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THE RADAU–LANCZOS METHOD FOR MATRIX FUNCTIONS∗

ANDREAS FROMMER† , KATHRYN LUND‡ , MARCEL SCHWEITZER† , AND

DANIEL B. SZYLD‡

Abstract. Analysis and development of restarted Krylov subspace methods for computing
f(A)b have proliferated in recent years. We present an acceleration technique for such methods
when applied to Stieltjes functions f and Hermitian positive definite matrices A. This technique
is based on a rank-one modification of the Lanczos matrix derived from a connection between the
Lanczos process and Gauss–Radau quadrature. We henceforth refer to the technique paired with the
standard Lanczos method for matrix functions as the Radau–Lanczos method for matrix functions.
We develop properties of general rank-one updates, leading to a framework through which other
such updates could be explored in the future. We also prove error bounds for the Radau–Lanczos
method, which are used to prove the convergence of restarted versions. We further present a thorough
investigation of the Radau–Lanczos method explaining why it routinely improves over the standard
Lanczos method. This is confirmed by several numerical experiments, and we conclude that, in
practical situations, the Radau–Lanczos method is superior in terms of iteration counts and timings,
when compared to the standard Lanczos method.
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1. Introduction. A problem of increasing importance in scientific computing
is the computation of f(A)b, where f is a scalar function, A ∈ Cn×n, and b ∈ Cn.
Frequently A is large and sparse, making the direct computation of f(A) infeasible,
but not f(A)b. Applications requiring f(A)b include the solution of differential equa-
tions via exponential integrators [18, 19, 20]; determining the communicability—or
other quantities of interest—in network analysis [2, 8]; and simulations involving the
Neuberger overlap operator or the rational hybrid Monte Carlo algorithm in lattice
quantum chromodynamics [3, 7].

In practice, f(A)b is often approximated using a Krylov subspace method. While
such methods are effective, computer memory can limit the number of iterations that
can be performed—and thus the attainable accuracy—as the entire Krylov basis must
be stored. A typical remedy for this problem is the use of restarted Krylov subspace
methods [1, 5, 9, 10, 21], in which the current error is expressed in the form e(A)v with
a new matrix function e and a vector v from the previous Krylov space. Using divided
differences to evaluate e as is done in [21] tends to introduce numerical instabilities,
which is why the other references use alternative ways to evaluate e—particularly
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integral representations—which perform in a numerically stable manner. While ef-
fective in overcoming the storage problem, restarts typically require more iterations,
and therefore more time, to converge to the desired accuracy. Therefore, cheap mod-
ifications that accelerate convergence with restarts without increasing computational
effort are attractive from a practitioner’s point of view. One modification used for
this purpose is the deflated restarting technique, as in [6], which can in some cases
accelerate convergence by using Ritz value information to implicitly deflate certain
eigenvectors of the problem matrix. The main contribution of this paper is another
such modification, which we call the (restarted) Radau–Lanczos method for com-
puting f(A)b. We prove error bounds for the unrestarted Radau–Lanczos method,
which are used to show that the restarted Radau–Lanczos method converges when
A is Hermitian positive definite (HPD) and f is a Stieltjes function. With practical
numerical experiments, we demonstrate that the modified method routinely improves
over the standard method in terms of iteration counts and execution times, especially
in situations where the Ritz values generated by the restarted Lanczos method poorly
approximate the extremal eigenvalues of A.

An outline of the paper is as follows. We begin by establishing properties of the
standard Lanczos method and of the Lanczos relation. In section 2, we describe the
Radau–Lanczos method for linear systems, including a variational characterization
that yields error bounds similar to those of the conjugate gradient (CG) method.
This analysis serves as a necessary building block in developing the Radau–Lanczos
approach for matrix functions. In section 3, we apply the Radau–Lanczos method
to Stieltjes functions of HPD matrices and show that the restarted version converges
by providing convergence bounds. In the subsequent sections, we perform various
numerical experiments in order to illustrate important features of our method. The
experiments of section 4 investigate and compare the interpolating polynomials im-
plicitly generated by the standard Lanczos method and the Radau–Lanczos method.
These experiments help us gain some insight into why the proposed method is supe-
rior. In section 5, we further compare both methods via several model problems from
applications in scientific computing. Concluding remarks are given in section 6.

1.1. The standard Lanczos method. We begin by recalling the essentials of
the standard Lanczos approach for A ∈ Cn×n HPD and f(z) = z−1, resulting in the
CG method for linear systems; see, e.g., [26]. Consider the linear system

(1) Ax = b.

Let x∗ be the exact solution to (1); x0 the starting approximation; xm the iterates;
em = x∗ − xm the errors; and rm = Aem = b − Axm the residuals. We also
let Km(A, r0) denote the mth Krylov subspace corresponding to A and the initial
residual r0 6= 0, and Πm the space of all polynomials of degree at most m. Then
Km(A, r0) = {p(A)r0 : p ∈ Πm−1}. We refer to the following as the Lanczos relation:

(2) AVm = VmTm + tm+1,mvm+1ê
H
m,

where the columns of Vm ∈ Cn×m form an orthonormal basis of Km(A, r0); Tm =
V Hm AVm ∈ Cm×m is the restriction and projection of A onto Km(A, r0); and êm is
the mth standard unit vector with appropriate dimension. Since A is Hermitian, Tm
is tridiagonal and real. The matrices Vm and Tm expand from those with smaller
indices as follows:

Vm+1 = [Vm | vm+1], Tm+1 =

[
Tm tm+1,mêm

êHmtm+1,m tm+1,m+1

]
.
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Moreover, all entries tm+1,m are nonzero up to some index m = grA(r0), the grade of
r0 with respect to A, i.e., the first index m for which Km+1(A, r0) = Km(A, r0). The
Lanczos relation (2) thus holds up to precisely m = grA(r0) with vm+1 = 0.

Mathematically, the mth iterate xm of CG or, equivalently, the Lanczos method,
is given as follows:

xm = x0 + VmT
−1
m V Hm r0 = x0 + Vmqm−1(Tm)V Hm r0,

where qm−1 ∈ Πm−1 is the polynomial interpolating f(z) = z−1 at the eigenvalues of
Tm. Indeed, T−1

m = qm−1(Tm); see, e.g., [17, Chap. 1].
We also know that xm = x0 + p(A)r0 for some polynomial p ∈ Πm−1. The fact

that xm has a unique representation in x0 +Km(A, r0), plus the following lemma [25,
Lemma 3.1], ensures that p and qm−1 are, in fact, the same.

Lemma 1.1 (Lanczos polynomial relation). For all q ∈ Πm−1,

(3) Vmq(Tm)V Hm r0 = q(A)r0.

Since A is HPD, the following is an inner product (·, ·) on Πm as long as m ≤
grA(r0):

(p, q) := 〈p(A)r0, q(A)r0〉2 = (p(A)r0)Hq(A)r0,

where 〈·, ·〉2 denotes the usual Euclidean inner product. Expanding r0 =
∑n
i=1 βiui

in terms of an orthonormal basis of Cn consisting of eigenvectors ui of A with corre-
sponding eigenvalues λi, we can express this inner product as

(p, q) =

n∑
i=1

|βi|2p̄(λi)q(λi) =

∫ λmax

λmin

p̄(z)q(z) dα(z).

