
Abstract
Recent studies have attempted to extract impervious sur-
faces from high-resolution satellite imagery such as Ikonos
and QuickBird. These images, however, often lack necessary
spectral information due to technological limitations. This
study integrates spectral information (temperature and
moisture) derived from Landsat-7 ETM� imagery with Ikonos
imagery to derive high-resolution impervious surface
information. Furthermore, three popular methods, including
linear regression modeling, artificial neural network, and
regression tree have been developed and compared using a
paired t-test statistic. Analysis of results reveal that Tasseled
Cap components particularly greenness and wetness of
Ikonos imagery are most important in estimating sub-pixel
imperviousness. Also, to some extent the brightness temper-
ature derived from Landsat-7 ETM� image helps in better
estimation of impervious surfaces. Moreover, a comparative
analysis indicates that the non-linear approaches yielded
statistically better results. Particularly, the regression tree
model generated best results with highest Pearson’s r (0.939)
and lowest mean absolute error (8.307).

Introduction
Currently, one of the notable changes on Earth’s surface is
urbanization. This gradually transforms natural landscapes
to anthropogenic urban land uses, the majority of which are
impervious surfaces. Defined as materials that do not absorb
water, most of the anthropogenic impervious surfaces are
urban infrastructures that include roads, sidewalks, parking
lots, and various rooftops (Arnold and Gibbons, 1996). With
rapid urbanization, these anthropogenic impervious surfaces
are increasing on a regular basis (Hasse and Lathrop, 2003;
Xian et al., 2008; Powell et al., 2008; Esch et al., 2009). For
instance, the impervious surface area in Rhode Island
increased 43 percent from 1972 to 1999, and as of 2004,
10 percent of the state was covered by impervious surfaces
(Zhou and Wang, 2007). When the conterminous United
States is considered, it is estimated that the aggregate
impervious surface area is slightly over one percent of the
total land area, roughly equivalent to the size of the State of
Ohio (Elvidge et al., 2004). Although impervious surfaces
only cover a small geographical area, they have significant
influence on urban and natural environments. Impervious
surfaces modify the energy balance of a geographic area and
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lead to higher temperatures in urban areas than in rural
areas (Xian and Crane, 2006; Xian, 2008; Weng and Lu,
2008). Moreover, impervious surfaces prohibit the penetra-
tion of water into soil, and contribute to environmental
hazards such as flooding (U.S. EPA, 2008). In addition, the
increase in impervious surface area boosts the transportation
and accumulation of non-point pollutants from surface
runoff (Xian et al., 2007). Because of their importance to
urban and natural environments, quantification of impervi-
ous surfaces has become an important research agenda
(Civco et al., 2002; Wu, 2004; Dougherty et al., 2004; Xian
and Crane, 2005; Yang, 2006; Lu and Weng, 2006; Yuan and
Bauer, 2007; Xian et al., 2008, Chabaeva et al., 2009; Weng
and Lu, 2009).

Although surveys and digitization over aerial photo-
graphs are the most accurate methods of mapping impervi-
ous surfaces, it is time consuming and labor intensive, in
particular for a large study area (Zhou and Wang, 2008). In
this context, as satellite remote sensing data offers timely
synoptic view over large geographical areas, recent studies
have focused on automated extraction of impervious
surfaces by classification of remote sensing imagery (Yuan
et al., 2008). In a majority of these studies, moderate
resolution remote sensing data, such as Landsat Thematic
Mapper and SPOT MSI imagery, have been employed.
However, moderate resolution remote sensing imagery is
not the best solution for fine scale urban applications due
to their coarse resolutions, and thereby not preferred by
urban planners and policy makers (Mesev, 1997; Carlson,
2003). With the advancement in high-resolution satellite
remote sensing technologies, in particular since the avail-
ability of Ikonos and QuickBird imagery, mapping impervi-
ous surfaces at finer scales with frequent intervals has
become possible. Therefore, recently, a few studies have
attempted to extract impervious surfaces from high-resolu-
tion remote sensing imagery with different degrees of
success (Cablk and Minor, 2003; Goetz et al., 2003; Small,
2003; Yuan and Bauer, 2006; Mohapatra and Wu, 2007;
Hester et al., 2008; Zhou and Wang, 2008; Zhang et al.,
2009; Lu and Weng, 2009; Wu, 2009). Goetz et al. (2003)
extracted impervious surfaces from Ikonos imagery with the
help of Normalized Difference Vegetation Index (NDVI) and
band ratios (NIR/Red, NIR/Blue, and NIR/Green). Cablk and
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Minor (2003) identified impervious surfaces from the
panchromatic and multispectral images of Ikonos using
morphological operators. The study also derived four
principal components of Ikonos image to examine how
impervious surfaces are represented in each principal
component. Hester et al. (2008) used ancillary GIS data to
eliminate confusion between impervious surface and water.
Zheng et al. (2005) distinguished roads from rivers with the
fractal dimensions derived from an Ikonos image. Lu and
Weng (2009) extracted water, shadows, and impervious
surface information and argued that the limited spectral
information of high-resolution data limits accurate extrac-
tion of impervious surfaces. Moreover, several studies
reveal that the spectral variability within land cover types
increases with fine resolution particularly in highly hetero-
geneous urban environments (Small, 2003; Herold et al.,
2004; Lu and Weng, 2009; Wu, 2009). In addition, when
applied to urban areas, land-use classification accuracy
decreases due to the spectral overlap between soil and
impervious surface (Hester et al., 2008).

