0.39)

0.42
(0.38)

Regression coefficient
Birth weight 0.71 0.77 0.83 0.91 0.99 1.02
Calving ease 0.53 0.57 0.63 0.69 0.76 0.80
Weaning weight 1.13 1.15 1.19 1.22 1.23 1.25
Muscular development 0.95 0.99 1.01 1.02 1.03 1.02
Skeletal development 0.64 0.68 0.70 0.73 0.76 0.77
Mean
(in the weights)

0.79
(0.79)

0.83
(0.95)

0.87
(1.01)

0.92
(1.21)

0.95
(1.32)

0.97
(1.41)

Average deviation4 from 1 0.26 0.23 0.21 0.18 0.15 0.14

1Accuracy is measured by the Pearson’s correlation between DEBV and GEBV divided by the square root of heritability.
2Regression coefficient of DEBV on GEBV.
3777K = 777,000 SNP panel.
4Average absolute deviation of the regression coefficient from 1.
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od considers that all the markers have an effect, resulting 
in a greater prediction error for a higher number of SNP ef-
fects to estimate from the same small training population. 
BayesC performed better than GBLUP, probably because 
only a small proportion of the markers were considered 
having an effect in BayesC and because this methodol-
ogy takes linkage disequilibrium (LD) better into account. 
These results are consistent with previous studies (Erbe et 
al., 2012; Pryce et al., 2012). Erbe et al. (2012) observed a 
decrease in accuracy with GBLUP when the 777K panel 
was used rather than the 50K panel within breed. As stated 
by Erbe et al. (2012), methods that remove SNP from the 
model or set their effects to 0 are necessary to take advan-
tage of the increased marker density.

The pattern of accuracy across the different meth-
ods and polygenic fractions suggests different genetic 
architectures of traits. Best linear unbiased prediction or 
genomic models with a high polygenic component gave 
better results for calving ease, suggesting that this trait 
is determined by many loci with small effects. On the 
contrary, weaning weight may be determined by fewer 
loci with bigger effects as suggested by the better results 
obtained without a polygenic fraction.

Assessing the Accuracy of Genomic Predictions

In our study, estimates of accuracy based on the corre-
lation between DEBV and GEBV were low because DEBV 
correspond only to the own phenotype of animals in the 
validation population. Consequently, even if the predictive 
ability of the genomic equations to estimate breeding val-
ues were close to 1, the expected value of this correlation 
would only be the square root of the heritability. Estimates 
of accuracy based on the correlation between BLUP EBV 
and GEBV were the greatest. Two different points may ex-
plain the latter result: the first one is that the BLUP EBV is 
the best predictor of the true breeding value based on pedi-
gree and observed phenotypes; the second one is because 
the BLUP EBV are based on pedigree and observed pheno-
types and SNP capture well pedigree relationships (Habier 
et al., 2007). In our case, most of the animals in the valida-
tion population have their sires or maternal grandsires in 
the training population; using their EBV in the validation 
criterion is therefore not recommended because it will cap-
ture the pedigree information. In case the validation popula-
tion is not closely pedigree linked to the training population, 
using EBV as the best predictor of true breeding values to 
assess accuracy of genomic predictions should give a good 
approximation of the true accuracy.

No agreement was found in the literature on a com-
mon way to approximate accuracy of genomic predic-
tions from real data. Since true breeding values are never 
known, different criteria were used as a surrogate for the 
true accuracy defined as the correlation between the GEBV 

and the true breeding values. The best choice of criterion 
to assess the accuracy would depend on the phenotypic 
information available for the validation population and on 
their relationship coefficients with the training population. 
Simple correlations between phenotypic response vari-
ables and GEBV were mostly used in dairy cattle (Hayes 
et al., 2009; Brondum et al., 2012). In dairy cattle, this is a 
very good approximation of true accuracy, because bulls 
included in validation populations have records on tens 
or hundreds of daughters, and consequently the response 
variable is a good prediction of the true breeding value. 
When the response variable for the validation population 
is mainly based on own phenotype with no or little prog-
eny information, it has been proposed to approximate 
the accuracy as the correlation between response vari-
able and GEBV divided by the square root of heritability 
(Daetwyler et al., 2012; Bolormaa et al., 2013). Some au-
thors also reported accuracy measured by the coefficient 
of determination of the regression of the response vari-
able on the GEBV (Karoui et al., 2012; Olson et al., 2012).

Reliability defined as the squared correlation between 
the phenotype measure and GEBV was also used (Su et 
al., 2010). In some studies this squared correlation was 
divided by the weighted mean reliability of the response 
variable (Liu et al., 2011; Lund et al., 2011; Thomasen et 
al., 2012) to account for the fact that the response variable 
is only an approximation of the true breeding value.

