
Gene Structure Predictionby Linguistic MethodsShan Dong and David B. SearlsDepartment of GeneticsUniversity of Pennsylvania School of Medicine422 Curie BoulevardPhiladelphia, PA 19104-6145 USA
To appear in Genomics

AbstractThe higher-order structure of genes and other features of biological sequences canbe described by means of formal grammars. These grammars can then be used bygeneral-purpose parsers to detect and assemble such structures by means of syntacticpattern recognition. We describe a grammar and parser for eukaryotic protein-encodinggenes, which by some measures is as e�ective as current connectionist and combinatorialalgorithms in predicting gene structures for sequence database entries. Parameters onthe grammar rules are optimized for several di�erent species, and mixing experimentsperformed to determine the degree of species speci�city and the relative importance ofcompositional, signal-based, and syntactic components in gene prediction.IntroductionFormal language theory views languages as sets of strings over some alphabet, and speci�espotentially in�nite languages with concise sets of rules called grammars [10]. Grammarsare an exceptionally well-studied methodology, familiar to all computer scientists, for thedescription of complex, higher-order structures embodied in strings of symbols. Moreover,they can be given as input to general-purpose programs called parsers capable of determiningwhether a given string satis�es the rules of the grammar. Parser technology is also extensivelydeveloped, and has been applied as well to the problem of searching for complex patternsspeci�ed by grammars in large amounts of data, in a technique known as syntactic patternrecognition [6].A formidable pattern recognition problem in biology is the recognition of protein-encodinggenes in otherwise uncharacterized primary sequence data. Traditionally this has devolvedto the problem of recognizing coding sequence using a variety of statistical metrics, recentlyreviewed in [4]. These compositional methods, used in what Staden termed \gene search bycontent" [22], typically produce for any sample window of sequence a measure of similarity,by some criterion, to \typical" exonic sequence data. Among the more commonly-usedcompositional measures are Fickett's testcode algorithm [3], which measures positional1

asymmetry or the tendency for base compositions to vary systematically with position withinthe codon, and hextuple frequencies or the relative frequencies of occurrence of each 6-merof bases in coding (either in-frame or independent of frame) versus non-coding sequences[2]. All such methods have the disadvantage that their accuracy invariably declines withsmaller window sizes, and for most metrics the optimum window size is greater than themean exon size in typical vertebrate gene sets. Nevertheless, new systems such as GRAILhave markedly improved upon these methods by combining evidence from a number of themin a connectionist architecture [24].Another approach to gene-�nding involves what Staden termed \gene search by signal"[22], the recognition of speci�c local binding sites or other cues to processes involved in geneexpression, such as splice sites. The subtlety and degree of variation in such signals meansthat their detection is often as uncertain as the more global compositional measures, yetprogress has also been made on this front using sophisticated statistical and machine learningtechniques such as neural networks. Weight matrices are a widely-used and relatively \low-tech" example of a means of detecting such local signals [23]. Recently, a number of systems(including more recent versions of GRAIL) have united compositional and signal detectiontechniques in hybrid gene prediction systems, in which evidence is combined to predictthe most likely gene structure from a stretch of primary sequence. Not only do such geneassembly programs provide more information than strictly compositional exon �nders, butby imposing additional constraints they can improve the latter's performance. Several suchsystems have been built on rule-based architectures [5, 7]. These advances have brought intofocus the combinatorial problem of assembling and testing large sets of candidate exons; thishas been addressed in the GeneID system [9] by clustering exons into equivalence classes,and in the GeneParser system [21] by a novel dynamic programming approach (see also [8]).These systems achieve similar levels of performance [21].We proposed the use of formal grammars to assemble gene structures from primarysequence in 1988 [15], and since that time have worked to build a domain-speci�c parserto enable the use of grammars as versatile yet reasonably e�cient pattern recognition tools[16, 17, 18]. We have successfully used this system, called GenLang, for the recognitionof tRNA genes, group I introns, and a variety of other features [20, 19]. We now report onmore comprehensive e�orts to use the GenLang system to recognize and predict structuresof eukaryotic protein-encoding genes.MethodsGrammars and ParsingThe gene grammars to be described were implemented in the logic programming languageProlog, using a powerful and extensible grammar paradigm called de�nite clause grammar(DCG) [14]. DCGs are directly translated by Prolog compilers to executable code for sim-ple recursive-descent parsers. While DCGs o�er an excellent rapid-prototyping environmentand are optimized for this form of search, a number of adaptations were made in the courseof developing the GenLang parser, largely for the sake of e�ciency and ease of grammardevelopment in the domain of DNA sequence data. Thus, Genlang grammars are aug-2

