To appear in Genomics

Gene Structure Prediction
by Linguistic Methods

Shan Dong and David B. Searls
Department of Genetics

University of Pennsylvania School of Medicine
422 Curie Boulevard
Philadelphia, PA 19104-6145 USA

Abstract

The higher-order structure of genes and other features of biological sequences can
be described by means of formal grammars. These grammars can then be used by
general-purpose parsers to detect and assemble such structures by means of syntactic
pattern recognition. We describe a grammar and parser for eukaryotic protein-encoding
genes, which by some measures is as effective as current connectionist and combinatorial
algorithms in predicting gene structures for sequence database entries. Parameters on
the grammar rules are optimized for several different species, and mixing experiments
performed to determine the degree of species specificity and the relative importance of
compositional, signal-based, and syntactic components in gene prediction.

Introduction

Formal language theory views languages as sets of strings over some alphabet, and specifies
potentially infinite languages with concise sets of rules called grammars [10]. Grammars
are an exceptionally well-studied methodology, familiar to all computer scientists, for the
description of complex, higher-order structures embodied in strings of symbols. Moreover,
they can be given as input to general-purpose programs called parsers capable of determining
whether a given string satisfies the rules of the grammar. Parser technology is also extensively
developed, and has been applied as well to the problem of searching for complex patterns
specified by grammars in large amounts of data, in a technique known as syntactic pattern
recognition [6).

A formidable pattern recognition problem in biology is the recognition of protein-encoding
genes in otherwise uncharacterized primary sequence data. Traditionally this has devolved
to the problem of recognizing coding sequence using a variety of statistical metrics, recently
reviewed in [4]. These compositional methods, used in what Staden termed “gene search by
content” [22], typically produce for any sample window of sequence a measure of similarity,
by some criterion, to “typical” exonic sequence data. Among the more commonly-used
compositional measures are Fickett’s TESTCODE algorithm [3], which measures positional

asymmetry or the tendency for base compositions to vary systematically with position within
the codon, and heztuple frequencies or the relative frequencies of occurrence of each 6-mer
of bases in coding (either in-frame or independent of frame) versus non-coding sequences
[2]. All such methods have the disadvantage that their accuracy invariably declines with
smaller window sizes, and for most metrics the optimum window size is greater than the
mean exon size in typical vertebrate gene sets. Nevertheless, new systems such as GRAIL
have markedly improved upon these methods by combining evidence from a number of them
in a connectionist architecture [24].

Another approach to gene-finding involves what Staden termed “gene search by signal”
[22], the recognition of specific local binding sites or other cues to processes involved in gene
expression, such as splice sites. The subtlety and degree of variation in such signals means
that their detection is often as uncertain as the more global compositional measures, yet
progress has also been made on this front using sophisticated statistical and machine learning
techniques such as neural networks. Weight matrices are a widely-used and relatively “low-
tech” example of a means of detecting such local signals [23]. Recently, a number of systems
(including more recent versions of GRAIL) have united compositional and signal detection
techniques in hybrid gene prediction systems, in which evidence is combined to predict
the most likely gene structure from a stretch of primary sequence. Not only do such gene
assembly programs provide more information than strictly compositional exon finders, but
by imposing additional constraints they can improve the latter’s performance. Several such
systems have been built on rule-based architectures [5, 7]. These advances have brought into
focus the combinatorial problem of assembling and testing large sets of candidate exons; this
has been addressed in the GenelD system [9] by clustering exons into equivalence classes,
and in the GeneParser system [21] by a novel dynamic programming approach (see also [8]).
These systems achieve similar levels of performance [21].

We proposed the use of formal grammars to assemble gene structures from primary
sequence in 1988 [15], and since that time have worked to build a domain-specific parser
to enable the use of grammars as versatile yet reasonably efficient pattern recognition tools
[16, 17, 18]. We have successfully used this system, called GENLANG, for the recognition
of tRNA genes, group I introns, and a variety of other features [20, 19]. We now report on
more comprehensive efforts to use the GENLANG system to recognize and predict structures
of eukaryotic protein-encoding genes.

Methods

Grammars and Parsing

The gene grammars to be described were implemented in the logic programming language
Prolog, using a powerful and extensible grammar paradigm called definite clause grammar
(DCG) [14]. DCGs are directly translated by Prolog compilers to executable code for sim-
ple recursive-descent parsers. While DCGs offer an excellent rapid-prototyping environment
and are optimized for this form of search, a number of adaptations were made in the course
of developing the GENLANG parser, largely for the sake of efficiency and ease of grammar
development in the domain of DNA sequence data. Thus, GENLANG grammars are aug-

mented with many hidden parameters and additional functionalities, and the lower levels of
the system are implemented in the ‘C’ programming language. One particularly important
speedup is the use of chart parsing techniques, related to dynamic programming, in which
intermediate results (i.e. parse subtrees) are saved for later re-use in highly nondeterministic
parsing; chart parsing allows for an order of magnitude speedup for the grammars described
below. Details of the implementation of GENLANG can be found elsewhere [19, 20].

A significant feature of GENLANG grammars is the incorporation of a notion of cost.
To allow for imperfect matching, for example with a simple oligonucleotide sequence, a
maximum cost may be imposed on the rule when it is invoked, and up to that number of
mismatches is allowed. However, much more complicated cost models are possible, including
user-defined functions, such as edit distance and weight matrix scores (see below). Costs
are promulgated up the resulting parse tree and summed at each node, so that not only
the overall parse can have a threshold cost, but also each subtree. This allows for rules of
varying and even context-sensitive stringency.

The overall design and cost model employed for the gene parsing task was as follows. A
set of rules designated as leaf rules was chosen, whose members referred directly to primary
sequence and were adjudged to be the significant units of “evidence” for some signal or
compositional measure related to the presence of a gene (enumerated in detail below). The
grammar was then elaborated so that an additional set of node rules each invoked exactly
two of either the leaf rules or other node rules. (In formal terms, the core grammar was thus
reduced to Chomsky normal form, and it is known that any context-free grammar can be
so structured [10].) The resulting parse trees were therefore binary. Each node rule N was
responsible for combining the cost of two lower-level rules — a left (L) and right (R) child —
and passing it up to its own parent. For this purpose a uniform cost function was designed
based on a single “mixing” parameter, u, as follows:

Costy = (1 —) -Costy, + p - Costr

The parameter p was intended to range between zero, giving full weight to the left child and
none to the right, and one, shifting all weight to the right child. Also associated with each
node rule was a pair of thresholds, 87, and g, representing the maximum costs to be allowed
over the left and right subtrees, respectively. That is, whenever in a developing parse tree
a child node applied to some span of sequence accumulated a cost exceeding the threshold
imposed by its parent, that child node would be said to fail. At that point, the grammar
would backtrack or retry the child node at the next span of sequence allowed by the grammar.
A parse succeeded whenever all subtrees could be assembled so as to satisfy all thresholds,
including some top-level threshold applied to the tree as a whole. Even after succeeding,
the grammar could be made to backtrack to find alternative answers, and in this case the
predicted structure was taken to be the one with the minimum top-level cost.

Not surprisingly, the effectiveness of the resulting grammars was in large part determined
by the values assigned to the mixing and threshold parameters; finding optimal values of
these parameters is thus a major concern. The total cost of any given putative gene could be
calculated directly from a single formula assembled from each of the cost functions, and it
may be imagined that identical results to those given below could be arrived at by generating
putative genes by whatever means and applying such a formula repeatedly. However, it is

important to note that the application of thresholds at multiple levels greatly prunes the
search space and provides much finer control over the acceptable subtrees. This fact, and
other procedural aspects of the parse to be described below, permit (in fact, require) a less
than exhaustive search of the possible gene structures to be performed.

