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Abstract
Tropical forests in many areas of Central and South
America experience strong seasonality in climatic variables
such as rainfall, solar radiation, wind speed, and relative
humidity. Such seasonality is typical of the mangrove
forests we study along the Caribbean coast of Panama. Tied
to this environmental variation are changes in leaf pheno-
logy and physiology that can affect the spectral properties
of leaves and thus our ability to discriminate canopies of
differing species composition. The goals of this study were
two-fold. First, we compared the efficacy of three different
classification methods for discriminating mangrove
canopies, including a back-propagation, feed-forward neural
network classifier with two hidden layers of 24 and 12
neurons (hereafter, BP:24:12), a newly developed clustering-
based neural network classifier (CBNN), and a maximum
likelihood classifier (MLC). Comparisons were made with
and without added textural information. Our second aim
was to compare the absolute and relative discrimination
abilities of these methods when applied to images of the
same forest acquired in different seasons.
Two sets of Ikonos images acquired in February (dry season)
and May (early wet season) 2004 were analyzed in this
study. When only spectral information was considered,
MLC and CBNN discriminated differences in canopy species
composition with higher accuracy than the BP:24:12 method.
When second-order textural information was also taken
into account, CBNN outperformed MLC and presented the
best classification accuracy, i.e., kappa value equaled 0.93.
Analyses of the wet season (May) image were consistently
more accurate in discriminating mangrove canopies of
differing species composition than analyses of the dry
season (February) image, regardless of the classification
method or the inclusion of textural information.

Introduction
Mangrove forests grow along sheltered tropical and subtropi-
cal coastlines around the world, and sustain productive,
biologically unique, and economically important ecosystems
(Lugo and Snedaker, 1974; Tomlinson, 1986; Kathiresan and
Bingham, 2001; Alongi, 2002). Over the past 50 years,
mangrove habitats have declined dramatically in area due
to a variety of anthropogenic disturbances including cutting

and filling associated with coastal development and various
forms of non-renewable resource exploitation (Ellison and
Farnsworth, 1996; Alongi, 2002). Methods for accurately
mapping and monitoring changes in the distribution and
species composition of mangrove forest canopies will be
essential for effective conservation and management of these
endangered ecosystems. Since many mangrove forests are
difficult to access on foot, due to the flooded, soft sediment
environments in which they grow, the development of maps
from remotely acquired imagery holds the most promise
for monitoring the condition of these forests.

Distinguishing the canopies of different mangrove species
with conventional sensors such as Landsat MSS, Landsat TM,
and SPOT is difficult due to the low spectral and spatial
resolution of such imagery (see Wang et al., 2004a). Such
sensors are unsuited to the task of discriminating the relatively
small canopies typical of mangrove trees, which in some cases
exhibit quite similar spectral signatures. The recent advent of
high-resolution, multispectral satellite sensors makes it
possible to remotely assess land-cover types at a spatial
resolution as great as 61 cm (Wulder et al., 2004). With this
enhanced spatial and radiometric resolution, a better classifi-
cation of individual mangrove species has become possible.
However, with this enhanced image resolution comes the
challenge of developing analytical approaches that can realize
the full potential of the acquired data when attempting to
define and discriminate spatial entities. The development of
methods for mapping mangrove forests using information
collected by high-resolution sensors, particularly at the
species-level, is still at an early exploratory stage. Mumby and
Edwards (2002) were able to improve thematic accuracy for a
marine environment comprised of 13 habitat classes (includ-
ing mangroves) by incorporating texture information in their
analysis of an Ikonos image. Held et al. (2003) employed an
integrated analysis of data from the high spatial/spectral
resolution scanner CASI and the airborne AIRSAR (NASA’s
polarimetric radar) to map mangrove estuaries along the
Daintree River in North Queensland, Australia. Higher
classification accuracies of different habitats and mangrove
forest types were achieved when hyperspectral and radar data
were used in combination, and a slight improvement (around
3 percent) was achieved using a hierarchical neural network
in place of MLC. Wang et al.(2004a) developed an integrated
pixel-based and object-based method, and achieved a moder-
ately accurate result when classifying the canopies of three
mangrove species in an Ikonos image. Finally, Wang et al.
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(2004b) compared the ability to discriminate the canopies
of different mangrove species using various combinations
of spectral and textural information inherent to Ikonos and
QuickBird imagery and concluded that the Ikonos imagery
performs slightly better than the QuickBird imagery for
this application.