Training and Validation Population Definition

In cattle breeding schemes, GEBV should be predict-
ed for young selection candidates without phenotypes but 
sired by genotyped and phenotyped bulls. To be as close 
as possible of a realistic genomic selection program, we 
chose a validation population constituted of young ani-
mals that had their sires in the training population. Such 
strategy is the one that is promoted and commonly used in 
dairy cattle validation studies (Lund et al., 2011). However, 
it is well known that close relationships between animals 
in the training and validation sets increases the accuracy 
of genomic predictions compared to the ones derived for 
an independent validation population (Habier et al., 2011). 
A loss of accuracy of 16% on average is expected in the 
French Charolais beef cattle when comparing strategies 
with a validation population without sires in training popu-
lations of same sizes (T. Tribout, INRA, Jouy-en-Josas, 
France, personal communication).

Own Performance Records

The relationships between animals in the training and 
validation sets were high. Therefore, adding to the training 
population animals that have lower relationship with the 
validation animals could not greatly improve the accuracies.
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The added animals with own performance only were 
typically females or young bulls. The accuracy of the 
response variable is expected to increase when the per-
formance of their progeny is recorded. However, the ac-
curacy of female response variable will never reach the 
level of bulls. The low accuracy of female information is 
the reason why most of the reference populations in cat-
tle were built based on male information only (Karoui et 
al., 2012; Su et al., 2012).

However, genotyping females is especially relevant 
for small cattle breeds that only have a limited number 
of progeny tested bulls (Jimenez-Montero et al., 2012). 
It is also a growing concern in dairy breeds of large pop-
ulation size, for recording new traits (Buch et al., 2012), 
to gain accuracy (Tsuruta et al., 2013), or because not 
enough progeny tested bulls are available (Ding et al., 
2013). Tsuruta et al. (2013) observed a gain in reliability 
of 2 to 3% in U.S. Holstein cattle when using female 
genotypes in addition to male genotypes.

Population sizes of beef cattle breed stocks are much 
smaller than that of the Holstein breed, and AI is much 
less used, resulting in a lower availability of reliable 
sires for training population (Garrick, 2011). Therefore, 
other strategies are needed in beef cattle to obtain a large 
reference population such as genotyping females, pool-
ing reference populations across countries, or eventually 
pooling reference populations across breeds.

Response Variables

When comparing EBV and DEBV as a response 
variable, we found a slight advantage for DEBV in terms 
of accuracy. In a simulation approach, Guo et al. (2010) 
compared daughter yield deviation (DYD) and EBV as 
response variables. They showed that EBV approach 
performed as well as DYD or better than the DYD ap-
proach in terms of reliability of predictions. It was es-
pecially true for traits with low heritability or training 
populations where bulls had a low number of daughters. 
Guo et al. (2010) observed that DEBV were theoretical-
ly superior to EBV with regard to double counting and 
double regression, but this advantage was counteracted 
by less information and more random errors in DEBV. 
Estimated breeding values are predicted from data of all 
available relatives and therefore contain relatively little 
random error and high reliability.

Gredler et al. (2010) found also a slightly greater 
accuracy by using EBV than DEBV or DYD in ge-
nomic predictions for Fleckvieh cattle. On the oppo-
site, Ostersen et al. (2011) found greater accuracy using 
DEBV than EBV in pig.

Garrick et al. (2009) proposed a method to deregress 
EBV and remove parent average effects to address the is-
sues raised by EBV. The authors emphasize the importance 

of using DEBV instead of EBV to eliminate the shrinkage 
feature of the BLUP EBV and to avoid double counting 
of relatives’ information in the genomic predictions. They 
also mentioned that prediction errors of EBV are negatively 
correlated with the true breeding values.

On the basis of our results alongside those of the 
literature, the choice of the response variable seems to 
have little impact on accuracy of genomic prediction.

Polygenic Component

In our study, including a polygenic component was 
favorable for all traits except weaning weight. The op-
timal fraction of residual polygenic variance varied 
across traits and methods (polygenic fraction in the 
model or in the weights).

Liu et al. (2011) tested a residual polygenic effect 
included in the model, whose variance was represent-
ing different percentages of the total genetic variance. 
They also observed that according to the regression co-
efficients, the optimal percentage of residual polygenic 
variance seems to vary across traits.

The residual polygenic component can either be 
included in the model (Calus and Veerkamp, 2007) or 
in the weights of the response variable (Garrick et al., 
2009). The proportion of additive genetic variance not 
explained by the markers is not known before the train-
ing analyses. If the polygenic component is explicitly 
included in the model, the polygenic variance can be 
estimated during the training analysis. If the polygenic 
component is included in the weights, the value of c 
can be estimated from a first validation analysis and the 
training analysis could then be repeated using the esti-
mated value of c (Garrick et al., 2009). These authors al-
ternatively suggested assessing the sensitivity of results 
to the c value by using a range of values.