Here λmin and λmax denote the smallest and largest eigenvalue of A, respectively,
and the measure dα is defined by the function α(z) =

∑n
i=1 |βi|

2
H(z − λi) with H

denoting the Heaviside function.
If p is a polynomial with p(0) 6= 0, then we denote p̃ = 1

p(0)p as its normalized

variant, so that p̃(0) = 1. We denote by pm the sequence of orthogonal polynomials
with respect to (·, ·). It is known that the zeros of pm are the eigenvalues of Tm, as well
as the nodes of the m-point Gauss quadrature rule with respect to dα on [λmin, λmax];
see [13, 14]. These orthogonal polynomials are unique up to a scaling factor, and we
call the corresponding normalized p̃m the CG polynomials because of the following
well-known result; see, e.g., [23, Chap. 8], where ‖v‖A denotes the energy norm of a
vector v, induced by the inner product 〈v,w〉A := vHAw.

Theorem 1.2. The CG iterates xm satisfy
(i) em = p̃m(A)e0, rm = p̃m(A)r0;

(ii) ‖em‖A = min{‖x∗ − x‖A : x ∈ x0 +Km(A, r0)}.
In subsequent results, we will require energy norms for functions of HPD matrices

A. For functions g : (0,∞)→ (0,∞), the matrix g(A) is HPD when A is HPD. Then
the inner product

〈x,y〉g(A) := 〈x, g(A)y〉 for all x,y ∈ C,

induces the norm
‖x‖g(A) := 〈x,x〉g(A).
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1.2. Rank-one modifications. In [9], the authors consider a particular rank-
one modification of the matrix Tm for computing approximations to f(A)b. This
modification serves two purposes. First, it broadens the class of matrices for which
convergence of the restarted Arnoldi method can be proven to include non-Hermitian
positive real matrices (i.e., matrices with field of values in the right half-plane). Sec-
ond, as illustrated by numerical experiments in [9], it sometimes converges faster than
the standard restarted Arnoldi method, especially for severely non-Hermitian matri-
ces. This modified method, called the harmonic Arnoldi method, is based on the
Arnoldi relation rather than the Lanczos relation (2), because it is mainly designed
for non-Hermitian matrices. We briefly recapitulate how the modification works for
A HPD (which is also positive real). to serve as motivation for our new method, and
we prove general results about rank-one modifications of the Lanczos relation.

Define T̃m := Tm +
(
tm+1,mT

−1
m êm

)
êHm and the corresponding iterates

x̃m := x0 + VmT̃
−1
m V Hm r0.

By the following lemma we can conclude, just as with CG, that

x̃m = x0 + h(A)r0,

where h ∈ Πm−1 is the polynomial interpolating f(z) = z−1 at the eigenvalues of T̃m,

and h(T̃m) = T̃−1
m . The eigenvalues of T̃m are termed the harmonic Ritz values of A

[24]. Of course, x̃m ∈ x0 +Km(A, r0) as well, and as was observed in [9, 15, 24], x̃m
is in fact the GMRES (or, in the HPD case, MINRES) approximation to A−1b.

The following lemma also shows that there are further rank-one modifications for
which (3) holds.

Lemma 1.3 (see [7, Lemma 3]). Let u ∈ Cm. Denote T̂m := Tm + uêHm. Then
for any q ∈ Πm−1,

Vmq
(
T̂m
)
V Hm r0 = q(A)r0.(4)

It is worth mentioning that the only such modifications of Tm for which (4) can
be preserved must be rank-one with nonzero entries only in the last column, as stated
in the following new result.

Lemma 1.4. Let M ∈ Cm×m,m ≤ grA(r0), and denote T̂m := Tm + M . If (4)
holds for all q ∈ Πm−1, then there exists u ∈ Cm such that M = uêHm.

Proof. Equation (4) holding for all q ∈ Πm−1 and Lemma 1.1 imply

VmT̂
j
mV

H
m r0 = VmT

j
mV

H
m r0, j ∈ {0, . . . ,m− 1}.

Multiplying from the left by V Hm and noting that V Hm r0 = ‖r0‖2ê1, we have that

(5) T̂ jmê1 = T jmê1, j ∈ {0, . . . ,m− 1}.

From this we obtain that T̂ jmê1 = T̂mT̂
j−1
m ê1 = T̂mT

j−1
m ê1. Thus, again using (5), it

follows that

(6) 0 = (T̂m − Tm)T j−1
m ê1 = MT j−1

m ê1, j ∈ {1, . . . ,m− 1}.

The relation (6) further implies

(7) MR = 0 with R = [ê1 | Tmê1 | · · · | Tm−2
m ê1] ∈ Cm×(m−1).
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Since T jm has an entirely nonzero jth subdiagonal, with all further subdiagonals being
zero, the matrix R is upper triangular with all diagonal elements nonzero. From (7)
we thus conclude that only the last (mth) column of M is nonzero.

2. The Radau–Lanczos method for linear systems. In section 1, we saw
that the Lanczos relation for an HPD matrix is related to the CG polynomials, as
well as an m-point Gauss quadrature rule with respect to the measure dα and with
nodes at the eigenvalues of Tm. In this section, we show how a particular (m + 1)-
point Gauss–Radau quadrature rule for a modified measure is related to a rank-one
update of the tridiagonal matrix Tm+1. This modification can, in principle, be used
to devise a new iterative method for solving linear systems, as an alternative to CG.
For this purpose one would have to work out a stable implementation based on short
recurrences—a path which we do not follow in this paper. Rather, the theoretical
results derived in this section are needed as building blocks for the more general
matrix function case considered in section 3.

In anm-point Gauss quadrature rule, the quadrature nodes are determined so that
the rule is exact for polynomials up to degree 2m−1. An (m+1)-point Gauss–Radau
quadrature rule is a modification of a Gauss rule, in which one quadrature node is
fixed and exactness for polynomials of degree up to 2m is obtained. We fix θ0 > λmax,
and consider the (m + 1)-point Gauss–Radau rule on the interval [λmin, λmax] for a
new measure dαR defined as

(8) dαR(t) := (θ0 − t) dα(t).

As is explained in the work of Golub [13] and Golub and Meurant [14], there exists a
matrix TR

m+1 related to Tm whose eigenvalues are the nodes of this rule. Writing

(9) Tm =


ω1 γ1

γ1 ω2 γ2

. . .
. . .

. . .

γm−2 ωm−1 γm−1

γm−1 ωm

 ,

we solve for d ∈ Cm satisfying (Tm − θ0I)d = γ2
mêm and define

(10) TR
m+1 :=

[
Tm γmêm
γmêHm dm + θ0

]
,

where dm is the mth component of d. Note that TR
m+1 is a rank-one modification of

Tm+1, namely, TR
m+1 = Tm+1 +(dm−ωm+1)êm+1ê

H
m+1, which satisfies the hypotheses

of Lemma 1.3. The eigenvalues of TR
m+1 are the nodes of the (m + 1)-point Gauss–

Radau rule, with one eigenvalue being equal to θ0. We denote the eigenvalues of TR
m+1

different from θ0 by θR
m,i, i = 1, . . . ,m. Note that for each m, there is a different set

of eigenvalues θR
m,i even though θ0 remains the same.

As with CG, there is a connection to a particular set of orthogonal polynomials,
given the appropriate inner product in Πm. According to Gautschi [12], this inner
product is

(11) (p, q)R :=

n∑
i=1

|βi|2(θ0 − λi)p̄(λi)q(λi) =

∫ λmax

λmin

p̄(z)q(z) dαR(z),
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which we refer to as the Radau inner product, with dαR as the Radau measure defined
in (8). We let pR

m denote the polynomials orthogonal with respect to this inner
product, whose roots are θR

m,i, i = 1, . . . ,m. Note that θ0 is not a root of pR
m for

any m.
We finally define the (m+ 1)st Radau–Lanczos approximation to A−1b as

xR
m+1 := x0 + Vm+1

(
TR
m+1

)−1
V Hm+1r0.