Attempts to classify mangrove species in high spatial
resolution satellite images using conventional multivariate
classification methods face two major problems. First, what
the sensor observes most clearly from the air is the canopy of
emergent trees, which may be comprised of different species
than the secondary canopy just beneath them, portions of
which will also be detected in the interstices between the
emergents. Therefore, the spatial distribution of different
mangrove species samples in the spectral feature space is
often complex. For example, pixels coming from same tree
species may reside in several clusters in the feature space.
Under such circumstances, an n-dimensional (where n is
the number of features in the feature space) multivariate
Gaussian distribution cannot represent the class very well.
Second, given the flooded, soft-sediment environment in
which mangroves grow, it can be difficult to locate and
access pure training and test samples in sufficient numbers
for a rigorous MLC-based analysis. Since MLC assumes a
Gaussian distribution, a small number of samples can bias
the estimation of the variance and covariance matrix.

Our success in developing methods for discriminating
mangrove species in high-resolution satellite imagery rests on
our ability to overcome these non-trivial biological and logis-
tical constraints. Artificial neural networks (ANN) provide an
alternate approach to the statistical approach employed by
MLC. ANN provide a more flexible solution to discriminate
different classes because no assumption concerning the
probability distribution of classes has to be made (Gopal
and Woodcock, 1996). The strengths and limitations of
neural network applications to remotely sensed imagery are
well-covered in the literature (Benediktsson et al., 1990; Paola
and Schowengerdt, 1995; Atkinson and Tatnall, 1997).
Both variation in the dimensionality of the data set and in
characteristics of training and test samples affect the accuracy
of learning, as demonstrated by Foody and Arora (1997).
Foody (1999) showed that a network trained with samples
near the decision boundaries produces lower accuracy of
learning but significantly higher accuracy of generalization
than one trained with a set of patterns drawn from the cores
of the classes. More recently, Liu et al. (2003) conducted an
experimental study to evaluate the discrimination power of
back-propagation feed-forward networks (BPFN) with different
degrees of overlap among the classes. They used both simu-
lated and real data for the land-cover classification problem
and confirmed that two non-overlapping classes with com-
plex boundaries can be discriminated with 100 percent
accuracy with a BPFN; however, discrimination was much
poorer with an MLC. Surprisingly, they also found that under
conditions of severe overlap, classes with high variability are
discriminated better with MLC than with neural networks.
They concluded that a hybrid approach might provide the
best power of discrimination. One of the major disadvantages
of neural networks is the difficulty in obtaining an optimal
design, i.e., in determining the minimum number of units in
hidden layers that gives the best performance and generaliza-
tion. Several rules of thumb to properly design a neural
network have been proposed in the literature. In particular,
the optimal design of a BPFN for land-cover classification were
investigated in Kavzoglu and Mather (2003). As an alternative
to the back-propagation training strategy, Silván-Cárdenas
(2003) proposed the use of unsupervised clustering techniques,
coupled with computational geometry methods, as an efficient
approach to designing a tree-layered, feed-forward network.

Analysis of remote sensing data collected in different
seasons can be useful in maximizing the discrimination
power of image interpretation algorithms (Wulder et al.,
2004). Seasonal asynchrony in the phenological stages
of different vegetation classes or species that results in
contrasting spectral signatures can enhance classification
accuracy (Dymond et al., 2002). For example, Everitt et al.
(1996) distinguished Chinese tamarisk, a non-native invasive
species, with color infrared aerial photographs acquired
during the late fall, which is the phenological stage in
which Chinese tamarisk turns a yellow-orange to orange-
brown color, contrasting conspicuously with the canopies
of other associated plant species. Schriever and Congalton
(1995) examined the mapping accuracy of forest cover types
in the Northeast with three sets of TM imagery acquired
respectively in May (bud-break), September (leaf-on), and
October (senescence). Their results indicated that classifica-
tion was significantly better in October and May than in
September owing to differences in chlorophyll absorption
rates, water moisture levels, and leaf biomass levels among
the seasons.