Unlike medium resolution remote sensing data, high-
resolution remote sensing imagery provides much more
spatial details but lacks necessary spectral information
(Thomas et al., 2003; Goetz et al., 2003; Herold et al., 2004).
Currently available high-resolution remote sensing imagery,
such as Ikonos and QuickBird have only visible (VIS) and
near-infrared (NIR) bands, and lacks shortwave infrared
(SWIR) and thermal infrared (TIR) bands due to technological
limitations of remote sensors. For urban applications, SWIR
and TIR spectra may be important to separate impervious
surfaces from other land-cover types (Herold et al., 2004;
Warner and Nerry, 2009). SWIR bands are important to
extract water (surface moisture) information, and TIR bands
are essential for obtaining surface temperature information.
Information related to water content and surface temperature
may be essential to separate impervious surfaces from other
land-cover types. When compared to bare soil, as an exam-
ple, impervious surfaces may contain less water and have a
higher temperature during the daytime. Therefore, for better
estimation of high-resolution impervious surface informa-
tion, it is necessary to integrate spectral information
obtained from medium-resolution remote sensing imagery.
Little research, however, has been conducted to incorporate
the spectral information (e.g., SWIR and TIR) from medium-
resolution data to facilitate impervious surface extraction
from high-resolution remote sensing imagery.

This study extracted two spectral parameters, brightness
temperature and Normalized Difference Water Index (NDWI),
from Landsat-7 ETM� imagery and integrated them with
Ikonos imagery to derive high-resolution impervious surface
information. Three popular sub-pixel classification
approaches, regression modeling, artificial neural network
(ANN), and regression tree, were developed for impervious
surface extraction. Results of these approaches were evalu-
ated and compared using a paired t-test statistic. The
objectives of the study are: (a) to utilize brightness tempera-
ture and NDWI obtained from Landsat-7 ETM� along with
spectral and spatial information of Ikonos imagery to extract
sub-pixel imperviousness, and (b) to compare linear (regres-
sion model) and non-linear (artificial neural network and
regression tree) approaches for high-resolution sub-pixel
impervious surface estimation. The remainder of this paper
is organized as follows. The next section describes the study
area and data, followed by the information extracted from
Ikonos and Landsat-7 ETM� data. Then, the methodology of
this research, including regression modeling, ANN, and
regression tree analysis for impervious surface estimation,
followed by reports of the modeling results, and finally, the
conclusions.

Study Area
For this research, Grafton Village and Township (see Figure 1)
in Ozaukee County, Wisconsin, was chosen as the study area.
This area is covered by a variety of urban (e.g., residential,
commercial, transportation, etc.) and rural (e.g., agriculture
and forestry) land uses. The total estimated land area of
Grafton excluding water bodies is roughly twenty four square
miles (U.S. Census, 2000). According to the South Eastern
Wisconsin Regional Planning Commission (SEWRPC), the study
area experienced rapid growth in terms of population and
housing unit numbers from 1970 to 2000. The population in
the village almost increased 58 percent and the number of
housing units doubled in the same time period; this trend is
likely to continue (SEWRPC, 2004).

An Ikonos image acquired on 03 September 2002 was
obtained from the American Geographical Society Library
(AGSL) at the University of Wisconsin-Milwaukee. A Landsat-7
ETM� image for the same time period of the year was also
collected from www.wisconsinview.org. The Ikonos image 
(4-meter resolution) comprises of four bands (blue, green, red,
and NIR). For the Landsat-7 ETM� image, the spatial resolu-
tion for bands 1 through 5 and 7 is 28.5 meters, and band 6
has a resolution of 57 meters. The Ikonos and Landsat-7
ETM� images were utilized to derive impervious surface
information. In addition, a color aerial photograph, with a
resolution of two feet, was also obtained from the AGSL. This
photograph was employed to select training and testing
samples, and to examine the accuracy of impervious surface
estimation. All the images were re-projected to the UTM
projection (WGS84, Zone 16). No geometric corrections were
performed since no significant mis-registration was found. As
the study area is small and major atmospheric effects were
not evident, atmospheric corrections were not carried out.