Computing TR
m+1 costs little additional effort, since m is typically very small in com-

parison to n, the size of A. Therefore, one iteration of the Radau–Lanczos method
takes roughly the same amount of computational effort as one iteration of the standard
Lanczos method.

As in section 1, there is a relation between interpolating polynomials for z−1

and orthogonal polynomials, now with respect to the Radau inner product, i.e., the
polynomials pR

m. Let qR
m denote the polynomial of degree m which interpolates f(z) =

z−1 at the eigenvalues of TR
m+1. By Lemma 1.3,

xR
m+1 = x0 + Vm+1q

R
m

(
TR
m+1

)
V Hm+1r0 = x0 + qR

m(A)r0.

Then

eR
m+1 = e0 − qR

m(A)r0 = e0 −AqR
m(A)e0 = πR

m+1(A)e0,

where πR
m+1(z) := 1− zqR

m(z) and πR
m+1 ∈ Πm+1. Consequently, rR

m+1 = πR
m+1(A)r0.

Note that

(12) πR
m+1(z) =

(
1− z

θ0

)
p̃R
m(z), where p̃R

m(z) =
1

pR
m(0)

pR
m(z),

since the roots of πR
m+1 are the eigenvalues of TR

m+1 and πR
m+1(0) = 1.

2.1. Variational characterization. We further derive a variational character-
ization of the Radau–Lanczos method, via a useful orthogonality property.

Lemma 2.1. For any s ∈ Πm−1, 〈e0 − qR
m(A)r0, s(A)r0〉A = 0.

Proof. The proof follows from the definition (11) and the polynomial
equivalence (12):

0 = (θ0
−1p̃R

m, s)R =

n∑
i=1

|βi|2 (θ0 − λi)θ0
−1¯̃p

R
m(λi)s(λi)

= 〈(θ0I −A)θ0
−1p̃R

m(A)r0, s(A)r0〉2 = 〈πR
m+1(A)r0, s(A)r0〉2

= 〈A(e0 − qR
m(A)r0), s(A)r0〉2 = 〈e0 − qR

m(A)r0, s(A)r0〉A.

By definition, qR
m interpolates z−1 at the eigenvalues of TR

m+1. In particular, for every
m, qR

m interpolates z−1 at θ0; i.e., for all m there exists sR
m−1 ∈ Πm−1 such that

(13) qR
m(z) = (θ0 − z)sR

m−1(z) +
1

θ0
.

Thus, qR
m, a polynomial of degree m, is completely determined by the polynomial

sR
m−1 of degree m − 1. It is precisely this fact that leads to the following variational

characterization of the Radau–Lanczos method.
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Theorem 2.2. The error eR
m+1 = x∗−xR

m+1 of the approximation xR
m+1 satisfies∥∥eR

m+1

∥∥
A(θ0I−A)−1 = min

p∈Πm+1

p(0)=1,p(θ0)=0

‖p(A)e0‖A(θ0I−A)−1 .

Proof. By Lemma 2.1 and (13), the error eR
m+1 = e0 − qR

m(A)r0 satisfies, for all
s ∈ Πm−1,

0 = 〈e0 − qR
m(A)r0, s(A)r0〉A

= 〈e0 −
1

θ0
r0 − (θ0I −A)sR

m−1(A)r0, s(A)r0〉A

= 〈e0 −
1

θ0
r0 − (θ0I −A)sR

m−1(A)r0, (θ0I −A)s(A)r0〉A(θ0I−A)−1 .

Since (θ0I − A)sR
m−1(A)r0 ∈ (θ0I − A)Km(A, r0), and since (θ0I − A)s(A)r0 with

s ∈ Πm−1 describes all the elements of (θ0I − A)Km(A, r0), this gives the following
variational characterization of the error:∥∥eR

m+1

∥∥
A(θ0I−A)−1 = min

y∈(θ0I−A)Km(A,r0)

∥∥∥∥e0 −
1

θ0
r0 − y

∥∥∥∥
A(θ0I−A)−1

.

Since y ∈ (θ0I − A)Km(A, r0) if and only if y = (θ0I − A)sm−1(A)r0 for some
polynomial sm−1 ∈ Πm−1, we have

e0 −
1

θ0
r0 − y = e0 −

1

θ0
Ae0 − (θ0I −A)sm−1(A)Ae0 = πm(A)e0,

where πm(z) = (1− z
θ0

)(1− θ0 · zsm−1(z)). The assertion of the theorem now follows
from observing that

{(1− z
θ0

)(1− θ0zs(z)) : s ∈ Πm−1} = {p(z) : p ∈ Πm+1, p(0) = 1, p(θ0) = 0}.

2.2. Finite termination property and error bounds. It is well known for
CG that, in exact arithmetic, the true solution of (1) is obtained in precisely m̂ :=
grA(r0) steps. Since the Radau–Lanczos method also relies on the Lanczos relation,
it cannot run beyond iteration m̂+ 1. From the discussion of the Lanczos relation (2)
and with the notation from (9) we see that γm̂ = 0 and that TR

m̂+1 are thus given as

TR
m̂+1 =

[
Tm̂ 0
0 θ0

]
.

If we formally define Vm̂+1 = [Vm̂ | 0] we then have

x0 + Vm̂+1

(
TR
m̂+1

)−1
V Hm̂+1r0 = x0 + Vm̂

(
Tm̂
)−1

V Hm̂ r0 = A−1b,

showing that iteration m̂+1 of the Radau–Lanczos method retrieves the exact solution
(provided we set the (m̂+ 1)st Lanczos vector to 0).

We can further give an upper bound for the norm of the mth Radau–Lanczos
error, similar to the classical bounds for the energy norm of the CG error. Define the
following quantities:

(14) κ :=
λmax

λmin
, c :=

√
κ− 1√
κ+ 1

, and ξm :=
1

cosh(m ln c)
.

If κ = 1, then we set ξm = 0.
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Theorem 2.3. The norm of the error of the Radau–Lanczos approximation xR
m+1

can be bounded as∥∥eR
m+1

∥∥
A(θ0I−A)−1 ≤

(
1− λmin

θ0

)
ξm ‖e0‖A(θ0I−A)−1

≤ 2

(
1− λmin

θ0

)
cm ‖e0‖A(θ0I−A)−1 .

Proof. For ease of notation, let Â := A(θ0I−A)−1. Since the matrix Â
1
2 commutes

with (θ0I −A)p(A) for any polynomial p, we have

‖(θ0I −A)p(A)‖Â =
∥∥∥Â 1

2 (θ0I −A)p(A)Â−
1
2

∥∥∥
2

= ‖(θ0I −A)p(A)‖2 .

Then by applying Theorem 2.2, we obtain that∥∥eR
m+1

∥∥
Â

= min
p∈Πm+1

p(0)=1,p(θ0)=0

‖p(A)e0‖Â

= min
p∈Πm

p(0)=1

∥∥∥(I − 1
θ0
A)p(A)e0

∥∥∥
Â

≤ min
p∈Πm

p(0)=1

∥∥∥(I − 1
θ0
A)p(A)

∥∥∥
Â
‖e0‖Â

= min
p∈Πm

p(0)=1

∥∥∥(I − 1
θ0
A)p(A)

∥∥∥
2
‖e0‖Â

≤ min
p∈Πm

p(0)=1

max
λ∈[λmin,λmax]

(1− λ
θ0

) |p(λ)| ‖e0‖Â

≤
(

1− λmin

θ0

)
· min
p∈Πm

p(0)=1

max
λ∈[λmin,λmax]

|p(λ)| ‖e0‖Â .(15)

An upper bound for (15) is obtained as maxλ∈[λmin,λmax] |p(λ)| with p the scaled Cheby-
shev polynomial for which one knows (see, e.g., [26, section 6.11]) the following:

max
λ∈[λmin,λmax]

|p(λ)| ≤ ξm ≤ 2cm.