mented with many hidden parameters and additional functionalities, and the lower levels ofthe system are implemented in the `C' programming language. One particularly importantspeedup is the use of chart parsing techniques, related to dynamic programming, in whichintermediate results (i.e. parse subtrees) are saved for later re-use in highly nondeterministicparsing; chart parsing allows for an order of magnitude speedup for the grammars describedbelow. Details of the implementation of GenLang can be found elsewhere [19, 20].A signi�cant feature of GenLang grammars is the incorporation of a notion of cost.To allow for imperfect matching, for example with a simple oligonucleotide sequence, amaximum cost may be imposed on the rule when it is invoked, and up to that number ofmismatches is allowed. However, much more complicated cost models are possible, includinguser-de�ned functions, such as edit distance and weight matrix scores (see below). Costsare promulgated up the resulting parse tree and summed at each node, so that not onlythe overall parse can have a threshold cost, but also each subtree. This allows for rules ofvarying and even context-sensitive stringency.The overall design and cost model employed for the gene parsing task was as follows. Aset of rules designated as leaf rules was chosen, whose members referred directly to primarysequence and were adjudged to be the signi�cant units of \evidence" for some signal orcompositional measure related to the presence of a gene (enumerated in detail below). Thegrammar was then elaborated so that an additional set of node rules each invoked exactlytwo of either the leaf rules or other node rules. (In formal terms, the core grammar was thusreduced to Chomsky normal form, and it is known that any context-free grammar can beso structured [10].) The resulting parse trees were therefore binary. Each node rule N wasresponsible for combining the cost of two lower-level rules { a left (L) and right (R) child {and passing it up to its own parent. For this purpose a uniform cost function was designedbased on a single \mixing" parameter, �, as follows:CostN = (1� �) �CostL + � �CostRThe parameter � was intended to range between zero, giving full weight to the left child andnone to the right, and one, shifting all weight to the right child. Also associated with eachnode rule was a pair of thresholds, �L and �R, representing the maximum costs to be allowedover the left and right subtrees, respectively. That is, whenever in a developing parse treea child node applied to some span of sequence accumulated a cost exceeding the thresholdimposed by its parent, that child node would be said to fail. At that point, the grammarwould backtrack or retry the child node at the next span of sequence allowed by the grammar.A parse succeeded whenever all subtrees could be assembled so as to satisfy all thresholds,including some top-level threshold applied to the tree as a whole. Even after succeeding,the grammar could be made to backtrack to �nd alternative answers, and in this case thepredicted structure was taken to be the one with the minimum top-level cost.Not surprisingly, the e�ectiveness of the resulting grammars was in large part determinedby the values assigned to the mixing and threshold parameters; �nding optimal values ofthese parameters is thus a major concern. The total cost of any given putative gene could becalculated directly from a single formula assembled from each of the cost functions, and itmay be imagined that identical results to those given below could be arrived at by generatingputative genes by whatever means and applying such a formula repeatedly. However, it is3