Our study had the following two objectives: (a) to
test the performance of multilayered, feed-forward neural
networks for mangrove mapping with Ikonos imagery.
Two training strategies were tested: the back-propagation
approach and the design-while-training approach proposed
in Silván-Cárdenas (2003). The MLC method was also
executed to serve as a reference; (b) to determine an optimal
season for capturing the spectral difference among mangrove
species. Results from this study are expected to contribute
to the development of successful methodology for remotely
mapping variation in the species composition of mangrove
forest canopies.

Methods
Study Site
The study was conducted in mainland mangrove forests near
the Smithsonian Tropical Research Institute’s Galeta Marine
Laboratory (9°24�18� N, 79°51�48.5� W) at Punta Galeta
on the Caribbean coast of Panama, approximately 8 km
northeast of the city of Colon.

Three tree species comprise the canopy of the study
forests: black mangrove (Avicennia germinans), white
mangrove (Laguncularia racemosa), and red mangrove
(Rhizophora mangle). Red mangrove forms a pure or
nearly pure stand at the seaward fringe. About 10 to 20 m
from the water’s edge, white mangrove joins the canopy,
forming a nearly even mixture with red mangrove in
the low intertidal area. In these mixed-species stands,
white mangroves reach average heights of 22 m, while
red mangroves average 16 to 18 m in height (W. Sousa,
unpublished data). So, the crowns of white mangroves
tend to be emergent, and therefore more visible in the
satellite image than those of red mangroves, which form
a lower sub-canopy. Black mangrove joins the canopy in
the mid-intertidal, creating a mixed canopy of the three
species, and then gradually monopolizes most upper
intertidal stands. White mangrove may disappear com-
pletely from the canopy in the upper intertidal, or occur
only as scattered individuals or small stands (W. Sousa,
unpublished data).

Over the past 31 years, Punta Galeta has received,
on average, 2,781 mm of rainfall per year (based on measure-
ments made at the Galeta Marine Laboratory by the Smith-
sonian Tropical Research Institute’s Environmental Science
Program). There is marked seasonality in precipitation,
with more than 90 percent of rainfall occurring between
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early-May and late-December (Cubit et al., 1988 and 1989;
Duke et al., 1997). In 2004, the year in which both Ikonos
images used in our analysis were acquired, the dry season
started on 29 December 2003 and ended on 24 April 2004
(based on criteria developed by the Meteorology and
Hydrology Branch of the Panama Canal Authority, Republic
of Panama (http://striweb.si.edu/esp/physical_
monitoring/summary_seasons.htm). During the 30 days
prior to 02 February 2004 (the date of the dry season image),
34 mm of rain fell at Galeta, as compared to 257 mm of rain
that fell during the 30 days prior to 08 May 2004 (the date
of the early wet season image). Aspects of mangrove phenol-
ogy exhibit a strong association with seasonal rainfall
patterns. We regularly observe that new leaves are flushed
primarily during the wet season, and this pattern was
quantified for Rhizophora mangle on Punta Galeta by Duke
and Pinzón (1993). They found that leaf production was
lowest from December to February (dry season) and peaked
in May to July (early wet season). Since the spectral proper-
ties of leaves change as they age (Carter et al., 1989), we
would expect canopy reflectance to change seasonally with
the shift in average leaf age. In addition, as a consequence
of lower rainfall and higher evaporation, soil salinities are
substantially higher during the dry season (W. Sousa,
unpublished data); this combination of drought conditions
and high soil salinity is likely to lead to reduced leaf water
content and enhance water stress, thereby affecting leaf
reflectance (Carter, 1991 and 1993).

Data Collection and Preprocessing
Two scenes of Ikonos Geo-Bundle images were employed in
this study. They were acquired on 02 February 2004 at 1604
local time and 08 May 2004 at 1601 local time. Metadata for
the two sets of images indicate that both were collected at
a similar sensor elevation: 85.8° for the February images
and 79.1° for the May images. The high elevation angle
largely offsets the geometric distortion induced by variation
in terrain elevation, which is very modest in mangrove
habitats. An image to image registration was conducted
using May imagery as the reference image and a registration
error; a root mean square (RMS) of 0.5 pixels was reported.
A nearest neighbor resampling approach was adopted to
rectify the February image.