3. The Radau–Lanczos method for Stieltjes functions of matrices. From
this section onward, we will turn our attention to the case of general Stieltjes matrix
functions instead of the special case of linear systems. We will, however, use the
results of section 2 as a foundation for our theory, following a similar path as in [9],
where the relation between matrix functions and shifted linear systems is exploited.

Let f be a (Cauchy–)Stieltjes function (sometimes also called a Markov-type
function). That is, f can be expressed as a Riemann–Stieltjes integral of the form

(16) f(z) =

∫ ∞
0

1

t+ z
dµ(t),

where µ is monotonically increasing and nonnegative on [0,∞) with the property∫∞
0

1
t+1 dµ(t) <∞. Define the Radau–Lanczos approximation to f(A)b as

fR
m+1 := Vm+1f(TR

m+1)V Hm+1b.
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Note that f(TR
m+1) = q∗(T

R
m+1), where q∗ ∈ Πm is the polynomial which interpolates

f at the eigenvalues of TR
m+1. This equality can be proven in the same manner as the

corresponding result for the standard Lanczos method; see, e.g., [25]. By Lemma 1.3,
fR
m+1 = q∗(A)b ∈ (θ0I −A)Km(A, b).

By an argument analogous to that at the beginning of section 2.2, one sees that in
exact arithmetic the Radau–Lanczos method for f(A)b will terminate with fR

m+1 =
f(A)b after exactly m+ 1 = grA(b) + 1 steps. To derive upper bounds for the norm
of the error of fR

m+1, which will be especially useful for proving convergence of the
restarted Radau–Lanczos method later on, we take advantage of the integral form
(16) of f in the expressions of f(A)b and fR

m+1:

f(A)b =

∫ ∞
0

(A+ tI)−1b dµ(t) and fR
m+1 =

∫ ∞
0

Vm+1(TR
m+1 + tI)−1V Hm+1b dµ(t).

(17)

We therefore need shifted versions of the results in section 2.

Lemma 3.1. Let T̂m = Tm +uêHm and r0 be as in Lemma 1.3. Then for all t ∈ C
and for all q ∈ Πm−1,

Vmq(T̂m + tI)V Hm r0 = q(A+ tI)r0.

Proof. It is easily verified that the Lanczos relation (2) is shift invariant: AVm =
VmTm+ tm+1,mvm+1ê

H
m implies (A+ tI)Vm = Vm(Tm+ tI)+ tm+1,mvm+1ê

H
m. There-

fore, the columns of Vm are also a basis of Km(A + tI, r0). Applying Lemma 1.3 to

A+ tI and T̂m + tI gives the desired result.

We also define the following shifted quantities for t ≥ 0:

x∗(t) := (A+ tI)−1b,

xR
m+1(t) := Vm+1(TR

m+1 + tI)−1V Hm+1b,

eR
m+1(t) := x∗(t)− xR

m+1(t),(18)

rR
m+1(t) := (A+ tI)eR

m+1(t).

Note that xR
m+1(t) is not the (m+ 1)st Radau–Lanczos approximation to x∗(t),

although it is an approximation to x∗(t). The important property is that the residuals
of the iterates xR

m+1(t) belonging to different shifts t are collinear with rR
m+1(0), as

stated in the following lemma. We need the case xR
0 (t) = 0, i.e., rR

0 (t) = b for all t,
for the convergence result given in Theorem 3.3 below, whereas the more general case
is needed later for the analysis of restarts, Theorem 3.6.

Lemma 3.2. Consider the family of shifted linear systems (A + tI)x(t) = b(t)
with t ∈ [0,∞). Assume that we are given initial approximations x0(t) such that the
initial shifted residuals rR

0 (t) are all collinear with rR
0 (0), i.e., rR

0 (t) = ρ0(t)rR
0 (0) for

some ρ0(t) ∈ C. Then
(i) the residuals rR

m+1(t) for the shifted systems are collinear with rR
m+1(0),

rR
m+1(t) = ρm+1(t)rR

m+1(0), where ρm+1(t) :=
ρ0(t)

πR
m+1(−t)

,

and πR
m+1 is the polynomial for which rR

m+1 = πR
m+1(A)rR

0 (0) from (12); and
(ii) |ρm+1(t)| ≤ |ρ0(t)|.
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Proof. To show (i) we first apply Lemma 3.1 and relations from section 2 to A+tI
and TR

m+1 + tI to obtain that

rR
m+1(t) = πR

m+1,t(A+ tI)rR
0 (t),

where πR
m+1,t(z) = 1− zqR

m,t(z), and qR
m,t ∈ Πm interpolates z−1 at the eigenvalues of

TR
m+1 + tI, which are θ0 + t and θR

m,i + t, i = 1, . . . ,m. Writing πR
m+1,t explicitly as

πR
m+1,t(z) =

(θ0 + t− z)
∏m
i=1(θR

m,i + t− z)
(θ0 + t)

∏m
i=1(θR

m,i + t)
,

one can see that

πR
m+1,t(z) =

πR
m+1,0(z − t)
πR
m+1,0(−t)

=
πR
m+1(z − t)
πR
m+1(−t)

.

Therefore,

rR
m+1(t) = πR

m+1,t(A+ tI)rR
0 (t) =

1

πR
m+1(−t)

πR
m+1(A)rR

0 (t) =
ρ0(t)

πR
m+1(−t)

rR
m+1(0),

where the last equality holds by the collinearity assumption rR
0 (t) = ρ0(t)rR

0 (0) and
by the equality πR

m+1(A)rR
0 (0) = rR

m+1(0).
As for part (ii), since t ≥ 0 we have

|ρm(t)| = |ρ0(t)|
|πR
m+1(−t)|

=
θ0

∏m
i=1 θ

R
m,i

(θ0 + t)
∏m
i=1(θR

m,i + t)
ρ0(t) ≤ ρ0(t).

At this point, we have all the necessary tools to derive an error bound for the
Radau–Lanczos method for Stieltjes functions of HPD matrices. Note that the norm
for this error bound is the A−1(θ0I − A)−1–norm, which is different from the norm
used for the bounds in section 2.

Theorem 3.3. The following error bound holds for the Radau–Lanczos method:

∥∥f(A)b− fR
m+1

∥∥
A−1(θ0I−A)−1 ≤ C

(
1− λmin

θ0

)
ξm ≤ 2C

(
1− λmin

θ0

)
cm,

where c and ξm are as in (14), and

C = f(λmin) ‖b‖A−1(θ0I−A)−1 ≤
f(λmin)√

λmin(θ0 − λmax)
‖b‖2 .

Proof. We begin by using (17) to derive an integral expression for the error:

(19) f(A)b− fR
m+1 =

∫ ∞
0

[
x∗(t)− xR

m+1(t)
]

dµ(t) =

∫ ∞
0

eR
m+1(t) dµ(t).