important to note that the application of thresholds at multiple levels greatly prunes thesearch space and provides much �ner control over the acceptable subtrees. This fact, andother procedural aspects of the parse to be described below, permit (in fact, require) a lessthan exhaustive search of the possible gene structures to be performed.Compositional and Signal MeasuresAs noted above, a number of compositional measures of exonic tendency have been proposed,most of which are interrelated to a greater or lesser degree [4]. We have chosen two of the best-known: in-frame hextuple frequency [2] and position asymmetry as measured by Fickett'stestcode algorithm [3]. Their use is described further below, and in the Discussion.Local signals were largely detected using weight matrices, implemented in GenLangas follows. Input to a special form of grammar rule consists of a table F of numbers ofoccurrences of each base type in B = fa; c; g; tg at each position 1 � i � n in a set ofexamples drawn from aligned consensus sequences of length n. This is compiled to codewhich evaluates a candidate sequence in a fashion optimized for rapid parsing [15]. Themethod that proved most e�ective with the signals described below was one that evaluatesa sequence subarray S using a negative log likelihood function [23], as follows:Cost = � nXi=1 �log Fi;S[i] � log�maxb2B Fi;b��Thus the cost is the sum of the negative logs of the individual base position frequencies,normalized so that the most likely base in each position contributes zero cost. For certainsignals, improved performance was achieved by taking into account negative examples (of-ten done in machine learning techniques but generally not in weight matrices). This wasaccomplished by dividing the frequencies of the positive examples by those of the negatives,to produce a log likelihood ratio.Gene GrammarsProtein-encoding gene grammars are the most complex we have built, and will not be givenin their full detail. (Source code and documentation are available on request, and manyaspects of the grammar's design have appeared in [15, 17, 18, 20].) Described below is the\core" of a new grammar designed speci�cally for automated optimization of gene prediction.Leaf RulesLeaf rules, which would be called \prelexical" in a linguistic context and are termed \sensors"in certain other gene prediction systems, are those which collect a variety of forms of evidencefor assembly by the grammar. They constitute the leaves of the eventual parse tree, andare enumerated below. Frequencies for these features were compiled from gene sets to bedescribed in a later section.1. Start Codon Consensus. A weight matrix cost for the region extending from �6 bp to+6 bp from a putative start of translation, with an obligatory ATG. It proved moste�ective to use only positive examples, drawn from authentic starts of translation.4

2. ATG Spacing. A cost inversely proportional to the distance from a putative start codonto the next preceding ATG in the sequence. For authentic start sites we observed thatthis distance is greater than the mean, due to a tendency to exclude non-start upstreamATGs in initial exons.3. Upstream Words. A cost inversely proportional to the average, for each hextuple in aregion up to 200 bp upstream of a putative start site, of the frequencies of occurrenceof those hextuples upstream of authentic start sites.4. Exon Size. For an obligatory open reading frame of length L in a putative internalexon, a cost proportional to the average exon length divided by L. Note that thispenalizes exons that are \too short," but not exons longer than the mean, since ofcourse the latter are less likely to arise by chance during parsing. Initial and �nalexons are not assessed a cost, since much wider size variations are observed in these.5. Coding Words. For a putative coding region, a cost inversely proportional to the in-frame hextuple score. This score is calculated as the sum of the logarithms of the ratiosof each hextuple's frequency of occurrence in coding versus non-coding regions, plusan o�set to insure a positive result.6. Position Asymmetry. For a putative coding region, a cost derived from Fickett's test-code algorithm [3], but using tables of probabilities and weights calculated individuallyfor the sets described below.7. Donor Consensus. A weight matrix cost for the region extending from �3 to +6 from aputative splice donor, with an obligatory GT. Positive examples were con�rmed donors,and negative examples were GT-containing sequences within 50 bp of con�rmed donors.8. Donor Words. At a putative splice donor, a cost proportional to the Coding Wordscost for the in-frame portion of the region 50 bp upstream minus that for the region50 bp downstream, plus an o�set to insure a positive result. Such a di�erential isindicative of a transition from exonic to intronic sequence.9. Acceptor Consensus. A weight matrix cost for the region extending from �14 to+3 from a putative splice acceptor, with an obligatory AG. Positive examples werecon�rmed acceptors, and negative examples were AG-containing sequences within 50bp of con�rmed acceptors.10. Acceptor Words. At a putative splice acceptor, a cost proportional to the CodingWords cost for the in-frame portion of the region 50 bp downstream minus that for theregion 50 bp upstream, plus an o�set to insure a positive result.11. Exon Number. A cost proportional to the average number of exons divided by thatobserved in the putative gene structure. Again, this penalizes only genes with fewerexons than the mean, rather than more, so this rule should be considered to simplyestablish a bias (for better or worse) toward genes with greater numbers of exons.5