Back-Propagation Neural Networks Classifier (BPNN)
A BPNN is a multi-layered feed-forward network trained by
the so-called back-propagation algorithm as first introduced
by Rumelhart et al. (1986). This learning algorithm, also
called the generalized delta rule, is an iterative gradient
descent training procedure. It is carried out in two stages.
In the first stage, once the network weights have been
randomly initialized, the input data are presented to the
network and propagated forward to estimate the output
value for each training pattern set. In the second stage, the
difference (error) between known and estimated outputs is
minimized. The whole process is repeated, with weights
being recalculated at every iteration, until the error is
minimal, or lower than a given threshold. For the classifi-
cation problem a BPNN classifier recognizes spectral pat-
terns by learning from training sets. After training, the
neural network system fixes all the weights and maintains
the original learning parameters. The classification process
calculates the output of each pixel using the parameters
learned from the training phase, and then decides the
class assignment of the pixel.

In this study, a BPNN with two hidden layers of 24 and
12 neurons, respectively, hereafter referred to as BP:24:12,
was trained using the MATLAB Neural Network Toolbox
(V4.0.2-R13). One input node per band and one output

neuron per class were employed with the output encoding
convention of a high level (0.9) from the output neuron
corresponding to a given class and simultaneously low
output (0.1) from other output neurons. Each neuron
computes a log-sigmoid function of the weighted sum of its
input. The updates of the weights and activation level
parameters were carried out using the Levenberg-Marquardt
optimization method for 100 epochs.

Clustering-based Neural Network Classifier (CBNN)
The second method we evaluated was introduced by Silván-
Cárdenas (2003). This method is carried out in two stages. In
the first stage, the ISODATA algorithm is run on each training
set to identify a number of clusters for each class. Each
cluster center is labeled according to the class to which it
belongs, and the entire set is used to build a Delaunay
graph. In the second stage, a three-layered, feed-forward
network is built as follows. For each pair of nodes belonging
to different classes that are connected in the Delaunay
graph, a neuron is created in the first hidden layer and its
weight parameters are set to the coefficients of the hyper-
plane that separates the two clusters in question. A second
layer of neurons is then added to perform the intersection
of the half-spaces defined by the first layer to form the
largest convex regions, each of which falls into a single
class. Finally, the output layer joins the convex region into
arbitrarily complex non-convex regions which define the
decision region for each class.

It must be noted that the activation functions for all
units are implicitly considered as hard limiters (or step
functions) during the design stage. However, log-sigmoid
functions may be used in the classification process. In the
latter case a smoothing parameter is considered and the
hard limiter results as a limiting process. More specifically,
the sigmoid function is defined by:

where a is the smoothing parameter. As approaches to
zero, the plot of f (s) tends to a hard limiter function.

The effect of the smoothing factor on the classification
boundaries is illustrated in Figure 1. The small patches
apparent in Figure 1a are mainly due to the overlap among
black mangrove, red mangrove and rain forest classes. After
introducing the smoothing factor, the decision boundaries turn
smoother, and consequently, small patches may disappear
(Figure 1b). Since different smoothing factors lead to different
classification accuracies, a natural question to ask is how we
can choose the best value for the smoothing parameter. In
previous work, Silvan-Cárdenas (2003), a was empirically set
to 0.02. In this study, we developed a scheme to choose the
optimal parameter with which the kappa value is at a
maximum. The plot of the kappa value against a obtained
for the data set of May is shown in Figure 2. In this case,
the optimum smoothing factor falls around 0.01. After several
trials, it was observed that the optimum a most likely lies at
0.015, which confirms that 0.02 is a good empirical choice.
Another interesting observation is the fact that the optimum 
based on the testing set (and still using the same trained
network) reports a similar value as the optimum a based on
the training set. This might indicate that (a) the training
sample is representative of the classes under consideration,
and (b) the network can generalize very well the data that are
not previously included in the training samples. Evidently,
the second conclusion can be a consequence of the first one
only if the training method succeeds.

This method was implemented in MATLAB software.
The classifier is hereafter referred to as CBNN.

a.

a..

a.

f (s) �
1

1 � e�s/a
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Figure 1. Decision region defined by the CBNN with (a)
hard limiter functions, and (b) sigmoid functions with

. Only band 3 and band 4 from the May 2004
data where used as input in this example. A color
version of this figure is available at the ASPRS website:
www.asprs.org.

a. � 0.01

Figure 2. Plot of kappa value against the smoothing
factor. Optimum smoothing parameter is 0.01. A color
version of this figure is available at the ASPRS website:
www.asprs.org.