Compositional and Signal Measures

As noted above, a number of compositional measures of exonic tendency have been proposed,
most of which are interrelated to a greater or lesser degree [4]. We have chosen two of the best-
known: in-frame hextuple frequency [2] and position asymmetry as measured by Fickett’s
TESTCODE algorithm [3]. Their use is described further below, and in the Discussion.

Local signals were largely detected using weight matrices, implemented in GENLANG
as follows. Input to a special form of grammar rule consists of a table F' of numbers of
occurrences of each base type in B = {a,¢,g,t} at each position 1 < ¢ < n in a set of
examples drawn from aligned consensus sequences of length n. This is compiled to code
which evaluates a candidate sequence in a fashion optimized for rapid parsing [15]. The
method that proved most effective with the signals described below was one that evaluates
a sequence subarray S using a negative log likelihood function [23], as follows:

n

Cost = — ; <log F; s — log (rgleaBX sz))
Thus the cost is the sum of the negative logs of the individual base position frequencies,
normalized so that the most likely base in each position contributes zero cost. For certain
signals, improved performance was achieved by taking into account negative examples (of-
ten done in machine learning techniques but generally not in weight matrices). This was
accomplished by dividing the frequencies of the positive examples by those of the negatives,
to produce a log likelihood ratio.

Gene Grammars

Protein-encoding gene grammars are the most complex we have built, and will not be given
in their full detail. (Source code and documentation are available on request, and many
aspects of the grammar’s design have appeared in [15, 17, 18, 20].) Described below is the
“core” of a new grammar designed specifically for automated optimization of gene prediction.

Leaf Rules

Leaf rules, which would be called “prelexical” in a linguistic context and are termed “sensors”
in certain other gene prediction systems, are those which collect a variety of forms of evidence
for assembly by the grammar. They constitute the leaves of the eventual parse tree, and
are enumerated below. Frequencies for these features were compiled from gene sets to be
described in a later section.

1. Start Codon Consensus. A weight matrix cost for the region extending from —6 bp to
+6 bp from a putative start of translation, with an obligatory ATG. It proved most
effective to use only positive examples, drawn from authentic starts of translation.

4

10.

11.

AT Spacing. A cost inversely proportional to the distance from a putative start codon
to the next preceding ATG in the sequence. For authentic start sites we observed that
this distance is greater than the mean, due to a tendency to exclude non-start upstream
ATGs in initial exons.

Upstream Words. A cost inversely proportional to the average, for each hextuple in a
region up to 200 bp upstream of a putative start site, of the frequencies of occurrence
of those hextuples upstream of authentic start sites.

Fzxon Size. For an obligatory open reading frame of length L in a putative internal
exon, a cost proportional to the average exon length divided by L. Note that this
penalizes exons that are “too short,” but not exons longer than the mean, since of
course the latter are less likely to arise by chance during parsing. Initial and final
exons are not assessed a cost, since much wider size variations are observed in these.

Coding Words. For a putative coding region, a cost inversely proportional to the in-
frame hextuple score. This score is calculated as the sum of the logarithms of the ratios
of each hextuple’s frequency of occurrence in coding versus non-coding regions, plus
an offset to insure a positive result.

Position Asymmetry. For a putative coding region, a cost derived from Fickett’s TEST-
CODE algorithm [3], but using tables of probabilities and weights calculated individually
for the sets described below.

. Donor Consensus. A weight matrix cost for the region extending from —3 to +6 from a

putative splice donor, with an obligatory GT. Positive examples were confirmed donors,
and negative examples were GT-containing sequences within 50 bp of confirmed donors.

Donor Words. At a putative splice donor, a cost proportional to the Coding Words
cost for the in-frame portion of the region 50 bp upstream minus that for the region
50 bp downstream, plus an offset to insure a positive result. Such a differential is
indicative of a transition from exonic to intronic sequence.

Acceptor Consensus. A weight matrix cost for the region extending from —14 to
+3 from a putative splice acceptor, with an obligatory AG. Positive examples were
confirmed acceptors, and negative examples were AG-containing sequences within 50
bp of confirmed acceptors.

Acceptor Words. At a putative splice acceptor, a cost proportional to the Coding
Words cost for the in-frame portion of the region 50 bp downstream minus that for the
region 50 bp upstream, plus an offset to insure a positive result.

Exon Number. A cost proportional to the average number of exons divided by that
observed in the putative gene structure. Again, this penalizes only genes with fewer
exons than the mean, rather than more, so this rule should be considered to simply
establish a bias (for better or worse) toward genes with greater numbers of exons.

12. Splice Quality. A cost equal to the average cost of all introns in an entire putative
gene, encompassing local and global measures as mixed at the level of the intron rule
(see below).

13. Coding Quality. A cost equal to the average cost of exons in a putative gene, encom-
passing local and global measures as mixed at the level of the exon rule.

It should be emphasized that no effort was made to establish at the outset the relative values
of each of these leaf rules in gene prediction. The costs produced by each were initially scaled
to roughly the same order of magnitude, but the mixing coefficients are what determine the
relative contribution of each sensor to the overall cost at each level of the parse, and the
goal of the training regimen to be described below was to determine, a posteriori, locally
optimal mixing coefficients. Thus if, for example, the bias toward larger numbers of exons
in leaf rule 11 proved to be ill-founded or poorly formulated, then the cost contributed by
this leaf node would presumably be devalued by the mixing coefficient (possibly to zero) in
the training process.

Node Rules

The internal nodes of the grammar are represented in graphical form in Figure 1. The
top-level rule Gene (analogous to Sentence in typical natural language grammars) invokes a
Translation and a Termination rule, and these in turn invoke lower-level node rules, and so
on down to the leaf rules. The Remainder rule is recursive in that its right child is itself;
this permits it to reinvoke its left child, a rule for an Intron/Exon pair, as many times as
necessary. Other recursive rules used in the overall grammar, such as one within the Fzon
rule that gathers codons into an open reading frame, are not included in the core grammar
depicted. Also not shown is the “escape” from the recursion, a special rule for the final
Intron/Ezon pair.

Such recursion has an interesting interpretation under the cost model described above.
For p = 0, the entire cost of Remainder is that of the left child, Intron/Exon; in particular,
the top-level cost is just that of the first Intron/Exon pair in the gene. At every level of the
recursion, each additional Intron/Fzon is in effect treated in isolation and is required to meet
the same cost threshold, 8. If, on the other hand, ¢ = 1, only the cost of the right children
will be passed up, meaning (eventually) just the final Intron/Fxon; again, the intervening
Intron/Exon pairs will be thresholded individually by 7. (In both cases #r can apply only
to the final Intron/Fzon, though there is an additional requirement in the former case that
it not be less than 6y.)