Including a polygenic term is done in the French 
marker-assisted selection program (Guillaume et al., 
2008; Boichard et al., 2012) but is not always done in ge-
nomic prediction analysis (Garrick et al., 2009) because 
genomic models generally assume that SNP explain all 
the genetic variation (Meuwissen et al., 2001). Some au-
thors found that including a polygenic term reduces bias 
of GEBV (Liu et al., 2011) and bias of SNP or haplotype 
variances (Calus and Veerkamp, 2007; Rius-Vilarrasa et 
al., 2012). Including a polygenic term increases the per-
sistency of accuracy and the stability of regression coef-
ficient over generations (Solberg et al., 2009), and the 
models are less sensitive to the prior assumption about 
marker effects (Rius-Vilarrasa et al., 2012). Some au-
thors observed a slight reduction of the accuracy (Liu et 
al., 2011; Rius-Vilarrasa et al., 2012). We also observed 
a reduction of bias for most of the traits and a decrease 
in accuracy for some traits.
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Inclusion of a residual polygenic component seems 
to be more important for low heritable traits and low 
marker density (Calus and Veerkamp, 2007; Duchemin 
et al., 2012); these authors observed that the polygenic 
variance explained a greater proportion of the estimated 
genetic variance and bring a higher accuracy.

Different reasons justify the advantages of using a 
polygenic component. The inclusion of a polygenic com-
ponent allows selecting QTL with rare alleles (Goddard, 
2009) and capturing the variance of QTL with small ef-
fects (Calus and Veerkamp, 2007), thus reducing bias. 
Estimates of polygenic effects are based on BLUP the-
ory and therefore show little bias (Solberg et al., 2009), 
which also contribute to bias reduction. Moreover, the 
persistence of accuracy over time is greater when in-
cluding a polygenic component because the remaining 
marker association reflects LD more truly (Solberg et al., 
2009). Therefore, fitting a polygenic component, either 
in the model or in the weight of the response variable, 
could be advised for some of the traits in Charolais beef 
cattle. However, the benefits of fitting a polygenic term 
can be achieved if own records or records on relatives 
of the selection candidates are available, which is not 
always the case in beef cattle populations.

Comparison with Genomic Selection  
Implemented in other Beef Breeds

It is difficult to compare the accuracy of genomic 
predictions across studies because of the different genet-
ic structures and training sizes of populations, models, 
and validation methods used.

The accuracy of GEBV in beef cattle populations are 
expected to be less than those typically found in Holstein 
breed (Erbe et al., 2012; Colombani et al., 2013) even 
for the same reference population sizes. This can be ex-
plained by larger effective population sizes and lower 
accuracies of bull EBV due to a low use of artificial in-
semination in beef breeds compared to dairy breeds.

The accuracy measured by the simple correlation be-
tween DEBV and GEBV in Charolais is lower than the 
one observed for American Hereford cattle (Saatchi et 
al., 2013), although the training Hereford population was 
only composed of 772 bulls. In Charolais, we reported 
correlations of 0.25 for birth weight, 0.10 for calving ease, 
and 0.21 for weaning weight. In American Hereford, they 
reported correlations of 0.37 for birth weight, 0.25 for 
calving ease, and 0.51 for weaning weight with a BayesC 
model and validation on the youngest animals. The lower 
correlations in Charolais compared to American Hereford 
is probably partly due to the greater effective popula-
tion size in French Charolais of about 500 (Bouquet et 
al., 2011) than the effective size of American Hereford 
population of 85 (Cleveland et al., 2005). However, the 

main explanation could be the difference in the type of 
records used for the validation population, but informa-
tion was not fully detailed in Saatchi et al. (2013) to con-
firm this hypothesis. In our Charolais study, the validation 
population concerned only animals without offspring’s 
records, whose DEBV had a low reliability. The simple 
correlation between DEBV and GEBV was therefore a 
very strong underestimation of the correlation between 
true breeding value and GEBV. The only study that al-
lows a fair comparison with our results is from Saatchi 
et al. (2011) on American Angus because their American 
Angus population has both an effective size and a training 
population size close to our French Charolais population. 
The large training population of 2,500 Angus bulls with 
average reliability of DEBV of 0.8 and 0.7 for birth and 
weaning weights, respectively, has to be compared to the 
2,000 Charolais bulls with average reliability of 0.6 and 
0.5 for birth and weaning weights, respectively. Saatchi 
et al. (2011) assessed the accuracy by the correlation be-
tween DEBV and GEBV divided by the square root of 
heritability. Transforming their results to simple correla-
tion between DEBV and GEBV, they reported accuracies 
of 0.33 for birth weight and 0.25 for weaning weight un-
der a BayesC and validation on youngest animals, which 
are greater than for Charolais, with 0.25 and 0.21 for birth 
and weaning weights, respectively.

Conclusion

Among the approaches tested, the methodology that 
appears to be the most accurate and less biased to imple-
ment genomic selection in a purebred beef cattle population 
such as the French Charolais population is to use DEBV as 
response variable under a BayesC genomic selection strat-
egy. Adding a residual polygenic component in the analy-
sis reduces the bias of GEBV for most of the traits. Using 
a 777K SNP panel instead of a 50K panel does not give 
a clear advantage for increasing the accuracy of genomic 
predictions within Charolais breed. In addition, genotyping 
more animals to increase the reference population should 
be carefully considered as animals with only own perfor-
mance bring little gain in prediction accuracy.
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