Let Ã := A−1(θ0I −A)−1 and again Â := A(θ0I −A)−1. Applying Lemma 3.2 to the
shifted residuals rR

m+1(t), we obtain the following:
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∥∥f(A)b− fR
m+1

∥∥
Ã
≤
∫ ∞

0

∥∥eR
m+1(t)

∥∥
Ã

dµ(t)

=

∫ ∞
0

∥∥(A+ tI)−1rR
m+1(t)

∥∥
Ã

dµ(t)

=

∫ ∞
0

|ρm+1(t)| ·
∥∥(A+ tI)−1rR

m+1(0)
∥∥
Ã

dµ(t)

≤
∫ ∞

0

|ρ0(t)|
∥∥(A+ tI)−1rR

m+1(0)
∥∥
Ã

dµ(t).(20)

Since A, its inverse, and the shifted matrices A+ tI, t > 0, are all HPD, we have the
following relation:∥∥(A+ tI)−1rR

m+1(0)
∥∥2

Ã

= 〈(A+ tI)−1AeR
m+1(0), A−1(θ0I −A)−1(A+ tI)−1AeR

m+1(0)〉2

≤
(

1

λmin + t

)2 ∥∥eR
m+1(0)

∥∥2

Â
.(21)

Then by applying (21) to the integrand of (20) and by Theorem 2.3, we have∥∥f(A)b− fR
m+1

∥∥
Ã
≤
∫ ∞

0

|ρ0(t)|
λmin + t

∥∥eR
m+1(0)

∥∥
Â

dµ(t)

≤
(

1− λmin

θ0

)
ξm
∥∥eR

0 (0)
∥∥
Â

∫ ∞
0

|ρ0(t)|
λmin + t

dµ(t).(22)

Furthermore, since rR
0 (t) = rR

0 (0) = b for all t, we have∥∥eR
0 (0)

∥∥2

Â
= 〈eR

0 (0), ÂeR
0 (0)〉2

= 〈rR
0 (0), A−1(θ0I −A)−1rR

0 (0)〉2
= ‖b‖2A−1(θ0I−A)−1

≤ 1

λmin(θ0 − λmax)
‖b‖22 .(23)

Combining (22) and (23), together with the fact that ρ0(t) = 1 for all t, we obtain
the desired bound.

3.1. The restarted Radau–Lanczos method. In many practical situations
where one wants to approximate f(A)b, the available storage limits the number of
Lanczos iterations that can be performed, as one needs to store the entire basis Vm
in order to form fm. Therefore, restarts are of vital importance in this setting; see,
e.g., [1, 5, 9, 10, 21]. The idea is as follows: after a (small) number m of Lanczos

steps, one forms a first approximation f
(1)
m for f(A)b. If this approximation is not

accurate enough, one uses m further Lanczos steps (the next cycle of the method)

to obtain an approximation a
(1)
m to the error f(A)b − f

(1)
m , which is then used as an

additive correction to form f
(2)
m = f

(1)
m + a

(1)
m . Continuing like this, we obtain the

sequences f
(k)
m and a

(k)
m , where k denotes the index of the restart cycle, and m the

length of the cycle (i.e., the number of Lanczos steps). We can apply this approach
to the Radau–Lanczos method, as long as we can devise a stable and efficient way for

computing the error approximations a
(k)
m . For that, we follow [10], which derives an

integral representation of the error and then uses it to compute a
(k)
m .
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The error representation (19) can be rewritten as

f(A)b− fR
m+1 =

∫ ∞
0

(A+ tI)−1rR
m+1(t) dµ(t),

which, by Lemma 3.2, can be recast into the form

(24) f(A)b− fR
m+1 = em+1(A)rR

m+1(0) with em+1(z) :=

∫ ∞
0

ρm+1(t)

t+ z
dµ(t).

In (24), the error is represented as the action of a matrix function in A on the vector
rR
m+1(0). Therefore, an approximation for the error can be computed with a new cycle

of length m + 1 of the Radau–Lanczos method for A and rR
m+1(0). To do this, one

needs to be able to evaluate the error function on the Hessenberg matrix of the next
Radau–Lanczos cycle. As em+1 is only known via its integral representation, for which
one usually does not have a closed form available, it is necessary to evaluate it via
numerical quadrature. This idea was explored thoroughly in [10] in the context of the
standard Lanczos/Arnoldi method, where an algorithm based on adaptive quadrature
is developed and suitable quadrature rules for different functions f are discussed. An
analogous implementation for the Radau–Lanczos method is given in Algorithm 1.

Note that this implementation needs the residuals r
R,(k−1)
m+1 (0) to be defined in analogy

to (18); see also Remark 3.5 below.

Algorithm 1: Quadrature-based restarted Radau–Lanczos method for f(A)b.

Given: A, b, f , m, tol, θ0

1 Compute the Lanczos decomposition AV
(1)
m = V

(1)
m T

(1)
m + t

(1)
m+1,mv

(1)
m+1ê

H
m

with respect to A and b

2 Compute T
R,(1)
m+1 according to (10)

3 Set f
R,(1)
m+1 := ‖b‖2V (1)

m+1f
(
T

R,(1)
m+1

)
ê1

4 for k = 2, 3, . . . , until convergence do

5 Compute the Lanczos decomposition AV
(k)
m = V

(k)
m T

(k)
m + t

(k)
m+1,mv

(k)
m+1ê

H
m.

with respect to A and r
R,(k−1)
m+1 (0)

6 Compute T
R,(k)
m+1 according to (10)

7 Choose quadrature nodes ti and weights ωi, i = 1, . . . , `

8 Compute h
(k)
m+1 :=

∑`
i=1 ωiρ

(k−1)
m+1 (ti)

(
T

R,(k)
m+1 + tiI

)−1

ê1.

9 Set f
R,(k)
m+1 := f

R,(k−1)
m+1 + ‖b‖2V (k)

m+1h
(k)
m+1

For evaluating the quadrature rule in step 8 of Algorithm 1, one needs to know

the collinearity factors ρ
(k)
m+1(ti) at the quadrature nodes ti. In theory, these can

be computed via the formula given in Lemma 3.2(i), involving the Radau–Lanczos
polynomial πR

m+1, but this representation can become unstable in the presence of
round-off error for larger values of m (i.e., when a polynomial of high degree is in-
volved). Fortunately, one can alternatively calculate the residual norms (and thus the
collinearity factors) by solving small m × m tridiagonal linear systems, similarly to
a well-known result for the standard Lanczos/Arnoldi method; see, e.g., [26, Propo-
sition 6.7] or [10, section 3]. For the sake of notational simplicity, we only state the
result for the unrestarted case, as the generalization is straightforward.
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Lemma 3.4. Define the quantities

(25) φm+1(t) = êHm+1(Tm+1 + tI)(TR
m+1 + tI)−1ê1

and

(26) ψm+1(t) = tm+2,m+1ê
H
m+1(TR

m+1 + tI)−1ê1.

Then

‖rR
m+1(t)‖2 =

√
‖b‖22φm+1(t)2 + ψm+1(t)2.

Proof. By definition of xR
m+1(t) and rR

m+1(t), we have

(27) rR
m+1(t) = b− ‖b‖2(A+ tI)Vm+1(TR

m+1 + tI)−1ê1.

Inserting the shifted Lanczos relation (2) for m+ 2 steps,

(A+ tI)Vm+1 = Vm+1(Tm+1 + tI) + tm+2,m+1vm+2ê
H
m+1,

into (27) yields

rR
m+1(t) = b− ‖b‖2Vm+1(Tm+1 + tI)(TR

m+1 + tI)−1ê1

− tm+2,m+1vm+2ê
H
m+1(TR

m+1 + tI)−1ê1.