However, consider intermediate mixing parameter values, e.g. ¢ = 0.5. The cost passed
up at every invocation of Remainder would then be one-half the cost of the current In-
tron/Ezon, plus one-fourth the cost of the next one, and so on. Besides the threshold 6;, on
individual Intron/Exon pairs, the 0 threshold will apply to all the remaining pairs, though
in a decreasingly-weighted fashion. More formally, the top-level cost of a left recursion of
depth n, encompassing the costs of n —1 left children, C'osty,, and that of a final right child,
Costg, can be shown to be

n—1

Costy = (1 —p) - (Z/ﬂ : CostLi) + u" - Costp

=0

Gene

Trangdlation Termination
e Exon Exon
Initi ; -
Exto?: Remainder Number Quality
L Slice Coding
Initiation Intron/Exon Quality Quality
Sart Codon Upstream N
Consensus Intron Exon
ATG Upstream Exon ;
Spacing Wordsﬂ[)onor A(?em{S e Codng
Donor Donor Acceptor Acceptor Coding Position

Consensus Words Consensus Words Words Asymmetry

Figure 1: Graphical depiction of the core grammar structure, roughly corresponding to an instanti-
ated parse tree of a gene. Solid lines depict rule invocations, and dashed lines indicate transmission
of costs by other means. The apparent dual parentage of the Fzon rule reflects the fact that it
is invoked at different times by distinct higher-level rules. The circular arc around Remainder
indicates recursion (see text).

This arrangement has the desirable property that the total average cost is asymptotic in
the length of the recursion; more precisely, it can be shown by induction on n that, given
constant Costy, = Costg = (', it will also be the case that Costy = C for any p and any
n. Thus, no special arrangements need be made to adjust thresholds for different numbers
of exons, or at different depths of the recursion.

The rate at which the weight of subsequent terms decreases depends on p: small p shifts
the emphasis to the left children and thus shortens the “half-life” of the costs, while larger
p shifts the emphasis to the right and levels out the contributions of all the Intron/Fzon
pairs. (In all cases, the final Intron/Eron contributes greater cost, the shorter the recursion;
thus, the earlier the recursion is to terminate, the better the final Intron/Fzon has to be to
“justify” that termination.) The value of p can be thought of as the effective width of a
decaying “window” that determines how many Intron/Exon pairs are taken into account at
one time by the thresholds on Remainder.

It should be noted that, unlike formal grammars, this grammar is not constrained to
invoke terminal elements strictly in the order in which they appear on the input string. For
example, it is more efficient to detect the Start Codon Consensus before evaluating the Up-
stream elements of the grammar. (The theory and practice of this aspect of GENLANG are
discussed in [16] and [18].) Moreover, while many rules refer to primary sequence directly
in the tradition of formal grammars, they are intermixed with more global, evaluative rules

that have a distinctly heuristic flavor. For example, the Termination branch of the grammar
in effect constitutes a “wrap-up” evaluation of the putative gene product, in terms of the
number and quality of the entire set of exons proposed. As noted in the enumeration of leaf
rules, the Splice Quality and Coding Quality rules make use of the costs of the individual
Intron and Fxon rule invocations, respectively; however, the rules under Termination calcu-
late a uniform average as opposed to the half-life window employed under the recursive rule.
Particularly for more complex genes, it may be important to allow for such global as well as
local assessments of exon quality.

This departure from formal grammars, and the incorporation of features such as costs,
give the resulting system the flavor of a hierarchical rule-based system such as GenelD [9].
Even traditional linguistic techniques such as chart parsing have their analogues in other
technical domains. However, the lower levels of the gene grammar and indeed the recognition
engine itself are still general purpose tools, which have been used to find a variety of other
types of features [19]. The logic grammar framework is well-suited for rapid prototyping, and
inherently supports useful features such as input management behind the scenes, parameter
hiding, easily modified syntax and higher level language features, and most of all an efficient
backtracking search mechanism. We feel it is also very important that the practical grammar
used here is still built upon and tied to a formally well-founded “idealized” gene grammar [17],
which continues to provide a solid foundation for other ongoing research in parallelization,
formal grammars, etc.

Gene Parsing

A single parsing run actually entails the generation and evaluation of a large number of
alternative parses, with the minimum cost parse being selected as the final answer. The
stringency of the thresholds in the grammar is gradually relaxed in the course of parsing.
That is, while mixing coefficients p are specified by the user before parsing begins and remain
constant, the thresholds # increase during the parse, across a range that is determined by a
training set of known sample genes.

Given such a training set, the grammar is first used to parse each gene in such a way
that only the known, authentic structure is allowed. (One of the advantages of the DCG
methodology is that properly-written grammars may be given an instantiated parse tree as
input, rather than producing it as output, so as to enforce a given parse [16].) Thresholds
may then be set to the maximum costs encountered at each node for the entire training set,
i.e. so as to just barely allow every known gene and element of a gene; this is called the
100% setpoint for the grammar thresholds as a group. In order to vary thresholds from these
trained values, the user does not change individual thresholds but rather the setpoint for
the grammar as a whole. For example, a setpoint of 120% would uniformly increase every
threshold to 1.2 times the maximum value encountered in the training set.

However, setpoints less than 100% are handled differently. First, thresholds for elements
occurring only once in a parse tree, such as start codons, are not allowed to decrease from the
100% value, but remain fixed at that level even for lower setpoints. For elements occurring
more than once per gene, such as exons, the complete list of such costs encountered in
the training set is examined. The setpoint determines what percentage of those costs are
included, e.g. the threshold for exons is chosen so that the setpoint percentage of known

exons from the training set would succeed.

This process is repeated for a series of setpoints, typically 80, 90, 95, 98, 99, 100, 105,
110, 120, and 130%, to determine a range of threshold values tailored to the training set.
This process is called threshold calibration on the given set of sample genes. Note that a
threshold for the Gene rule is also determined, though this rule is not invoked by other rules
but only at the top level by the parser.

After threshold calibration, and with each mixing parameter p having been set by a
procedure to be described, the parse can proceed. For each setpoint level in order of increas-
ing percentage (i.e., decreasing stringency), the top level rule is invoked for a given input
— generally an entire GenBank entry sequence. The Prolog-based parser implements a top-
down, backtracking search according to the grammar, and wherever a complete candidate
gene is found compares it to the GenBank annotations and records various measures of the
“quality” of the result (see below). The parser immediately backtracks to produce as many
alternative results as possible, until either a specified maximum number of parses is reached
(typically 100) or a time limit is exceeded (typically 2 minutes on a SPARCstation10). At
this point, the next higher percentage setpoint is tried, except that the top-level threshold
is now decreased to the maximum cost already encountered at the higher stringency. When
either all setpoints have been tried, or a timeout has occurred at some setpoint with no
parses having been produced, the parse terminates, and in batch mode the parser moves on
to the next sequence in the database.

This protocol proved effective over a wide range of genes, with minimum-cost parses for
different genes distributed among all setpoints. The 80% level parsing generally proceeded
quickly due to the higher stringency, and where parses were found established a lower top-
level threshold that in turn sped up the subsequent lower stringency (90%) parsing, and so
on. This coarse-grained branch-and-bound technique, as well as the chart parsing described
above, was necessary to produce large numbers of alternative structures under the inherently
costly parsing methodology, though the number examined are still small compared to other
combinatorial algorithms which perform exhaustive searches [9, 21].

Training and Test Sets

Our philosophy in selecting and normalizing training sets of sequence database entries was to
do this in as automated a fashion as practicable, in part so as to help drive out human bias,
but primarily to permit the uniform and rapid treatment of multiple species (and eventually
other subdivisions of the data). Consequently, rather than using hand-picked training sets,
GENLANG scripts were written to select various data sets directly from GenBank. The
current version of GENLANG uses a DCG of GenBank entry syntax to scan the flat file
versions of the database, performing selections on and extracting various header fields of
interest. In addition to human entries, mouse and drosophila entries were selected (genus
‘Mus’ and ‘Drosophila’, respectively), and a much broader collection of dicot plants (class
‘Magnoliopsida’).
The sets of entries extracted for each of these phylogenetic groups are as follows:
A. ¢DNA Gene Set. This set contained entries selected as being of type ‘m-RNA’ and
having the substring ‘complete cds’ in their description field. The coding sequence ex-
tracted from these entries can thus be expected to be full length. These sequences were

used to compile statistics for start codon weight matrices, coding position asymmetry
coefficients, and in-frame coding hextuple frequency tables.