12. Splice Quality. A cost equal to the average cost of all introns in an entire putativegene, encompassing local and global measures as mixed at the level of the intron rule(see below).13. Coding Quality. A cost equal to the average cost of exons in a putative gene, encom-passing local and global measures as mixed at the level of the exon rule.It should be emphasized that no e�ort was made to establish at the outset the relative valuesof each of these leaf rules in gene prediction. The costs produced by each were initially scaledto roughly the same order of magnitude, but the mixing coe�cients are what determine therelative contribution of each sensor to the overall cost at each level of the parse, and thegoal of the training regimen to be described below was to determine, a posteriori, locallyoptimal mixing coe�cients. Thus if, for example, the bias toward larger numbers of exonsin leaf rule 11 proved to be ill-founded or poorly formulated, then the cost contributed bythis leaf node would presumably be devalued by the mixing coe�cient (possibly to zero) inthe training process.Node RulesThe internal nodes of the grammar are represented in graphical form in Figure 1. Thetop-level rule Gene (analogous to Sentence in typical natural language grammars) invokes aTranslation and a Termination rule, and these in turn invoke lower-level node rules, and soon down to the leaf rules. The Remainder rule is recursive in that its right child is itself;this permits it to reinvoke its left child, a rule for an Intron/Exon pair, as many times asnecessary. Other recursive rules used in the overall grammar, such as one within the Exonrule that gathers codons into an open reading frame, are not included in the core grammardepicted. Also not shown is the \escape" from the recursion, a special rule for the �nalIntron/Exon pair.Such recursion has an interesting interpretation under the cost model described above.For � = 0, the entire cost of Remainder is that of the left child, Intron/Exon; in particular,the top-level cost is just that of the �rst Intron/Exon pair in the gene. At every level of therecursion, each additional Intron/Exon is in e�ect treated in isolation and is required to meetthe same cost threshold, �L. If, on the other hand, � = 1, only the cost of the right childrenwill be passed up, meaning (eventually) just the �nal Intron/Exon; again, the interveningIntron/Exon pairs will be thresholded individually by �L. (In both cases �R can apply onlyto the �nal Intron/Exon, though there is an additional requirement in the former case thatit not be less than �L.)However, consider intermediate mixing parameter values, e.g. � = 0:5. The cost passedup at every invocation of Remainder would then be one-half the cost of the current In-tron/Exon, plus one-fourth the cost of the next one, and so on. Besides the threshold �L onindividual Intron/Exon pairs, the �R threshold will apply to all the remaining pairs, thoughin a decreasingly-weighted fashion. More formally, the top-level cost of a left recursion ofdepth n, encompassing the costs of n�1 left children, CostLi, and that of a �nal right child,CostR, can be shown to beCostN = (1 � �) � n�1Xi=0 �i � CostLi!+ �n � CostR6