Remote Sensing Information

Information Extraction from Ikonos Data
In this paper, both spectral and spatial information were
derived from the Ikonos image to estimate impervious
surface distribution. For spectral information, Tasseled Cap
components have been typically employed for extracting
impervious surfaces (Yuan and Bauer, 2006 and 2007). In
particular, the greenness (the second component of Tasseled
Cap transformation) has proven to have a significant and
negative correlation with impervious surfaces. In addition to
spectral information, spatial information such as texture has
also been applied to separate impervious surfaces from other
urban land covers. In fact, fractal dimension analysis has
proven effective for analyzing urban land uses (Zheng et al.,
2005). Therefore, in this study, we derived both Tasseled Cap
components and fractal dimension from the Ikonos image.

Spectral Information: Tasseled Cap Components
Proposed initially by Kauth and Thomas (1976), Tasseled
Cap transformation is generally performed to transform ‘n’
dimensional Landsat TM data into new ‘n’ dimensional
components for spectral information enhancement. The three
major components produced from the Tasseled Cap transfor-
mation are brightness, greenness, and wetness. Brightness
shows principal variation in soil reflectance, greenness is
related to green vegetation, and wetness indicates informa-
tion about canopy and soil moisture (Jensen, 2007). While
the initial Tasseled Cap transformation was proposed for
Landsat TM data, subsequently similar transformations were
developed for different sensors. When applied to Ikonos
imagery, Horne (2003) developed a Tasseled Cap transforma-
tion and examined its validity by testing over two hundred
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Ikonos images globally. Following the approach of Horne
(2003), this paper generated four Tasseled Cap components,
with the first three representing brightness, greenness, and
wetness (see Figure 2). Although they bear the same name,
the original Tasseled Cap transformation proposed for
Landsat data includes shortwave infrared bands which are
not available for Ikonos imagery. Therefore, it is expected
that the Tasseled Cap components obtained from Ikonos data
would be different. It has been established that Tasseled Cap
component 2 (greenness) of Landsat image could explain
almost all the variation in impervious surfaces (Bauer et al.,
2004). However, it is yet to be explored for the Ikonos data,
particularly for estimating imperviousness. Therefore, in this
study, all these four Tasseled Cap components were
employed for impervious surface estimation.

Spatial Information: Fractal Dimension
In addition to spectral enhancement, texture analysis was
also applied to the Ikonos image. Texture information
measures the variability in digital number (DN) values
within a group of pixels. Various methods, such as local
variability, variograms, fractal dimension, etc. have been
proposed for extracting texture information from satellite
images. Among them fractal dimension seems to be very
appealing as it could be applied at various scales (Emerson
et al., 1999). The concept of fractal dimension is based on

a perimeter-area calculation method (Mandelbrot, 1982) in
order to quantify the degree of complexity of the planar
shapes. This not only explains the complexity of shapes
but also exhibits the property of self-similarity statisti-
cally. Commonly, fractal dimension is measured by
measuring the length of a section of a feature with varying
precision. If the form is fractal then there exists a linear
relationship between precision and length in a log/log
plot. In this study, a different procedure based on the
logic of Eastman (1985) which considers the slope of each
segment of the log/log plot to provide evidence of an
underlying angularity to estimate the fractal dimension
was used (Eastman, 2003). In order to calculate the fractal
dimension, principal component analysis was carried out
over the Ikonos image and the first principal component
was used. The TEXTURE tool in IDRISI Andes was used to
obtain the fractal dimension image (see Equation 1 and
Figure 3).

(1)

where, f is the fractal dimension for a pixel, and slope is
calculated in degrees for the same pixel based on a 3 � 3
window.

f �  
 log 2

 log 2 �  logasina180 � slope

2
b b

Figure 1. Grafton (Village and Township).



4 Decembe r  2010 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Information Extraction from Landsat-7 ETM� Data
Besides information from the Ikonos image, two parameters,
brightness temperature and NDWI, were derived from the
Landsat-7 ETM� image. The purpose of generating these two
parameters is to evaluate whether the spectral information
from Landsat-7 ETM� image can contribute to a better
estimation of impervious surfaces from the high-resolution
Ikonos image.

Temperature Estimation
Brightness temperature was derived from the Landsat-7
ETM� TIR band. Two steps described in the Landsat-7 ETM�
user manual were followed to calculate the brightness
temperature. The first step involves the conversion from

digital numbers (DNS) to spectral radiances, and the second
step is to calculate the brightness temperature from the
spectral radiances assuming a uniform emissivity applied for
different land covers (see Equation 2).