Maximum Likelihood Classifier (MLC)
Previous research has indicated that the maximum likeli-
hood classification is the most effective method for distin-
guishing mangrove from non-mangrove habitat using data
from traditional satellite sensors (Gao, 1998 and 1999; Green
et al.,1998; Held et al., 2003). However, there are a number
of open questions concerning the usefulness of MLC for
classifying the species composition of mangrove forests in
high-resolution images, which capture the considerable

small-scale spatial heterogeneity typical of mangrove
canopies. The decision rule of MLC is defined by the multi-
dimensional normal distribution around a class mean.
Consequently, multi-modal or non-normally distributed data
will lead to an incorrect classification. In addition, overlap-
ping decision boundaries in feature space are problematic,
especially if the training data do not physically overlap,
but the decision boundaries do overlap. In our study, we
have used MLC as a reference method for assessing neural
network performance. Equal a priori probability was
assumed for all the classes in the implementation of MLC.

Results
To compare classification performance of the two images,
spatially consistent training and test samples were prepared
with the aid of two field surveys carried out in January and
July 2004, close to the times of image acquisition. During
both field surveys, an extensive number of GPS points were
measured by a high-precision Trimble GPS (Pathfinder® Pro
XRS receiver). The species type, percentage of surrounding
vegetation, as well as other tree inventory information, such
as DBH and crown area, were recorded as well. Given the
patchy distribution of mangrove species, we used polygon
tools to define training and test samples on the images. In
reference to the field collected GPS points, small polygons,
each encompassing no more than 10 pixels, were delineated
across the study area to serve as training and test samples.
Special caution was made to only choose polygons that fall
in pure stands of a specific species in order to avoid
including mixed pixels. The total number of samples was
reported in Table 1. Two experiments were designed to
assess the accuracy of each classification method given two
different combinations of input bands: spectral bands only,
or spectral and textural bands. The results were reported in
detail as follows.

Classification Based on Spectral Information
In the first experiment, the four multispectral bands were
employed as input bands while the panchromatic band was
not taken into account. For each classifier the overall kappa
value was computed using both the training and test sample
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TABLE 1. TRAINING AND TEST SAMPLE SIZES

Sample Red Black White
Gap Lagoon Rainforest RoadTypes mangrove mangrove mangrove

Training 299 220 167 71 155 338 55
Test 205 185 108 82 58 115 51

TABLE 2. ACCURACY OF THE THREE CLASSIFICATION METHODS FOR THE FEBRUARY AND MAY IKONOS IMAGES

USING MULTISPECTRAL BANDS ALONE

04 February 04 May

Land-cover category BP:24:12 CBNN MLC BP:24:12 CBNN MLC

Red mangrove 88.8 81.6 86.6 44.3 94.3 92.6
White mangrove 56.8 65.6 73.3 82.1 96.0 92.4
Black mangrove 68.2 64.4 72.5 35.6 78.8 91.5
Gap 93.7 85.9 82.2 0.0 96.2 89.3
Lagoon 100.0 100.0 100.0 83.7 90.6 90.0
Rainforest 72.7 73.8 78.4 91.7 89.1 84.3
Road 94.6 100.0 89.9 90.4 98.0 71.8

Kappa (test samples) 0.74 0.73 0.78 0.49 0.87 0.86
Kappa (training samples) 0.79 0.78 0.79 0.6 0.87 0.83
Ratio 0.94 0.94 0.99 0.83 1.00 1.05

sets to analyze its generalization characteristic. Intuitively,
one should expect lower kappa values for the test set than
for the training set. A kappa value based on the training set
represents the ability of the model to fit the training data,
however a kappa based on the test set reveals the capability
of the model to generalize (i.e., achieve the correct classifi-
cation of data not previously encountered). Therefore, the
ratio of the later with respect to the former is an index
of the level of generalization achieved by a supervised
classifier, provided that the number of samples in both sets
is sufficiently large for rigorous statistical comparison. The
corresponding kappa values and generalization ratio for
the tested classifiers are shown in Table 2. Three results are
clearly discernable. First, in general the CBNN and MLC
classifiers performed better with the May image than with
the February image, while the BP:24:12 classifier displayed
lower accuracy with the May than February image. Second,
the CBNN and MLC classifier considerately outperformed the
BP:24:12 for the May image in terms of both the kappa
value and the generalization ratio. The three classifiers
achieved comparable accuracy when applied to the February
image. Third, MLC yielded the highest generalization ratios
(0.99 and 1.05) for both images.