. Genomic Gene Set. This set consisted of entries of type ‘ds-DNA’, of length greater
than 1000, and with a CDS annotation listing more than one coding region in a single
transcript, i.e. containing at least one intron. These complete and partial genomic
sequences were used to compile splice junction weight matrices, non-coding position
asymmetry coefficients, and non-coding hextuple frequency tables.

. Complete Gene Set. This set, essentially a subset of the genomic gene set, consisted of
entries of type ‘ds-DNA’ having the substring ‘complete cds’ in their description field.
These complete genomic DNA sequences were used to assess the average number of
exons per gene and average internal exon length, and to compile hextuple frequency
tables for regions up to 200 bps upstream of the start codons (since only in ‘complete
cds’ entries could the beginning of the CDS list be trusted to be the actual start codon).
This region can be expected to contain hextuple entries including known proximal
promoter elements such as TATA boxes; this was confirmed by direct examination of
the frequency tables.

. Parsing Gene Set. To serve as a pool for training to establish p and 6 values, and
for testing the gene grammar, 48 entries from the complete gene set were selected at
random, with the following constraints:

e Only sequences less than 20,000 bp were selected. As a practical matter, this
permitted a more uniform depth of parsing for each gene in the training set
within the time limits set, and in any case few current entries exceed this length.
Parsing of longer genes will be addressed below.

e Sequences with unknown bases were not selected. Some sensors were not designed
to deal with unknown bases, and while many other algorithms substitute bases at
random in such cases, we found that simply skipping them eliminated only a small
percentage of complete gene entries and greatly simplified the interpretation.

e Entries exhibiting multiple gene products, for example due to known alternative
splicing, were eliminated. This was accomplished by selecting only entries with
a single CDS feature. Like longer gene entries, this class is growing in size and
contains some of the more “interesting” gene structures, but the evaluation of
performance (see below) is problematic in these cases. Parsing of alternatively
spliced genes will be discussed below.

These 48 entries were removed from the genomic as well as the complete gene set, in
both cases before the statistics indicated above were compiled. Moreover, members
of the cDNA gene set with BLAST scores exceeding 1200 against any member of the
parsing gene set were removed; this served to exclude cDNAs of the same gene as well
as closely related genes in a family. The same criterion was applied to ensure that no
two closely-related genes were included in the parsing gene set itself.

. Training/Test Sets. The parsing gene set was divided randomly (except as noted below)
into sets of 16 for three-fold cross-validation during training of the gene grammar.

10

That is, three training runs were performed, each time using 32 entries for training
and leaving out 16 entries for testing, with different non-overlapping sets of 16 omitted
in each run.

In addition to removing the parsing gene set from the cDNA, genomic, and complete
gene sets, the latter were each normalized to give approximately equal consideration to
every closely-related gene family, as opposed to each individual gene. For example, so as not
to give undue weight to the large number of globin gene entries in sequence databases, it is
desirable to cluster these into a single representative class, as in [9]. This was done by the
simple expedient of counting the number of BLAST scores greater than 1200 for each entry
compared against each of the other entries in the set, and assigning a weight to that entry
equal to the inverse of the number of ‘hits’. Then, in compiling frequency tables, weight
matrices, etc., each sequence contributed its weight, instead of unity, to the counts. It can
be seen that every member of a closely-related family of genes would thus contribute a weight
equal to one over the size of the family, so that the entire family would possess unit weight.
By the same token, unique genes would also have unit weight. Unlike the case with hand-
picked representative training sets, each member of a cluster thus has a ‘vote’ in the overall
consensus. We find that this technique used with a threshold of 1200 produces clusters that,
upon subjective examination, contain nearly all obviously related entries without including
a large number of unexpected associations or more distant evolutionary relationships. Note
that equal weighting for each gene family actually may not be the best policy for de novo
discovery of genes, which might be expected to occur in proportion to the current distribution
of gene classes in the databases. However, for purposes of validation of the technique, it is
important to minimize “crosstalk” between the training and test sets, such as might occur if
the latter happened to contain genes bearing more remote similarities to large families that
were heavily represented in the training set.

The sizes of the training sets and results of normalization are summarized in Table
. (The sharp reductions observed upon clustering drosophila genomic and complete gene
sets are due to the very large number of alcohol dehydrogenase genes represented.) The
complete parsing sets may be obtained by anonymous FTP from cbil.humgen.upenn.edu, in
the directory /pub/genlang/testsets.

Table I: Effective sizes of data sets employed (number of entries).

Gene Set Stage Human Mouse Drosophila Dicot
cDNA initial selection 1663 813 208 235
less parsing set 1598 784 203 210
after clustering 1028 557 168 158
genomic initial selection 325 179 336 153
less parsing set 277 131 288 105
after clustering 187 87 103 7
complete initial selection 223 115 146 122
less parsing set 175 67 98 74
after clustering 130 55 35 50

11

Performance Assessment

A variety of means have been used to assess the quality of gene structure predictions, which
we classify into the following groups:

A. Correct Genes. This method simply counts the number of genes correctly predicted
in the entirety of their coding sequence, and expresses this as a fraction of the total
number of genes attempted. This is the most stringent test and no existing software
has produced very high scores.

B. Correct Fxons. This method counts the number of exons correctly predicted from end
to end, and again gives the fraction of the total. It may also be useful to count “half
right” exons, or more explicitly to determine the number of splice sites of either type
correctly predicted, as well as start and stop codons; note that this is different from
assessing these individual signal sensors in isolation, since they are here required to be
correct in some wider context.

C. Ezon Overlap. This method determines the degree to which the set of predicted exons
overlaps the authentic exons. This is done by counting the number of bases correctly
predicted as exonic (i.e. true positives, T'P), falsely predicted (£'P), correctly excluded
(T'N), and falsely excluded (F'N), and then applying a variety of statistical metrics,
such as sensitivity and specificity.

We measure exon overlap using the following definitions:

TP TP

Sensitivity = TP+ FN Specificity = TP 7P

(TP-TN — FP-FN)
JI'P+ FP)(FP+TN)TP+FN)FP+FN)

Correlation Coefficient =

Note that definitions vary among authors. In particular, our formula for specificity is that
used by [21]; it is called ‘Sen2’ by [9], and appears elsewhere in the literature as positive
predictive value [12]. (A different formula is often used for specificity, which counts true
negatives, but these numbers are generally too large in this application to be informative;
in nearly every case this formula produced values that varied only between 0.95 and 0.98.)
There appears to be a consensus that Matthews’ correlation coefficient (CC) [13] is the best
overall indicator of overlap, providing as it does a single scalar metric of performance. For
all sequence entries of a given set, individual and average values for each of these metrics for
the minimum cost parse were compiled. For purposes of comparison, two different methods
of aggregating results were used, to be described in Results.