(2)

where T is at satellite temperature in Kelvin, L� is the pixel
value as radiance, and K1 and K2 are pre-lunch calibration
constants for Landsat-7 ETM�

After calculating the brightness temperature for each
pixel, a nearest neighbor interpolation technique was carried

T �  
K2

 lnaK1

Ll

 � 1b

(a) (b)

(c) (d)

Figure 2. Tasseled Cap Components of Ikonos Image: (a) Tasseled Cap Component 1
(Brightness), (b) Tasseled Cap Component 2 (Greenness), (c) Tasseled Cap 
Component 3 (Wetness), and (d) Tasseled Cap Component 4 (Fourth).
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Regression Modeling
Initially, ordinary least squares (OLS) regression models were
utilized to explore the relationship between percentage
imperviousness and the parameters extracted from the
satellite data, including the Tasseled Cap components and
fractal dimension from the Ikonos image, and brightness
temperature and NDWI obtained from the Landsat-7 ETM�
data. Then, stepwise regression analysis was performed in
SPSS 17.0 statistical analysis software to explore the explana-
tion power of individual independent variables. Subse-
quently, the independent variables which are not statistically
significant were ignored and two regression models were
constructed to estimate the sub-pixel imperviousness of the
entire image. In the first model, parameters extracted from the
Ikonos image were employed as independent variables,
whereas in the second model, additional variables obtained
from the Landsat ETM� data were added. These two model
results were later compared to specifically evaluate the
contribution of Landsat ETM� data in estimating impervious-
ness. The formulation (see Equation 4) of the model is as
follows:

(4)

where, I is the percentage impervious surface for an
individual pixel, TCi is the ith Tasseled Cap component of
the Ikonos image, Fractal is the fractal dimension extracted
from the Ikonos image, Temp and NDWI are the brightness
temperature and normalized difference vegetation index,
respectively, obtained from the Landsat-7 ETM� image (for
the second model), and �, �, 	, 
, and � are regression
coefficients.

I � a
i

ai * TCi � b * Fractal � g * Temp � d * NDWI � �

Figure 3. Fractal Dimension Image. Figure 4. Brightness Temperature Image.

out to resample the pixel size to 4 m by 4 m to match the
pixel size of the Ikonos image (see Figure 4).

Water Information: Normalized Difference Water Index
(NDWI)

Many studies have attempted to estimate water content
using satellite remote sensing reflectance data (Jackson et al.,
2004). Water strongly absorbs the radiances in SWIR bands,
and reflects the majority of radiances in NIR bands. There-
fore, the combination of SWIR and NIR spectra was typically
utilized to represent water content. In particular, Gao (1996)
developed the NDWI to relate Landsat TM reflectance spectra
to water content (see Equation 3).

(3)

where, NDWI is normalized difference water index, and RNIR
and RSWIR correspond to the reflectance in band 4 and band
5 of Landsat-7 ETM� image, respectively.

As NDWI is related to water content, it might be helpful
in differentiating impervious surface from soil with some
water content. Therefore, in this paper, the NDWI was
calculated for each Landsat-7 ETM� pixel, and resampled to
the size of Ikonos pixels (see Figure 5).

Methodology
With the above parameters extracted from Ikonos and
Landsat-7 ETM� data, it is necessary to apply them to model
impervious surfaces. In this paper, three models, regression
modeling, ANN, and regression tree method were applied to
estimate high-resolution impervious surfaces.

NDWI �  
RNIR � RSWIR

RNIR � RSWIR
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Artificial Neural Network Classification
Unlike the linear regression model, ANN provides an
alternative to traditional statistical classification approach
as it is more flexible and could map nonlinearity among
variables without assumptions about the data (Ji, 2000).
Furthermore, ANN has proven to be superior while classify-
ing per-pixel Landsat data over other classifiers such as
maximum likelihood (Flanagan and Civco, 2001; Kavzoglu
and Mather, 2003; Wang et al., 2008), and also outperform
the traditional linear unmixing models (Liu and Wu, 2005).
Earlier studies have revealed that ANNS could analyze
complexity including nonlinearity in urban areas and
estimate fractional biophysical information such as impervi-
ous surfaces from moderate (Civco and Hurd, 1997) and
high-resolution satellite imagery (Mohapatra and Wu, 2007).
ANNS were also used to classify land-cover types from
Landsat-7 ETM� data using additional data such as texture
and topographic information (Aitkenhead, 2008).

In this study, the proportions of vegetation, impervious
surface, and soil (VIS) within each individual pixel of the
Ikonos image were estimated through ANN classification
following the method proposed by Mohapatra and Wu
(2007). The four Tasseled Cap components, fractal dimen-
sion, brightness temperature, and NDWI were employed as
inputs in the neural network structure (see Figure 6) where
the three output nodes represented vegetation, impervious
surface, and soil. Similar to the regression analysis, two
neural network models were created, with the first model
only utilizing the variables extracted from the Ikonos data
and the second model employing all variables derived from
the Ikonos and Landsat ETM� image. The Multi-Layer
Perceptron (MLP) classifier module of IDRISI Andes, which
employs the widely used back propagation learning algo-
rithm (Eastman, 2003), was utilized to obtain the sub-pixel
VIS information. When an input pixel is presented to MLP
classifier, each output node is assigned a value that is

Figure 6. Three Layer ANN Structure.