Since Tm+1 and TR
m+1 only differ in their (m+ 1,m+ 1) entry, we have that

(Tm+1 + tI)(TR
m+1 + tI)−1ê1 = [1, 0, . . . , 0, φm+1(t)]

T
,

which gives

(28) rR
m+1(t) = b− ‖b‖2

(
v1 + φm+1(t)vm+1

)
− ψm+1(t)vm+2.

Using the fact that b = ‖b‖2v1, (28) simplifies to

(29) rR
m+1(t) = −‖b‖2φm+1(t)vm+1 − ψm+1(t)vm+2.

By the orthogonality of the Lanczos basis, relation (29) directly implies the assertion
of the lemma.

Remark 3.5. Before proceeding, we give a few comments regarding Lemma 3.4.
The proof of the lemma relies on the fact that a Lanczos decomposition for m + 2
steps (i.e., one step more than needed for defining xR

m+1(t)) exists. However, this
is no restriction: if vm+2 cannot be generated, it is because the Radau–Lanczos
approximation has already reached its final iteration and, thus, in exact arithmetic,
has found f(A)b. We also note that despite the need for computing the matrix Tm+1

and the scalar tm+2,m+1, computing residual norms via Lemma 3.4 at the end of a
restart cycle does not require additional matrix-vector products, since one needs to
invest one matrix-vector product for computing rR

m+1(0), the starting vector of the
next restart cycle, anyway. Instead, one can compute vm+2 to find all the quantities
necessary for evaluating (25) and (26) and then compute rR

m+1(0) via (29) without
additional matrix-vector products. Thus, the main additional computational work

required for computing the values ρ
(k−1)
m+1 (ti) in line 8 of Algorithm 1 consists of solving
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one tridiagonal linear system and performing one tridiagonal matrix vector product
(each with a matrix of size m×m) per quadrature node. Consequently, the cost for
computing the values at all quadrature nodes is O(m`), which is the same as for the
standard quadrature-based restarted Lanczos method from [10]. There it was also
observed that small values of ` (not more than a few hundred, and typically far less)
are necessary to reach an accuracy on the order of 10−15, and the same holds for the
Radau–Lanczos method.

While the Radau–Lanczos method without restarts finds f(A)b after grA(b) + 1
steps (cf. section 2.2), we cannot expect the restarted variant to have a finite termina-
tion property. The question of whether the iterates of the restarted method converge
in the limit can be answered positively for Stieltjes functions and HPD matrices for
any restart length m, as the following variant of Theorem 3.3 shows. It represents the
analogue of a similar result for the standard Lanczos method given in [9].

Theorem 3.6. Let k be the number of restart cycles, and m+1 the length of each

cycle. Let f
R,(k)
m+1 denote the restarted Radau–Lanczos approximation after k cycles.

Then

(30)
∥∥∥f(A)b− f

R,(k)
m+1

∥∥∥
A−1(θ0I−A)−1

≤ C
(

1− λmin

θ0

)k
ξkm,

where C is as in Theorem 3.3 and ξm is as in (14).

Proof. As with f
R,(k)
m+1 , we let the superscript (k) denote all the corresponding

restarted quantities. Again let Ã := A−1(θ0I − A)−1 and Â := A(θ0I − A)−1. Fol-
lowing the proof of Theorem 3.3, we again note that∥∥∥f(A)b− f

R,(k)
m+1

∥∥∥
Ã
≤
∫ ∞

0

∥∥∥(A+ tI)−1r
R,(k)
m+1 (t)

∥∥∥
Ã

dµ(t).

Assuming the restarted initial residuals are collinear, i.e.,

r
R,(k)
0 (t) = ρ

R,(k)
0 (t)r

R,(k)
0 (0),

then by Lemma 3.2(i), we have that r
R,(k)
m+1 (t) = ρ

R,(k)
m+1 (t)r

R,(k)
m+1 (0). Furthermore,∥∥∥(A+ tI)−1r

R,(k)
m+1 (0)

∥∥∥
Ã
≤ 1

λmin + t

∥∥∥eR,(k)
m+1 (0)

∥∥∥
Â

≤ 1

λmin + t

(
1− λmin

θ0

)
ξm

∥∥∥eR,(k)
0 (0)

∥∥∥
Â
,

where the last inequality holds by Theorem 2.3 for a particular restart cycle k. Since

e
R,(k)
0 (0) = e

R,(k−1)
m+1 (0), we can apply Theorem 2.3 and Lemma 3.2(i) inductively to

obtain ∥∥∥eR,(k)
0 (0)

∥∥∥
Â
≤
(

1− λmin

θ0

)k−1

ξk−1
m |ρ(1)

m+1(t) · · · ρ(k−1)
m+1 (t)|

∥∥∥e(1)
0 (0)

∥∥∥
Â
.

Further note that ρ
(i)
m+1 = ρ

(i+1)
0 ; therefore, by repeated application of Lemma 3.2(ii),

|ρ(1)
m+1(t) · · · ρ(k−1)

m+1 (t)| ≤ |ρ0(t)|k−1
= 1,
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since ρ0 is as in Theorem 3.3. Combining all these pieces, we have that∥∥∥f(A)b− f
R,(k)
m+1

∥∥∥
Ã
≤
∫ ∞

0

1

λmin + t

(
1− λmin

θ0

)k
ξkm

∥∥∥e(1)
0 (0)

∥∥∥
Â

dµ(t).

Using (23) again, we obtain the desired result.

Remark 3.7. Before proceeding, we make three comments concerning the result
of Theorem 3.6:

1. The bound (30) is minimal when θ0 takes its smallest admissible value. We
have to assume θ0 > λmax to keep the Radau inner product positive definite,
since otherwise much of our theory would be invalid. Consequently, one
should try to choose θ0 close to but not equal to λmax.

2. As for the standard bound for the error in the CG method and the bounds
derived from it for the restarted Lanczos method in [9], one cannot expect
the bound (30) to be sharp in general. One reason is that the standard bound
does not take into account the distribution of the eigenvalues in the interval
[λmin, λmax]. Moreover, the constant C is mostly an artifact of the technique
of proof, so that the order of magnitude of the error is typically severely
overestimated.

3. A comparison of the bound (30) with bounds for the standard restarted Lanc-
zos method is not very enlightening as far as the actual behavior of the method
is concerned. Both bounds only differ by the factor (1 − λmin/θ0), which is
very close to 1 for matrices with large condition number. Despite this fact,
the actual performance of the methods can be very different in practice. Un-
derstanding this behavior is the topic of the next section.

Remark 3.7 stresses that the main implication of Theorem 3.6 is that using the
Radau modification cannot destroy the guaranteed convergence of the restarted Lanc-
zos method. The theorem cannot, however, accurately predict the speed of conver-
gence of the method.

4. Numerical results I: Polynomial studies. While the theory developed in
section 3 for the restarted Radau–Lanczos method guarantees convergence to f(A)b,
when A is HPD and f is a Stieltjes function, it does not fully explain the behavior
observed in numerical experiments, especially when compared to the standard Lanczos
method; cf. also Remark 3.7. It is beyond the scope of this paper to perform a rigorous
theoretical analysis of the different phenomena one can observe. Rather, we perform
a series of academic numerical experiments in this section, in order to shed some light
on different features of the method.