Training Regimen

As noted above, training of grammar parameters proceeded by way of a three-fold cross-
validation using training sets of 32 entries and test sets of 16. The following regimen was

12

1.0 1.0

- 60% -60%
0.9
L 50% - 50%
Exons Exons
—40% -40%
-30% -30%
0.6 1 human 0.6 1 drosophila
Stat 1t ond 3rd Stat 1t ond 3rd

Figure 2: Training of the gene grammar on two of the four data sets (mouse and dicot not shown).
Connected points are median values, while error bars indicate the remaining values, for the three
cross-validated test sets. Circles give values for correlation (i.e., exon overlap) using the scales
on the left, while squares indicate exon fraction correct (in percent) using the scales on the right.
Filled circles and dashed lines indicate training set results, while open figures and solid lines give
test set results. The horizontal axes indicate the progression of the training through three epochs,
corresponding to perturbations of 0.3, 0.2, and 0.1, respectively, from the starting mixing coefficients

of 0.5.

arrived at after testing a variety of “hill-climbing” schemes for adjusting parameters to a
local optimum.

Training began with all mixing parameters set to p = 0.5; threshold parameters were
arrived at by thresholding on the training set itself at each stage. (The same thresholds were
used subsequently for the test sets.) Each training epoch consisted of a perturbation step
followed by a combination step. For the perturbation step, a series of parses of the entire
training set were run in which gy for each node N in the grammar was changed both up
and down by some value A, with the parameters on all other nodes being held constant.
Of all the results, the changes producing the five highest average CCs were collected for
the combination step. In this step, all possible combinations of the five changes were tried
together, and the combination producing the highest average CC was selected as the outcome
of the training epoch. These changes, with all other node parameters left at their previous
values, constituted the baseline for the next epoch. A total of three such epochs were run,
with values of A equal to 0.3, 0.2, and 0.1, respectively.

This ad hoc training regimen, while not formally justified on probabilistic or other the-
oretical grounds, was adjudged the most effective of a number of alternatives tried. The
alternation of perturbation and combination steps was found to be particularly important,
as an earlier attempt that used only perturbation revealed that some favorable changes in
distinct mixing coefficients were “self-cancelling” in combination. The amount of time re-

13

quired by the parsing methodology is limiting in a number of respects, including the sizes of
the training and test sets, the degree of cross-validation, and most importantly, the number
of different vectors of parameters that could be independently tested. However, as will be
seen in the next section, training appeared to progress rapidly and effectively even under the
limitations of the architecture.

Results

Grammar Training

Some results of grammar training are illustrated in Figure 2. In all cases, training sets showed
sharp improvements after the initial epoch, and generally much less improvement thereafter.
Human test sets started at an unexpectedly high level in terms of both correlation coeffi-
cient and exon fraction correct, showed improvement in the initial epoch, but then declined
with further training; this suggested that the grammar was overtraining, or adapting to the
specific training sets in ways that did not generalize well to the test sets. The mouse test
sets (not shown) started at a somewhat lower level of performance and demonstrated contin-
ued increasing average performance through three epochs, eventually achieving correlation
coefficients similar to the human peak. Drosophila and dicot test sets improved through two
epochs, with drosophila sets starting at the highest levels overall. Both these sets achieved
higher average performance than did those from vertebrates. We believe that this is primar-
ily because to a first approximation vertebrates have short exons and long introns, while the
opposite is the case for drosophila and dicots; for this reason global signals are stronger in
the latter.

Figure 3 gives some indication of the nature of the grammars at the end of training. The
parse trees shown for representative data sets are depicted in such a way that the width of
each pair of arcs from parent nodes to children reflects the relative cost contribution of those
children to the parent’s overall cost, as determined by the mixing coefficient at the parent
using input costs from the children at their 95% threshold values; these threshold values
are chosen as being representative of critical cutoffs during the parses, but essentially the
same results are observed when average input costs are used. Also, the grayscale intensity of
the arcs is an indication of the “criticality” of the mixing coefficient of the parent node, as
determined by the deviation observed in the correlation coefficient with the perturbation of
that g in the final training epoch. That is, the correlation coefficients for ¢+0.1 and p—0.1
are compared with that for g at its penultimate trained value, by taking the square root of
the sum of the squares of their differences from the correlation coefficient for .

The combination of width and intensity of these arcs gives some indication of the flow of
costs up the parse tree. Some extreme differences in cost weighting between children, such
as the width disparities below the Initial Exon, Upstream, and Eron nodes, can be somewhat
discounted in importance because of the generally faint criticalities of the arcs; this indicates
little sensitivity to change in p at these nodes. It is important to note, in addition, that
small weight or criticality for an arc does not indicate that the child node is unimportant
to the result, but rather that the cost of that child need not be evaluated in combination
with other costs at a higher level, or in the overall cost. Such a node may constitute strong

14

Gene Gene
human / \ drosophila / \

Translation Termination Translation Termination

Initial - Bxon Exon Initial - Exon Bxon
Exon Remainder Number Quality Exon Remainder Number Quality
. » Slice Coding . Slice Coding
Initiation Intron/Exon Quality Quality Initiation Intron/Exon Quality Quality
Sart Codon Upstream Sart Codon Upstream
Consensus Intron Exon Consensus Intron Exon

ATG Upstream
Spacing Words

ATG Upstream

Exon ;
Donor Acceptor Size Coding Spacing Words

1™

Donor Donor Acceptor Acceptor Coding Position Donor Donor Acceptor Acceptor Coding Position
Consensus Words Consensus Words ~ Words Asymmetry Consensus Words Consensus Words ~ Words Asymmetry

Donor Acceptor gxgg Coding

Figure 3: Nature of the grammars resulting from training on the data sets of Figure 2. The trees
represent grammars as in Figure 1, and the arcs indicate status after the third epoch. Width of
each arc indicates relative weight accorded that arc by the trained mixing coeflicient, and grayscale
intensity indicates “criticality” of the mixing coeflicient to the final result, as defined in the text.

independent evidence which discriminates well based on its own local threshold, such that
there is simply no great advantage to passing its cost further up the parse tree.

Values of these parameters are given as the means for the three training sets. The
resulting grammars demonstrated some degree of intra-species variation in the final mixing
coefficients among the three cross-validated training runs, perhaps greater than might be
expected given the relative uniformity of the results of Figure 2 (see Discussion). Several
other striking differences in relative weights of mixing, such as between Consensus and Words
components of splice Donor and Acceptor rules, are however of only moderate criticality in
all but a few instances, and these criticalities also tend to be inconsistent among training
runs.

Among the more consistent observations, however, was the greater weight put on the
Translation cost in human and mouse at the top level, as compared to the Termination cost
which was emphasized more in drosophila and dicot. Recall that the Translation rule is an
“on-line” procedural rule that assesses the developing cost of the gene on the fly, while the
Termination rule is an “off-line” post hoc evaluation of an overall gene; the results observed
suggest that both components are indeed important in combination, and in varying ratios,
for the effective evaluation of the overall Gene. The Termination node itself also shows fairly
consistent criticality, suggesting that the bias toward greater Fron Number built into the left
child is effective in balance with an overall indication of Fron Quality.

Within the Translation subtree, the vertebrate datasets showed a consistent weighting and
criticality at the recursive Remainder node, indicating that, for species in which this subtree
is given greatest weight, the effective window in which Intron/Ezon pairs are evaluated,
as described in the Methods section, is an important parameter. Beneath the Intron/Fzon
node, the Intron rule is given somewhat greater weight than the Fzon rule, and the criticality
suggests that in the animal datasets it is fruitful to threshold them in combination at this
particular ratio.