Figure 5. Normalized Difference Water Index Image.
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compared to the expected value. When the output result
achieves a predefined accuracy level, the input pixel is
assigned an activation value ranging between 0 to 1 where
larger values represent a higher degree of membership
(Kavzoglu and Mather, 2003; Eastman, 2003; Mertens et al.,
2004) belonging to that corresponding node (vegetation or
impervious surface or soil).

To achieve higher accuracies through MLP classifier it is
necessary to design the optimum network structure (see
Figure 6) and set proper learning parameters. While deciding
the optimum network structure, the number of hidden layer
nodes is the most important and were estimated using the
following equation (see Equation 5):

(5)

where, Nh is the number of hidden layer nodes, Ni is the
number of input layer nodes, and No is the number of
output layer nodes.

Besides neural network structure, several other parame-
ters influence the performance of the ANN classifier such as
sigmoid function constant, learning rate, and momentum
factor which were decided following the suggestions of
Kavzoglu and Mather (2003).

Classification and Regression Tree Analysis
Like ANN classifiers, the classification and regression tree
(CART) technique has been widely used in satellite image
processing and proven effective in generating impervious
surface information in urban areas. CART is a tree building
technique to predict a dependent variable (percentage
imperviousness) based on the independent variables. CART
can select few important variables and their interactions
from a large number of variables submitted for analysis.
CART technology is inherently non-parametric and is not
restricted to the assumptions of normal distribution of
independent or dependent variables, multi-collinearity
among independent variables, issues of heteroskedacity, etc.
The classification and regression tree technique has the
ability to handle both categorical (classification tree) and
continuous (regression tree) dependent variables. Depending
on how the independent and dependent variables interact
with each other, the CART technology grows a binary tree by
repeatedly splitting the data. As the technology is based on
a binary partitioning, the pixels under consideration can
only be split into two more or less homogenous groups
again and again until all the pixels are classified into one
category or the other uncovering the predictive structure of
the problem under consideration (Breiman et al., 1984).
Regression tree models have been successfully applied to
both medium and high-resolution satellite imagery to
extract impervious surface fraction (Yang et al., 2003, Lu
and Weng, 2009).

In this study, a regression tree program, Cubist, devel-
oped by Quinlan (1993) was utilized to model the percentage
impervious surface (dependent variable) against independent
variables such as four Tasseled Cap components of the
Ikonos image, fractal dimension derived from the Ikonos
image, brightness temperature, and NDWI information derived
from the Landsat-7 ETM� data. Similar to the previous two
modeling approaches, one model with Ikonos related vari-
ables only, and the other with parameters from both Ikonos
and Landsat ETM� imagery were constructed.

Accuracy Assessment and Model Comparison
For regression and regression tree methods, 300 samples
were generated using a stratified random sampling method-
ology ensuring enough samples in the urban areas. A 5 by
5 sampling size was utilized to diminish the effects caused

Nh � INT1Ni * No

by image mis-registration. Within these 300 samples, 150
were utilized for model development and the other 150
were applied for accuracy assessment. For training and
testing MLP classifier, for each of the land-cover classes
(vegetation, impervious surface, and soil) 30 sampling sites
were selected so that they could represent the spectral and
spatial variations of the entire image. After obtaining the
impervious surface fraction from MLP classifier, in order to
compare the ANN result with the other two model results,
the same 150 samples which were used for accuracy
assessment of regression, and regression tree methods were
also used for accuracy assessment of the ANN method.
While assessing accuracy, for each sampling point (5 pixels
� 5 pixels of Ikonos image), the actual imperviousness was
calculated with the help of the color aerial photograph and
was compared with the estimated imperviousness. In
particular, for a sampling point, the total area of impervi-
ous surface within the 5 pixels by 5 pixels (20 m by 20 m)
of Ikonos image was manually digitized; the percentage of
impervious surface area to the total sampling area (400
square meters) was calculated. After obtaining the estima-
tion for the actual imperviousness and estimated impervi-
ousness, two quantitative estimators were utilized to
compare the results obtained through regression, ANN and
regression tree methods. The first estimator is the Pearson’s
correlation coefficient (Pearson’s r) and second one is the
mean absolute error (MAE). Pearson’s r is a measure of
reliability and describes the strength of relationship
between the actual and estimated imperviousness. The
MAE (Equation 6) is about the relative prediction error
which is estimated as follows:

(6)

where, is the actual imperviousness for sampling unit i
obtained from color aerial photograph, is the estimated
imperviousness for the same sampling unit i, and N is the
total number of samples.