In all experiments in this section, we approximate A−1/2b, where b ∈ R100 is the
normalized vector of all ones and A ∈ R100×100 is a diagonal matrix with λmin = 10−2

and λmax = 102, i.e., with condition number κ = 104. The inverse square root is
indeed a Stieltjes function of the form (16). More generally, for all σ ∈ (0, 1),

z−σ =
sin(σπ)

π

∫ ∞
0

t−σ

t+ z
dt

is a Stieltjes function; see, e.g., [16].
We use a restart length of m = 10 and aim for an absolute error norm below

10−10. The fixed node in the Radau–Lanczos method is chosen as θ0 = λmax + λmin.
The distribution of the eigenvalues of A in the spectral interval [10−2, 102] is chosen
in three different ways:
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(a) (b)

(c)

Fig. 1. Comparison of the convergence behavior of the restarted Lanczos and Radau–Lanczos
methods with restart length m = 10 for three different diagonal matrices A. (See the text for details
on the spectra of the matrices.) In addition, the bound for the convergence rate from Theorem 3.6
is shown.

(a) 100 equidistantly spaced eigenvalues in [10−2, 102];
(b) 100 logarithmically spaced eigenvalues in [10−2, 102];
(c) 50 equidistantly spaced eigenvalues in [10−2, 10−1] and [101, 102] each.
Figure 1 depicts the convergence history of the restarted Lanczos and Radau–

Lanczos methods for the three different choices of A. The fixed node in the Radau–
Lanczos method is chosen as λmax + λmin in all three examples. We observe that the
Radau–Lanczos method outperforms the standard Lanczos method in all three cases,
although by vastly different margins. Note that this also results in a similar improve-
ment in execution times, since each iteration requires roughly the same amount of
computational effort. In order to confirm what we mentioned in Remark 3.7, we also
plot the asymptotic convergence factor from the bound from Theorem 3.6. For better
readability of the plot, we left out the constant C from (30) as well as the additional
constant introduced by transforming the estimate in the A−1(θ0I − A)−1-norm into
one in the Euclidean norm. In reality, the norm of the error is overestimated by two
to three orders of magnitude due to these constants. As the bound (30) only depends
on the extremal eigenvalues λmin and λmax of A and the choice of θ0, it is the same
for all three matrices. As expected, the slope of the convergence curve is not resolved
very accurately, especially in case (c), where the distribution of the eigenvalues in the
interval [λmin, λmax] is such that the Chebyshev polynomials, on which the bounds
from Theorem 3.6 are based, are far from being optimal.

A first, intuitive explanation for the improved performance of the Radau–Lanczos
method over the standard one is that the largest Ritz value produced by the restarted
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Lanczos method with a short cycle length may fail to approximate the largest eigen-
value of A to sufficient accuracy. In this case, the value |qm−1(λmax)|, where qm−1

is the polynomial interpolating f at the Ritz values, may be very large, while f is
monotonically decreasing and thus takes its smallest value on [λmin, λmax] at λmax.
One can therefore expect a large relative error at this point. To confirm this intuition
and to better explain the different behavior observed in Figures 1(a)–(c), we compare
the interpolating polynomials corresponding to the different methods.

Figure 2 depicts the relative errors of the values of the interpolating polynomials
at the eigenvalues λmin = λ1 ≤ λ2 ≤ · · · ≤ λ100 = λmax of A, i.e., the quantities:

(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

Fig. 2. Relative errors |λ−1/2
i − p(λi)|/λ

−1/2
i , i = 1, . . . , 100, of the interpolating polynomials

from the first and second restart cycles, respectively, at the eigenvalues λmin = λ1 ≤ λ2 ≤ · · · ≤
λ100 = λmax of diagonal matrices with equidistantly spaced eigenvalues (a.1) and (a.2); logarithmi-
cally spaced eigenvalues (b.1) and (b.2); and a gap in the spectrum (c.1) and (c.2). See the text for
more details on the matrices.
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|λ−1/2
i − q(λi)|/λ−1/2

i , i = 1, . . . , 100,

where q is either qm−1 or qR
m, the interpolating polynomials for each respective method

in the first two cycles. As expected, the relative error at the largest eigenvalue λ100

is much larger for the standard Lanczos method. We note that while we only depict
the errors of the interpolating polynomials after the first two of many restart cycles,
the observed behavior stays the same for subsequent cycles. This behavior can be ex-
plained by the fact that the Ritz values produced in restarted methods asymptotically
consist of two sets which are repeated cyclically; see, e.g, [1]. Therefore, when the
largest eigenvalue is not approximated to sufficient accuracy in the “first few” restart
cycles, one cannot expect this to happen in later cycles. Thus, a high polynomial
degree is necessary to reduce the error at λmax sufficiently. The largest Ritz value is
typically the one which converges to an eigenvalue the fastest among all Ritz values.
Thus, if convergence of the largest Ritz value is unsatisfactory, this will also be the
case for all the other Ritz values. We focus on the largest eigenvalue here as this is
the one where convergence can be improved by our approach. It would be desirable to
also improve the convergence of interior eigenvalues, but this would require different
techniques, as θ0 > λmax is required, and thus no other “target” eigenvalue may be
chosen.

To further understand these phenomena, we also note that the largest Ritz value
produced throughout all restart cycles of the standard Lanczos method is 99.69 for
matrix (a), 99.99 for matrix (b), and 99.50 for matrix (c) (rounded to two deci-
mal digits). Thus, in these examples, we see a direct correspondence between the
quality of the approximation to the largest eigenvalue and the improvement of the
Radau–Lanczos method over the standard one: the better the approximation qual-
ity of the largest Ritz value, the smaller the advantage in using the Radau–Lanczos
method.

5. Numerical results II: Model problems. We now investigate standard
model problems and problems coming from real-world applications, to demonstrate
that the Radau–Lanczos method also has benefits in these more practical settings.
We again use the same default parameters as in the last section—cycle length m = 10,
target accuracy 10−10, and θ0 = λmin + λmax—unless explicitly stated otherwise.

5.1. Two-dimensional Laplacian. The first model problem we consider is the
standard finite difference discretization of the two-dimensional Laplace operator with
homogeneous Dirichlet boundary conditions on a regular square grid with N + 1 grid
points in each spatial dimension. This results in an N2 ×N2 matrix of the form

A = A1D ⊗ IN + IN ⊗A1D, where A1D = (N + 1)2


2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 ∈ CN×N .

We perform experiments on the functions f1(z) = z−1/2 and f2(z) = (e−s
√
z − 1)/z,

with N = 40 and b the (normalized) vector of all ones in both cases. The function
f2, which plays an important role in the solution of wave equations (see, e.g., [4]) has
an integral representation of the form

(31) f2(z) = −
∫ ∞

0

1

z + t

sin(s
√
t)

πt
dt.
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(a) (b)

Fig. 3. Convergence history of the Lanczos and Radau–Lanczos method for approximating (a)

A−1/2b and (b) (e−s
√
A − I)A−1b for the discretization of the two-dimensional Laplace operator of

size 1,600× 1,600.

Therefore, f2 is not a Stieltjes function, as the function µ generating f2 is not mono-
tonically increasing. Thus, Theorems 3.3 and 3.6 do not apply, but we can still use
a quadrature-based restart approach based on the representation (31); see also [10].
We specify the parameter s = 0.001 for f2.

Comparative convergence histories of the Lanczos and Radau–Lanczos methods
for these experiments are shown in Figure 3. We observe a similar behavior to the di-
agonal model problems, with the Radau–Lanczos method requiring about 20% fewer
restart cycles than the standard Lanczos method for f1 and about 17% fewer cycles
for f2. We note that the maximum eigenvalue of the discretized Laplace operator is
explicitly known, so that no additional computational effort must be put into approx-
imating it beforehand.