15

Every effort was made to ensure that test sets were properly separated from training sets,
as noted in the Methods section. Not only the removal of training sequences showing a high
similarity score with test set sequences, but also the clustering of highly similar entries in
the training sets, should have helped to avoid any undue influences. In addition, we believe
that this is the first cross-validated study in the arena of gene prediction. In order to ensure
that more subtle similarities within the final training sets were not affecting test results, we
looked for any correlation between performance and the cumulative BLAST scores between
individual test sequences and the training set as a whole. We found no suggestion of any such
correlation, measuring performance either by exon overlap or exon fraction correct (data not
shown).

Comparative Studies

These overall results appear to be similar to those achieved with a variety of other special-
purpose gene assembly algorithms, even though the GENLANG parser is a general-purpose
pattern matching tool not especially adapted to exhaustive combinatorial search. Direct
comparisons are difficult, for a number of reasons:

o Test sets are not well standardized, and even comparisons on test sets that have ap-
peared previously must generally use slight variations because of faults identified in
entries, changes in the underlying databases, or individual limits or requirements of
the systems under test.

o Different metrics and standards are employed by different workers. We have described
some of the differences in performance measures, but other authors use completely
different means of evaluation. Moreover, it is difficult to adjust for differences between
authors in separation of training and test sets, normalization of training sets to adjust
for clusters of similar genes, and cross-validation.

e Systems are generally distinct by virtue of their overall architectures, their selections
of sensors, their means of combining evidence, and their approach to the combinatorics
of exon assembly, so it is difficult to attribute performance differences to any particular
factor.

o Gene prediction is a very active field of research, and systems are constantly being
improved, so that any comparative results are likely to have been “leapfrogged” by the
time they reach press.

With these caveats in mind, we nevertheless compared GENLANG’s performance with
several other programs in current use. Table II shows the results of such a comparison
with a recent version of GRAIL (XGRAIL, October 1993, obtained by anonymous FTP
from arthur.epm.ornl.gov). Statistics from individual entries are averaged in two ways: by
gene, as in [9], and by base (i.e. by summing results on a nucleotide by nucleotide basis),
as in [21]. Thus, for example, for a test set of n sequence entries the formula for sensitivity
by gene would be (37 (TP;/(TP; 4+ FN;)))/n, while that for sensitivity by base would be
(Xr, TP/ X% (TP; + FN;). We use the former method in presenting our other data,

16

Table II: Comparison with GRAIL using GENLANG Test Sets.*

Test by gene by base
Program Set Gene Exon CC Sn Sp CC Sn Sp
GENLANG 1 .06 49 76 .86 .78 g4 .84 72
2 .19 b0 79 85 .82 77T .83 .79
3 13 .52 a5 .79 82 g4 .77 81
mean .13 .50 g7 .83 81 S5 8177
GRAIL 1 .00 A0 0 72 73 .83 .78 .78 .85
2 .19 AT 81 .81 .86 85 .85 91
3 .37 62 81 .76 .94 8 .78 .97

mean .19 .50 a8 77 .88 23 .80 .91

* Data shown are Gene and Exon fractions correct, and statistics for

correlation (CC), sensitivity (Sn), and specificity (Sp) calculated by gene
or by base for human test sets, as described in the text.

because it gives a better indication of the success rate over each attempted sequence entry,
and avoids lending extra weight to genes with longer, “easier” exons. The results in Table II
illustrate why the distinction is important: in terms of overall correlation the two programs
are comparable when measured gene by gene, but GRAIL performs better when averaged
by base. We believe that this is because GRAIL does slightly better on genes with larger
numbers of exons, and GENLANG is better at recognizing exons less than 100 bases in
length (data not shown); both these factors would tend to favor GRAIL when performance
is measured base by base. (A more recent version of GRAIL achieves improved performance
on smaller exons in part by allowing for assessment of coding measures over variable window
sizes [E. Uberbacher, personal communication], which is inherent in the GENLANG system.)

Table II indicates that, as a rule, GRAIL performs with higher specificity, while GEN-
LANG is relatively more sensitive. Reports of GRAIL results generally emphasize specificity
as a measure of performance [24], probably reflecting an orientation toward the use of GRAIL
to predict putative exons for further laboratory investigation, a situation in which false pos-
itives can prove very costly. Figure 4 shows a direct comparison of the two systems for each
gene attempted; the degree of scatter between the individual results of the two programs in-
dicates that to some extent they have disjoint strengths and weaknesses, and that in general
it may be advisable to perform multiple analyses of novel sequence data.

We also analyzed the performance of GENLANG relative to two other special-purpose
gene prediction programs, GenelD [9] and GeneParser [21], based on data from these original
papers using the GenelD test set. To do this we retrained the GENLANG grammar using 35
entries from our training/test sets which did not appear in this new test set (also removing
from our larger sets all entries similar to any member of the new test set, by the criteria
used previously). Based on the training results above, only a single training epoch was used,
and it was again confirmed that this was sufficient to achieve peak performance. Table III
compares these results with original data (recalculated as required for direct comparison)

from [9] and [21].

17

1.0 - coQ o0 e
o o) Q;//O
o 90 5 O 0o
0.8 oo 4O
o) /,’ o o
O 7 °
0.6 - o 5 O
/ (@]
e © O o
0.4 // o 0O
8>
0.2 - RN
Oé\&gqy}

cC 02 04 06 08 10

Figure 4: Performance of GRAIL vs. GENLANG on individual entries from the GENLANG human
test sets. FEach circle represents a single entry, with correlation scores from the two programs
indicated by positions on the respective axes. Thus, points above and to the left of the dashed line
represent entries for which GENLANG’s correlation score exceeded that of GRAIL. The radius of
each circle is proportional to the number of exons in the gene, ranging from three to 14.

Once again, GENLANG demonstrates generally greater sensitivity and lower specificity
than the other programs, and comparable overall correlation scores. The GenelD test set
contained slightly less than half human sequences, the remainder being mostly rodent. Since
GENLANG showed lower correlation using this test set than it did with its cross-validation
test sets, the human subset (consisting of 12 sequences) was extracted and tested separately.
Indeed, GENLANG’s performance improved in all respects and was more consistent with the
human-only study above. At the same time, results with GenelD itself (whose training set
was of mixed species composition, similar to the test set) did not show such improvement.

Because the grammars were trained to maximize correlation, which essentially represents
a tradeoff between sensitivity and specificity, there would presumably be some degree of
freedom on this axis. We also tried training GENLANG grammars using maximization of
specificity as the selection criterion. Table III shows that this change did indeed result in
higher values for specificity, but at the expense of both sensitivity and correlation, and not to
the specificity levels achieved by GRAIL in the data of Table II. Training for maximization
of exon fraction produced identical results to those seen with correlation training (data not
shown).

Phylogenetic Specificity

The data of Table III suggests that performance may have been enhanced by training and
testing in a species-specific manner. To test this we tried the individual grammars on each
heterologous phylogenetic group, with results shown in Figure 5.

18

Table III: Comparison with GenelD and GeneParser using GenelD
Test Sets.™

Test by gene by base
Program Set Gene Exon CC Sn Sp CC Sn Sp
GenNLanNg total .07 A7 .69 7T .73 72078 T4
human .17 .52 76 .82 .77 79 .85 .79

GenelD total A1 44 67 .69 .84 .67 .65 .78
human A7 .46 .66 .72 .80 .69 .70 .80
GeneParser total — 49 — — .69 .68 .78

GENLANG total .04 26 .60 55 .83 B8 46 .85
(Sp-trained) human .08 37 69 61 89 .65 .55 .87
* The total test set was the mixed vertebrate set used by [9] but excluding
the HAMRPS14A entry (as in [21]), for a total of 27 entries; the human test
set consisted of the 12 human sequences in the total test set. Data were

as in Table II, and were taken from [21] for GeneParser and from [9] for
GenelD, in the latter case by recalculation from the original entries for the
human subset and for the statistics by base.