In addition to the Pearson’s r and MAE measurements, a
paired t-test was also performed on the residuals of all the
methods. The paired sample t-test was conducted to deter-
mine (a) whether additional information from Landsat ETM�
data is helpful in improving the imperviousness estimation,
and (b) if there is a significant difference between the mean
absolute errors of imperviousness measurement and evaluate
whether a particular model is significantly better than
others. To achieve the first goal, the two modeling results,
one with only Ikonos data and the other with both Ikonos
and Landsat data, of the three methods were compared
using a paired sample t-test. Then, following the similar t-
test approach, the results of all the three methods (regres-
sion, ANN, and regression tree) were compared to determine
whether the imperviousness derived from one method is
significantly different from those generated by other meth-
ods. Particularly, the mean absolute error and the t value
along with significance level (p value) were obtained for
comparing the pairs.

Results and Discussion

Impervious Surface Extraction

Regression Modeling
Results of regression modeling (see Table 1) suggest that three
independent variables, Tasseled Cap component 2 and
Tasseled Cap component 3 from Ikonos data, and brightness
temperature from the Landsat-7 ETM� image, are closely

INi

Ii

MAE �  
1
N

 a ƒIi � INi ƒ
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related to the percentage imperviousness. Moreover, it
indicates that approximately 80 percent of the variation in the
percentage imperviousness (see Figure 7b) can be explained
by these three variables (R2 = 0.802). If the contribution of
brightness temperature is ignored (see Figure 7a) then
approximately 79 percent of the variation in the percentage
imperviousness can be explained. In the regression models,
other explanatory variables, including Tasseled Cap compo-
nent 1, Tasseled Cap component 4, and fractal dimension
from Ikonos and NDWI from Landsat-7 ETM� image, were not
statistically significant in improving the model estimates.

Additionally, a forward stepwise regression model was
constructed to examine if a particular variable significantly
improves the model predictability where the R2 change
statistic and F statistic were used as the criteria. The R2

change statistic and associated significance of F change were
helpful in deciding if inclusion of independent variables
such as temperature obtained from Landsat ETM� is helpful
in significantly improving the model estimates. Results (see
Table 2) reveal that Tasseled Cap component 2 is the most
important explanatory variable which explains approximately
55 percent of the variation in percentage imperviousness by
itself (R2 = 0.552). This suggests that Tasseled Cap compo-
nent 2 of Ikonos image or greenness is strongly related with
the amount of green vegetation and inversely related to the
amount of impervious surface. This result is consistent with
the previous studies applied to medium resolution satellite
data (Bauer et al., 2004). However, unlike Landsat data
besides Tasseled Cap component 2, Tasseled Cap component
3 of Ikonos image also plays a very significant role in
explaining the variation in percentage impervious surface. By
including Tasseled Cap component 3 in the model, the R2

increases by 0.241 to 0.793 which is highly significant
(significant (0.000) F-value change). Tasseled Cap component
3, which can be explained as wetness or soil moisture, is
negatively correlated with impervious surfaces, and is
important in identifying impervious surfaces. In addition to
these parameters from Ikonos imagery, the brightness
temperature from Landsat-7 ETM� data, also significantly
improves the model performance (significant (0.014) F-value
change) although the R2 change is only 0.008. As temperature
increases with the intensity of imperviousness, it is posi-
tively correlated with impervious surfaces.

Artificial Neural Network
After several attempts of running the MLP classifier it was
found that a learning rate of 0.0083 and momentum factor of

0.56 yields the best result. The 95 percent accuracy cut off
was used to terminate the MLP classifier. It was found that
inclusion of fractal dimension and NDWI decreased the
overall accuracy of MLP classifier and could not attain the
95percent cut off accuracy. So it was decided not to con-
sider them as input layers in the final models. For both the
models, one with only Ikonos data (see Figure 7c) and the
other with both Ikonos and Landsat ETM� data (see Figure
7d), the MLP classifier produced as many images (activation
level maps) as the total number of nodes (three) in the
output layer by assigning the pixels the highest activation
value of each node. For this study, only the activation level
map representing the impervious surface fraction of the two
models (see Figure 7c and 7d) were considered for compari-
son and accuracy assessment. The output values of the
activation level map obtained from the MLP classifier ranges
between 0 to 1 representing the degree of membership of
imperviousness or the likelihood of a pixel belonging to the
land-cover class impervious surface. So it could be inferred
that this likelihood should closely relate to the percentage
imperviousness within the pixel. Hence, there should be a
close relationship between the actual sub-pixel impervious-
ness and the estimated sub-pixel imperviousness through
ANN classification. For comparing the ANN classification
result with the actual imperviousness at first, the activation
values were converted to percentage and then compared
with the actual imperviousness.