5.2. Sampling from Gaussian Markov random fields. The next model
problem is sampling from a Gaussian Markov random field (GMRF), considered in,
e.g., [21, 27]. For a set of n points si ∈ Rd, i = 1, . . . , n, the precision matrix A ∈ Cn×n
(with respect to two parameters δ, φ) is defined as

aij =

{
1 + φ

∑n
k=1,k 6=i χ

δ
ik if i = j,

−φχδij otherwise,

where χδ is given by

χδij =

{
1 if ‖si − sj‖2 < δ,

0 otherwise.

This matrix is HPD and strictly diagonally dominant with smallest eigenvalue 1. A
GMRF is a collection of random variables xi corresponding to the points si. A sample
from this field is obtained by computing A−1/2z with z a vector of independently and
identically distributed standard normal random variables. We use the precision matrix
corresponding to n = 4,000 pseudorandom points which are uniformly distributed in
the unit square (i.e., d = 2) with φ = 4, δ = 0.15. This results in λmax ≈ 1,386.4 and
985,238 nonzeros in A. The results of the computations for this model are depicted in
Figure 4. We observe a behavior which is very similar to that of the previous model
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Fig. 4. Convergence history of the Lanczos and Radau–Lanczos method for approximating
A−1/2z for a precision matrix of size 4,000× 4,000 of a GMRF and a vector z of normal random
variables.

Table 1
Improvement of the restarted Radau–Lanczos method over the standard restarted Lanczos

method (in terms of number of restart cycles) for the GMRF model problem, when θ0 = βλmax +
λmin.

β 1.00 1.05 1.10 1.15 1.2 1.25
% reduction of restart

cycles
19.1% 16.6% 14.8% 13.9% 13.0% 12.2%

problem, with the Radau–Lanczos method again showing a decrease of approximately
19% restart cycles.

As the largest eigenvalue of the precision matrix A is not explicitly known in
this case, it needs to be approximated (and bounded) beforehand to determine θ0 to
use the Radau–Lanczos method in practice. To illustrate that it is not necessary to
approximate the largest eigenvalue very accurately, we repeat the above experiment,
but use βλmax for different values of β ≥ 1 for defining θ0. Table 1 shows the improve-
ment of the Radau–Lanczos method over the standard one for different values of β.
While the performance of the Radau–Lanczos method worsens as the approximation
to λmax does, it still clearly outperforms the standard method even for β = 1.25, i.e.,
when the largest eigenvalue is overestimated by 25%. This shows that the method
is robust with respect to this parameter, meaning that rough estimates of λmax are
sufficient to see an acceleration in convergence.

5.3. Rational hybrid Monte Carlo method in lattice QCD. Quantum
chromodynamics (QCD) is an area of theoretical particle physics in which the strong
interaction between quarks is studied. In lattice QCD, this theory is discretized and
simulated on a four-dimensional space–time lattice with 12 variables at each lattice
point, each corresponding to combinations of three colors and four spins. The action
of (Stieltjes) matrix functions on vectors arises at various places in lattice QCD simu-
lations. One such application is the rational hybrid Monte Carlo (RHMC) algorithm;
see, e.g., [22]. In this algorithm, one needs to approximate

(MHM)1/kb with M = I − κD,

where k ≥ 2 is a positive integer, b is a random vector, D represents a periodic
nearest-neighbor coupling on the lattice, and κ is a parameter chosen smaller than a
“critical value” κcrit. The matrix MHM is HPD and f(z) = z1/k, while not a Stieltjes
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Fig. 5. Convergence history of the Lanczos and Radau–Lanczos method for approximating
(MHM)−3/4MHMb for a lattice QCD model problem on an 84 lattice, with restart parameter m=10.

Table 2
Improvement of the restarted Radau–Lanczos method over the standard restarted Lanczos

method for the RHMC model problem for varying restart length m.

m 2 5 10 20 30
% reduction of restart

cycles
52.12% 29.0% 15.9% 8.5% 3.3%

function, can be rewritten as zz1/k−1, so that f(MHM)b can be computed as f̃(A)b̃,

where f̃(z) = z1/k−1 and b̃ = MHMb, making our theory applicable to this situation.
We briefly mention that it is also possible to extend our theory to general functions of
the type zf̃(z), analogously to [10, Corollary 3.6], thus avoiding the premultiplication
of the vector b by MHM , but details on this are beyond the scope of this paper. For
our experiment, we choose a problem coming from an 8× 8× 8× 8 lattice, resulting
in a matrix of size 49,152 × 49,152, and approximate (MHM)1/4b by applying the

Lanczos and Radau–Lanczos methods to (MHM)−3/4b̃. The results for our default
set of parameters are presented in Figure 5, again showing a similar behavior to that
observed in the previous experiments.

In addition to the above experiment, we also use the RHMC model problem to
study the influence of the restart length on the convergence acceleration of the Radau–
Lanczos method over the standard Lanczos method. Table 2 depicts the percentage
reduction in cycles of the Radau–Lanczos method for different restart lengths. The
results of these experiments confirm our explanation of the superiority of the Radau–
Lanczos method given in section 4. The larger the restart length m, the better the
approximation quality of the largest Ritz value in the standard Lanczos method, so
that the acceleration of the Radau–Lanczos method is not so significant in these cases.
Still, we observe that the Radau–Lanczos method outperforms the standard one for all
tested restart lengths. It is especially attractive, however, when a very small restart
length has to be used due to scarce memory.

6. Conclusions. We have presented an acceleration technique for the restarted
Lanczos method for f(A)b, based on a rank-one modification of the tridiagonal matrix
Tm related to the Gauss–Radau quadrature rule. We have developed a theory for rank-
one modifications of the Lanczos method in general, but particularly analyzed the
convergence of the Radau–Lanczos method and investigated its properties in various
numerical experiments. Our observations indicate that the method performs better
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than the standard Lanczos method in situations where memory is scarce and one
therefore has to resort to short cycle lengths. We have seen that the Radau–Lanczos
method can mitigate the slow convergence caused by unsatisfactory convergence of
the largest Ritz value to the largest eigenvalue, which occurs in the standard Lanczos
method. While the Radau–Lanczos method requires knowledge of an upper bound for
the largest eigenvalue of A to do so, we stress that it is still preferable over the standard
Lanczos method in many cases, e.g., when analytic bounds for the spectrum are known
from knowledge of properties of an underlying model. We have also illustrated that
the Radau–Lanczos method is robust with respect to the approximation of the largest
eigenvalue, so that a rough estimate of λmax is often sufficient, as long as it is an
upper bound.

We did not discuss behavior in floating-point arithmetic in detail, but the Radau–
Lanczos method can be expected to exhibit the same behavior as the standard
restarted Lanczos method, which works well in practice even though the orthogo-
nality of the Lanczos vectors may be lost. The additional operations introduced by
the Radau modification are not prone to numerical instabilities. As the new method
is particularly attractive in situations where small restart lengths are to be used, loss
of orthogonality of the Lanczos basis is typically even less of an issue. We also refer
to [11, section 6.2], where the behavior of the Gauss–Radau rank-one modification in
floating-point arithmetic is investigated in the context of computing error bounds in
the Lanczos method.

Another technique aimed at accelerating convergence for slowly converging
restarted methods is the deflated restart approach. However, as this technique re-
lies on Ritz value information, it often does not drastically improve the convergence
behavior in situations where the Ritz values do not approximate the target eigenvalues
well. Our approach can thus be seen as an alternative to deflated restarting and is
successfully applicable in situations where deflated restarts are not, as demonstrated
by the strong convergence results presented in this paper.
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