These results indicate that there are indeed differences among the grammars, although
the differences between the human and mouse grammars are slight and not likely to be
statistically significant, based on the variation observed in the cross-validation. For example,
the human-trained grammar gave a correlation of 0.75 on a human test set, (.72 on mouse,
but only 0.27 on dicot plants. Similarly, the dicot-trained grammar produced a correlation
of only 0.21 on the human test set. Performances for exon fraction showed similar patterns,
and with a few exceptions the matrices are roughly symmetric. In order to summarize cross-
species differences we calculated an ad hoc distance between each pair of phylogenetic groups,
defined for correlation as (CCy1-CCy5)—(CCq2-CCyqy), where CCy 5 indicates the individual
correlation between training set 1 and test set 2, etc. (and similarly for exon fraction).

In an attempt to dissect out the reasons for the apparent phylogenetic differences in
the grammars, we performed mixing experiments in which various compositional and sig-
nal measures, as well as grammar parameters, were combined from and applied to different
species. Thus, for example, the human-trained grammar from Figure 5, which demonstrated
a correlation of 0.75 and exon fraction of 0.51, was tested with drosophila compositional
measures (hextuple tables and position asymmetry frequencies) substituted for the human
ones; this reduced the performance metrics to 0.47 and 0.26, respectively. When the human
grammar was used with drosophila local signals (weight matrices for splice junctions, etc.),
the effect was less deleterious, with performance reduced to 0.70 correlation and 0.37 exon
fraction. Similar results were obtained when drosophila mixing coefficients, governing the
combination of evidence, were substituted in the human grammar: 0.66 and 0.35, respec-
tively. These mixing experiments were tried for all combinations of species (data not shown)
with essentially analogous results, though varying in overall degree. To summarize, composi-
tional measures were the most important factors in performance, but there were indications
that all aspects of the grammars contribute in some degree.

19

Correlation Exon Fraction Distance

test test correlation
train H R D P train H R D P exon H R D P
H[.75 72 31 .27 H[51 52 .17 .16 frac- H 04 52 60
R|.75 .77 .63 .55 R |.48 55 .28 .26 ton £ 1 03_41 54
D |.33 .36 .83 .47 D |.10 .14 55 .26 D |.26 .26°_.44
P|.21 .23 .61 .87 P |.05 .06 .35 .67 P|.33 .35 .28

Figure 5: Application of grammars to heterologous phylogenetic groups. Row and column la-
bels indicate phylogenetic groups of training and test sets employed, where H=human, R=mouse,
D=drosophila, and P=dicot plants. The first two matrices give results for correlation and exon
fraction, while the last matrix shows correlation and exon fraction distances, as defined in the text.
Mixing coeflicients and test sets used were selected from the previous cross-validation experiment
based on the results which gave the highest combined performance on training and test sets, and
then applied consistently across other species.

Discussion

In general the parser was surprisingly robust in the face of varying vectors of mixing coeffi-
cients. Direct examination of the trained coefficients suggested that only a few key changes
were required in any species to achieve most of the results observed, and most individual
perturbations produced a neutral or only slightly detrimental effect. In fact few generaliza-
tions were possible concerning the optimization process. In each species the three training
sets did not always appear to be converging on the same vector of coefficients, even though
final results were comparable, suggesting that in this system the surface of optimal vectors
may be relatively shallow and “corrugated” with many local optima. Indeed, when training
was performed on one species starting with coefficients that had been developed by training
on another species, the final vector of coefficients had characteristics of both the species’
final vectors under the usual training, and the final performance was somewhat degraded
(data not shown).

There is no guarantee that we have arrived at global or near global optima under the
ad hoc training regimen used, and the observations above suggest that there may be many
suboptimal local cost minima to which it is susceptible. Possibly a more effective training
methodology would result in even better performance, but the length of time required to
test each change by parsing limits the amount of search that can be accomplished with the
present technique. (The results of this paper required on the order of three CPU-months
of computer time.) We are currently investigating means by which this process may be
sped up to allow more extensive search, perhaps by analyzing parse trees to allow credit
assignment at a more detailed level (short of complete parses) for backpropogation, as well
with as alternative search methodologies such as genetic algorithms. Any improvement in
efficiency would allow us to increase the number of training examples, which at 32 is not
large compared to the number of parameters (14 mixing coefficients), though it should be
noted that there were typically 100-200 exons in the training sets for the critical internal
nodes.

On the other hand, the overtraining observed and the variation among test sets in final

20

mixing coefficient vectors suggests that additional training may produce diminishing returns.
This is supported also by the observation that, during training, improvements in one subset
of genes would typically produce offsetting losses in another subset, even after several epochs.
This suggests the possibility of disjunctive grammars that essentially subclassify genes, by
“branching” the training process. In effect, something like this is already being done by
way of the sliding threshold values, which on some genes produce many alternatives at the
stringent earlier thresholds, and on others produce no parses at all until the thresholds are
greatly relaxed. Others have observed a “feast or famine” effect whereby sequence entries
vary tremendously in the numbers of potential genes they produce (ranging continuously
over five orders of magnitude in [9]).

It would of course be most interesting if such disjunctive grammars actually recognized
functional differences in the “types” of genes that they recognized, for instance if they hap-
pened to classify genes by time or tissue of expression, perhaps reflecting subtle differences in
the gene expression machinery. The apparent species specificities we have identified may in
fact reflect nothing more than selection biases in the types of genes most commonly isolated
from various species and entered in the database. In many ways this would actually be a
more interesting eventuality, and we are actively investigating this possibility. It should also
be emphasized that the training and test results depend upon the integrity of the database
annotations of coding sequence, which is certainly in doubt in many cases; indeed, it must be
said that GENLANG is not trained to recognize authentic genes but rather GenBank feature
tables.

It is apparent that a general-purpose parser such as GENLANG can, with appropriately-
designed grammars, produce results comparable to special-purpose gene prediction algo-
rithms. While the latter are specifically designed and optimized to exhaustively search the
combinatorial space of exon assemblies, the parser uses a grammar formalism that serves
equally well for other higher-order structures such as tRNA genes, and moreover examines
only the first 100 complete parses produced. Compare this with GenelD, which typically
evaluates tens of thousands of gene models each of which includes multiple “equivalent”
exon clusters [9], or with GeneParser, which uses a dynamic programming matrix to literally
examine every possible assignment of intron and exon boundaries in a sequence [21]. The
smaller number of parses examined by GENLANG is in fact necessitated by the well-known
time penalty paid by general-purpose parsers as compared to fully customized code, though
in fact GENLANG, which averaged 2.5-3 minutes total per sequence on a SPARCstation 10,
is less than an order of magnitude slower than the version of GRAIL we tested on the same
platform. (More recently, we have ported the system to a native code compiler and achieved
a two-fold speedup, while collaborators have developed parallel versions that promise even
better performance.)

Performance comparisons are problematic in this domain, for reasons enumerated above,
and also because these programs were designed for slightly different problems; for exam-
ple, GenelD was meant to take preemRNA as input, and GeneParser was intended only to
recognize internal exons, though both have been generalized to deal with genes embedded
in intergenic sequences as well. It is possible that these other programs may prove supe-
rior on sequences longer than 20,000 bases (the limit imposed in the present study), and in
particular on genes with very large numbers of exons, since GENLANG depends upon back-
tracking left-to-right search. However, we feel that by taking advantage of the chart parser

21

and designing grammar rules specialized for scanning lengthy sequences [19], we will be able
to adapt GENLANG to deal with such complex genes effectively, though perhaps not at the
level of the intrinsically bottom-up approaches of other programs.