Classification and Regression Tree
With the Cubist program, the regression tree model was
developed. The conditions (rules) and coefficients of
independent variables and their relative importance are
showed in Table 3, and the percentage imperviousness
image is displayed in Figure 7e. Analysis of results suggest
that the Tasseled Cap components particularly Tasseled Cap
component 2 (greenness) and Tasseled Cap component 3
(wetness) are better predictors while estimating sub-pixel
imperviousness from Ikonos image. It was found out that
with this approach, fractal dimension, brightness tempera-
ture, and NDWI information are not helpful in estimating
sub-pixel imperviousness. So the resultant model uses only
Ikonos data.

Accuracy Assessment and Model Comparison

Comparison between Models Without and With Landsat
Information
In order to evaluate the contribution of Landsat-derived
information in discriminating impervious surface, the model-
ing accuracy of each method without and with Landsat
information was calculated and compared. In particular, the
Pearson’s r and MAE measurements for each method were
calculated using the testing samples (see Table 4 and
Figure 8). In addition, the paired t-test was carried out to
examine whether the improvements due to the addition of
Landsat derived information are statistically significant.

By comparing the correlation coefficient (r) and MAE
for each individual method, it was found out that for
regression analysis and ANN, the addition of brightness
temperature improves the accuracy of impervious surface
estimation. The t-test results suggest that the two regression
models, one employing Ikonos data only (r = 0.915, 
MAE =10.913) and the other utilizing both Ikonos and
Landsat ETM� data (r = 0.918, MAE = 10.622) are not
significantly different (t = 1.408, p = 0.161) from each
other. When the two ANN models were compared, the one
with Ikonos data only (r = 0.924, MAE = 12.208) was
significantly worse (t = 4.461, p = 0.000) than the counter-
part with both Ikonos and Landsat ETM� information 

TABLE 1. RESULTS OF FINAL REGRESSION MODELS

Model 1: Only Ikonos Data

B Std. Error t Sig.
(Constant) 18.34 1.73 10.604 0.000
TC2 -116.6 6.557 -17.784 0.000
TC3 -514.58 39.274 -13.102 0.000

Model 2: Ikonos and Landsat ETM� Data

B Std. Error t Sig.
(Constant) -223.21 96.62 -2.31 0.022
TC2 -109.7 7.01 -15.65 0.000
TC3 -508.66 38.66 -13.16 0.000
TEMP 0.82 0.33 2.5 0.014

Where, TC2 and TC3 are Tasseled Cap components 2 and 3,
respectively, and TEMP is Brightness. Temperature obtained
from Landsat ETM�
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(a) (b)

(c)

(e)

(d)

Figure 7. (a) Estimated Impervious Surface Fraction through
Regression (Only Ikonos data), (b) Estimated Impervious Surface
Fraction through Regression (Ikonos and Temperature data),
(c) Estimated Impervious Surface Fraction through ANN (Only
Ikonos data), (d) Estimated Impervious Surface Fraction through
ANN (Ikonos and Temperature data), and (e) Estimated Impervious
Surface Fraction through Regression Tree (Only Ikonos data).
Estimated Impervious Surface Fraction through Regression (7a
and 7b), Neural Network (7c and 7d), and Regression Tree (7e)
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TABLE 2. RESULTS OF FORWARD STEPWISE REGRESSION MODEL

Change Statistics

R R Square R Square Change F Change Sig. F Change

.743(a) 0.552 0.552 182.483 0.000

.891(b) 0.793 0.241 171.673 0.000

.895(c) 0.802 0.008 6.251 0.014

Where:
a. Predictors: (Constant), TC2
b. Predictors: (Constant), TC2, TC3
c. Predictors: (Constant), TC2, TC3, TEMP
TC2, TC3 and TEMP is Tasseled Cap component 2, 3 and 
Temperature, respectively.

TABLE 3. RULE DEFINITION USING THE REGRESSION TREE MODEL

Rule Condition Impervious Surface Fraction

1 TC4 �-0.033 1.42178
2 TC4 =-0.033 36.637 - 112 TC2 - 667 TC3 - 31 TC1

Where, TC1, TC2, TC3, and TC4 are Tasseled Cap components 1,
2, 3, and 4, respectively.

TABLE 4. ACCURACY ASSESSMENT RESULTS

Accuracy 
Statistics t Statistics

Classification 
Methods Data Used r MAE t Sig.

Regression Only Ikonos Data 0.915 10.913
Method Ikonos and 0.918 10.622 1.408 0.161

Temperature Data

Only Ikonos Data 0.924 12.208
ANN Ikonos and 0.930 9.217 4.461 0.000
Method Temperature Data

Regression Only Ikonos Data 0.939 8.307
Tree Method

(r = 0.930, MAE = 9.217), suggesting that temperature
played a significant role in better estimating impervious
surface. For the regression tree method, Landsat-derived
information was not significant enough to be included in
the model. These results suggest that Landsat-derived
information, in particular brightness temperature, does
help in impervious surface estimation, especially with the
ANN method.