User accuracy was derived for each classifier and land
cover type (Table 2). For the individual mangrove species,
user accuracy ranged from 35.6 percent (for black mangrove
in the May image with the BP:24:12 classifier) to 96 percent
(for white mangrove in the May image with the CBNN
classifier). The CBNN and MLC classifiers were noticeably
more accurate than BP:24:12 when applied to either image,
while in general, MLC gave consistently high user accuracy
for the three mangroves in both images.

Classification Based on Textural and Spectral Information
As detailed above, the CBNN and MLC classifiers provided
reasonably high overall classification accuracy when only
spectral bands were considered. Given the high spatial detail
associated with the panchromatic band of the Ikonos image,
it was of interest to further investigate how well these two
classifiers can utilize added textural information in assisting
the classification process. In this experiment, the second
order texture method, Grey Level Co-occurrence Matrix

(GLCM), was adopted to extract the textural information from
the panchromatic band of the Ikonos image. Displacement
vectors at four directions (0, 45, 90, and 135 degrees), with a
spatial distance of one pixel, were employed to compute
three rotation invariant texture bands: Contrast (CON),
Entropy (ENT), and Angular Second Moment (ASM) at three
different window sizes: 9*9, 17*17, 25*25, respectively.
The quantization level was set to 16 in all cases. Then, each
texture band was resampled to the same resolution as the
multispectral bands (4 m), and stacked together with the
four multispectral bands as the input bands for the CBNN
and MLC classifier. For the CBNN method, the smoothing
parameter was fixed to 0.015, which is consistent with what
was described in the CBNN section. The respective kappa
values based on the test samples are presented in Table 3.

The addition of textural bands to the multispectral bands
significantly improved the classification results for both CBNN
and MLC (Table 3). For the February image, the kappa values
increased to 0.88 for CBNN and 0.8 for MLC, compared to 0.78
and 0.79, respectively, when only multispectral bands are
included. Likewise, for the May image, the kappa values
when textural information was included were 0.93 for CBNN
and 0.89 for MLC, compared to 0.87 and 0.83, respectively, when
textural information was not included. Furthermore,
when textural information was included, analyses of the
May image yielded consistently superior classification at
all window sizes when compared to analyses of the Febr-
uary image. Finally, textural information extracted from a
larger window size was more instructive than that from
a smaller window size.

Discussion and Conclusion
Multitemporal information can be very helpful in discrimi-
nating the canopies of different forest species (Jensen 2004).
Our results confirmed that multi-seasonal imagery can aid
species-level classification of mangrove forests. Our study
found that an Ikonos image acquired during the early rainy
season more effectively captured the difference among
mangrove species than one taken during the dry season.
This difference is probably attributable to phenological and
physiological changes that affect the reflectance of tree
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TABLE 3. KAPPA VALUES FOR THE CBNN AND MLC 
ANALYSES OF FEBRUARY AND MAY IMAGES USING BOTH

MULTISPECTRAL AND TEXTURAL BANDS

Window Size

February Ikonos May Ikonos

CBNN MLC CBNN MLC

9 0.86 0.77 0.91 0.85
17 0.88 0.79 0.92 0.87
25 0.87 0.80 0.93 0.88

canopies. At our study sites, mangroves flush new leaves
during the early wet season, while they experience stress
from drought and high soil salinity during the dry season.

When only multispectral bands were included in the
classification, MLC proved the best method for discriminating
different mangrove species, consistent with the findings of
other studies, mentioned above. CBNN demonstrated a similar
performance but at the cost of a considerable increment in
computing time. However, when textual information was
added to the classification, CBNN exhibited a strong advan-
tage over MLC in characterizing the complex decision
boundary associated with the combination of textural and
spectral bands. The relative loss in MLC’s power of discrimi-
nation when textural information was incorporated could
have resulted from a violation of its central assumption of
a multivariate Gaussian distribution model, as discussed
earlier. Neural network-based analyses do not rest on this
assumption, and thus gained discrimination power from
the added textural information. Compared to the traditional
back-propagation neural network method, the new CBNN
method provides a computational simpler yet effective way
in discriminating different mangrove species.
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