GENLANG could return multiple genes in a sequence with some simple extensions, and
in fact we have demonstrated this previously with multiple parses in a globin gene region
[20]. Partial genes are more problematic, since the grammar represents a model of an entire
gene, but grammars are easily written which span only subtrees. Pseudogenes or disease
gene alleles with mutations that affect translation would also not be recognized (at least
in their entirety) by the grammar described here, but again we have shown that similar
grammars can be “relaxed” to allow for the detection of untranslateable messages, such
as are produced with certain splicing defects [20]; all that is required is that the forms of
mutations be modelled with the grammar as well, by methods we have described elsewhere
[16, 18].

The inherent non-determinism of the GENLANG parser may prove to be an advantage in
addressing alternative splicing. In several alternatively-spliced genes we have examined, the
known gene products all ranked high in the parse ordering, particularly when the mode of
alternative splicing fit the backtracking scheme well (as in the three alternative final exons of
drosophila aldolase). One might even argue that the left-to-right parsing paradigm in some
way represents a better model of processive aspects of gene expression, known and perhaps
unknown. There may be evidence of this in the fact that, of the up to 100 parses returned
for each sequence, the minimal cost parse was in fact found relatively early in general: on
the 26th parse for the vertebrate species on average, and on only the 12th parse for the other
groups. For drosophila in particular, 42% of entries in the test sets produced the authentic
gene as the first parse returned, though for only 31% was this also the minimum cost parse.
(For all species, the best parses returned were significantly better than the minimum cost
parses, e.g. for human data the best parses would have produced a correlation coefficient
of 0.85 and an exon fraction of 0.59, indicating that there is room for improvement in the
evaluation of gene structures generated by the grammar.)

In any case, we feel that the grammar representation constitutes an excellent foundation
for further work in this domain. Not only are grammar rules intrinsically modular, hierarchi-
cal, and well-suited for rapid prototyping, but they have proven to be a suitable framework
for embedding other algorithms as sensors, and for managing the combination of evidence
from them. We note that the sensors used thus far are not among the most sophisticated
currently under study, which include compositional measures drawn from signal processing
and information theory (reviewed in [4]) and signal measures based on connectionist and
classification techniques from machine learning (e.g. [1, 11]). The ability to apply such ad-
vanced sensors in a “plug and test” mode in a variety of grammar architectures and evidence
combination schemes should allow them to be used to the best effect. Moreover, we believe
we have yet to take full advantage of the capacity of grammars to represent the syntactic
complexity and diversity that may be expected in this domain. As information about adja-
cent regulatory regions accumulates, and as models of splicing become more elaborate, the
flexibility of grammars should increasingly come to the fore in representing and predicting
gene structure.

The GENLANG parser used for this work is available in the form of Quintus Prolog
source code, and the system has recently been ported to the less expensive SICStus envi-

22

ronment as well. Grammars described are also freely available, and runtime versions are
currently under development. Contact D.B.S. at the address above or by electronic mail at
dsearls@cbil.humgen.upenn.edu.

Acknowledgements

The authors thank Kyle Hart, Kevin Atteson, Jim Fickett, Chris Overton, and Charles
Bailey for helpful discussions and other contributions. This work was supported by grant

number DE-FG02-92ER61371 from the U.S. Department of Energy.

References

[1] S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA donor and
acceptor sites from the DNA sequence. J. Mol. Biol., 220:49-65, 1991.

[2] J.-M. Claverie, . Sauvaget, and L. Bougueleret. kTuple frequency analysis: From
intron/exon discrimination to T-cell epitope mapping. Methods in Enzymology, 183:237—
252, 1990.

[3] J. W. Fickett. Recognition of protein coding regions in DNA sequences. Nucleic Acids
Res., 10:5303-5318, 1982.

[4] J. W. Fickett and C.-S. Tung. Assessment of protein coding measures. Nucleic Acids
Res., 20(24):6441-6450, 1992.

[5] C. A. Fields and C. A. Soderlund. gm: a practical tool for automating DNA sequence
analysis. CABIOS, 6(3):263-270, 1990.

[6] K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1982.

[7] M. S. Gelfand. Computer prediction of the exon-intron structure of mammalian pre-

mRNAs. Nucleic Acids Res., 18:5865-5869, 1990.

[8] M. S. Gelfand and M. A. Roytberg. A dynamic programming approach for predicting
the exon-intron structure. BioSystems., 30:173-182, 1993.

[9] R. Guigo, S. Knudsen, N. Drake, and T. Smith. Prediction of gene structure. J. Mol.
Biol., 226:141-157, 1992.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading MA, 1979.

[11] M. Kudo, S. Kitamura-Abe, M. Shimbo, and Y. Lida. Analysis of context of 5" splice site
sequences in mammalian mRNA precursors by subclass method. CABIOS, 8(4):367—
376, 1992.

23

[12]

[13]

[14]

[15]

[20]

[21]

[22]

23]
[24]

R. H. Lathrop, T. A. Webster, R. Smith, P. Winston, and T. F. Smith. Integrating
AT with sequence analysis. In L. Hunter, editor, Artificial Intelligence and Molecular
Biology, chapter 6, pages 210-258. AAAIT Press, 1993.

B. W. Matthews. Comparison of the predicted and observed secondary structure of t4
phage lysozyme. Biochimica et Biophysica Acta, 405:443—-451, 1975.

F.C.N. Pereira and D.H.D. Warren. Definite clause grammars for language analysis.

Artif. Intell., 13:231-278, 1980.

D. B. Searls. Representing genetic information with formal grammars. In Proceedings of
the National Conference on Artificial Intelligence, pages 386—391. American Association
for Artificial Intelligence, 1988.

D. B. Searls. Investigating the linguistics of DNA with definite clause grammars. In
E. Lusk and R. Overbeek, editors, Logic Programming: Proceedings of the North Amer-
ican Conference, pages 189-208. MIT Press, 1989.

D. B. Searls. The linguistics of DNA. American Scientist, 80(6):579-591, 1992.

D. B. Searls. The computational linguistics of biological sequences. In L. Hunter,
editor, Artificial Intelligence and Molecular Biology, chapter 2, pages 47-120. AAAI
Press, 1993.

D. B. Searls and S. Dong. A syntactic pattern recognition system for DNA sequences. In
H. A. Lim, J. Fickett, C. R. Cantor, and R. J. Robbins, editors, Proceedings of the 2nd
International Conference on Bioinformatics, Supercomputing, and Complex Genome

Analysis, pages 89-101. World Scientific, 1993.

D. B. Searls and M. O. Noordewier. Pattern-matching search of DNA sequences using
logic grammars. In Proceedings of the Conference on Artificial Intelligence Applications,

pages 3-9. IEEE, 1991.

E. E. Snyder and G. D. Stormo. Identification of coding regions in genomic DNA
sequences: an application of dynamic programming and neural networks. Nucleic Acids

Res., 21:607-613, 1993.

R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic Acids

Res., 12:505-519, 1984.
G. D. Stormo. Consensus patterns in DNA. Methods Enzymol., 183:211-221, 1990.

E. C. Uberbacher and R. J. Mural. Locating protein-coding regions in human DNA
sequences by a multiple sensor-neural network approach. Proc. Nat. Acad. Sci. USA,

88:11261-11265, 1991.

24