Comparison between Linear Regression Analysis and Non-
linear Models
In addition to examining the contribution from Landsat-
derived information, the performances of the three models
were also evaluated. Results (see Table 5 and Figure 8)
indicate that regression tree has the best performance, with
the highest Pearson’s r value (0.939) and lowest MAE
(8.307). ANN has a slightly poorer performance (r = 0.930,
MAE = 9.217), and regression analysis has the worst accu-
racy, with the lowest Pearson’s r (0.918) and highest MAE
(10.622). Statistically, the paired sample t-test result (see

Table 5) reveals that the accuracy of regression analysis is
significantly lower than that of ANN (t = 2.600, p = 0.010)
and regression tree method (t = 4.950, p = 0.000). When ANN
and regression tree models were compared, however, no
significant differences were found (t = 1.530, and p = 0.129).
These results indicate that non-linear methods, including
ANN and regression tree, perform significantly better than the
linear method (regression modeling), while there are no
significant differences between these two non-linear meth-
ods. However, as the differences are very small, the better
accuracy achieved by the non-linear methods could be
associated with model over-fitting.

Conclusions
This study attempts to integrate spectral information derived
from Landsat-7 ETM� imagery with Ikonos imagery to derive
high-resolution impervious surface information. In particu-
lar, brightness temperature and NDWI derived from the
Landsat-7 ETM� image, and Tasseled Cap components and
fractal dimension extracted from the Ikonos image were
integrated for better estimation of impervious surface
information. Three popular sub-pixel estimation methods,
including linear regression modeling, artificial neural
network and regression tree, were developed and compared
using a paired t-test statistic.

A careful evaluation of both the linear and non-linear
models suggests that the Tasseled Cap components of the
Ikonos image are helpful in estimating sub-pixel impervi-
ousness. Tasseled Cap component 2 (greenness) which is
inversely related to impervious surface and Tasseled Cap
component 3 (wetness) which is related to soil moisture
are found to be statistically significant independent
variables in the linear regression model. They were also
found to be the major predictors of the regression tree and
ANN models. Unlike the Landsat Tasseled Cap components,
in which only the greenness (TC2) significantly contributes
to the estimation of impervious surface, for Ikonos Tas-
seled Cap components, both greenness (TC2) and wetness
(TC3) are important in explaining the variation of impervi-
ousness. Apart from Tasseled Cap component 2 and 3 of
the Ikonos image, the brightness temperature extracted for
the Landsat-7 ETM� image was found to be important to
some extent in the regression and ANN model. In the
regression tree method, brightness temperature was not
significant for estimating imperviousness. For all the three
methods, contrary to the expectation, the fractal dimension
obtained from Ikonos image and NDWI obtained from
Landsat-7 ETM� were not significant in estimating sub-
pixel imperviousness.

Moreover, comparative analysis of modeling results
suggests that the regression tree approach yielded best
results in comparison to the linear regression method and
the non-linear ANN classification approach. Moreover, results
indicate that non-linear methods, including ANN and
regression tree, perform significantly better than the linear
method (regression modeling), while there are no significant
differences between these two non-linear methods. However,
as the differences are very small, the better accuracy
achieved by the non-linear methods could be associated
with model over-fitting. Therefore, to make a generalization
that non-linear methods are better than the linear regression
analysis, there is a need to test the models in larger unsam-
pled areas of the same image. This is not possible in this
research as the study area is small and the larger Ikonos
image was not available. Future studies could explore these
techniques to estimate impervious surface by integrating
Ikonos and Landsat ETM� data specifically the TIR and SWIR
bands in different geographical areas.
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(c)

(e)

(d)

Figure 8. Regression plots of actual impervious surface percentage (%) versus estimated impervious
surface percentage (%) of regression result (8a and 8b), neural network result (8c and 8d), and regression
tree result (8e)

TABLE 5. MODEL COMPARISON (PAIRED SAMPLE t-test)

Paired  
Sample Paired 

Statistics Differences

Mean Std. Mean Std. t Sig. (2-tailed)
Deviation Deviation

Pair 1 RGR 10.622 9.138 1.40 6.63 2.60 0.010
ANN 9.217 9.057

Pair 2 RGR 10.622 9.138 2.31 5.73 4.95 0.000
RT 8.307 9.098

Pair 3 ANN 9.217 9.057 0.91 7.30 1.53 0.129
RT 8.307 9.098

Where RGR, ANN, and RT is the Regression, Artificial Neural Network, and Regression Tree
method, respectively.
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