Gene

Translation

Initial
Exon

Initiation

Start Codon
Consensus

Upstream

ATG
Spacing

Upstream
Words

Remainder

Intron/Exon

Intron

Donor Acceptor

Exon

Exon
Size

Coding

Coding
Words

Position
Asymmetry

Donor
Consensus

Donor
Words

Acceptor
Consensus

Acceptor
Words

Termination

Exon
Number

Exon
Quality

Splice
Quality

Coding
Quality

Figure 1: Graphical depiction of the core grammar structure, roughly corresponding to an instanti-ated parse tree of a gene. Solid lines depict rule invocations, and dashed lines indicate transmissionof costs by other means. The apparent dual parentage of the Exon rule reects the fact that itis invoked at di�erent times by distinct higher-level rules. The circular arc around Remainderindicates recursion (see text).This arrangement has the desirable property that the total average cost is asymptotic inthe length of the recursion; more precisely, it can be shown by induction on n that, givenconstant CostLi = CostR = C, it will also be the case that CostN = C for any � and anyn. Thus, no special arrangements need be made to adjust thresholds for di�erent numbersof exons, or at di�erent depths of the recursion.The rate at which the weight of subsequent terms decreases depends on �: small � shiftsthe emphasis to the left children and thus shortens the \half-life" of the costs, while larger� shifts the emphasis to the right and levels out the contributions of all the Intron/Exonpairs. (In all cases, the �nal Intron/Exon contributes greater cost, the shorter the recursion;thus, the earlier the recursion is to terminate, the better the �nal Intron/Exon has to be to\justify" that termination.) The value of � can be thought of as the e�ective width of adecaying \window" that determines how many Intron/Exon pairs are taken into account atone time by the thresholds on Remainder.It should be noted that, unlike formal grammars, this grammar is not constrained toinvoke terminal elements strictly in the order in which they appear on the input string. Forexample, it is more e�cient to detect the Start Codon Consensus before evaluating the Up-stream elements of the grammar. (The theory and practice of this aspect of GenLang arediscussed in [16] and [18].) Moreover, while many rules refer to primary sequence directlyin the tradition of formal grammars, they are intermixed with more global, evaluative rules7

that have a distinctly heuristic avor. For example, the Termination branch of the grammarin e�ect constitutes a \wrap-up" evaluation of the putative gene product, in terms of thenumber and quality of the entire set of exons proposed. As noted in the enumeration of leafrules, the Splice Quality and Coding Quality rules make use of the costs of the individualIntron and Exon rule invocations, respectively; however, the rules under Termination calcu-late a uniform average as opposed to the half-life window employed under the recursive rule.Particularly for more complex genes, it may be important to allow for such global as well aslocal assessments of exon quality.This departure from formal grammars, and the incorporation of features such as costs,give the resulting system the avor of a hierarchical rule-based system such as GeneID [9].Even traditional linguistic techniques such as chart parsing have their analogues in othertechnical domains. However, the lower levels of the gene grammar and indeed the recognitionengine itself are still general purpose tools, which have been used to �nd a variety of othertypes of features [19]. The logic grammar framework is well-suited for rapid prototyping, andinherently supports useful features such as input management behind the scenes, parameterhiding, easily modi�ed syntax and higher level language features, and most of all an e�cientbacktracking search mechanism. We feel it is also very important that the practical grammarused here is still built upon and tied to a formally well-founded \idealized" gene grammar [17],which continues to provide a solid foundation for other ongoing research in parallelization,formal grammars, etc.Gene ParsingA single parsing run actually entails the generation and evaluation of a large number ofalternative parses, with the minimum cost parse being selected as the �nal answer. Thestringency of the thresholds in the grammar is gradually relaxed in the course of parsing.That is, while mixing coe�cients � are speci�ed by the user before parsing begins and remainconstant, the thresholds � increase during the parse, across a range that is determined by atraining set of known sample genes.Given such a training set, the grammar is �rst used to parse each gene in such a waythat only the known, authentic structure is allowed. (One of the advantages of the DCGmethodology is that properly-written grammars may be given an instantiated parse tree asinput, rather than producing it as output, so as to enforce a given parse [16].) Thresholdsmay then be set to the maximum costs encountered at each node for the entire training set,i.e. so as to just barely allow every known gene and element of a gene; this is called the100% setpoint for the grammar thresholds as a group. In order to vary thresholds from thesetrained values, the user does not change individual thresholds but rather the setpoint forthe grammar as a whole. For example, a setpoint of 120% would uniformly increase everythreshold to 1.2 times the maximum value encountered in the training set.However, setpoints less than 100% are handled di�erently. First, thresholds for elementsoccurring only once in a parse tree, such as start codons, are not allowed to decrease from the100% value, but remain �xed at that level even for lower setpoints. For elements occurringmore than once per gene, such as exons, the complete list of such costs encountered inthe training set is examined. The setpoint determines what percentage of those costs areincluded, e.g. the threshold for exons is chosen so that the setpoint percentage of known8

exons from the training set would succeed.This process is repeated for a series of setpoints, typically 80, 90, 95, 98, 99, 100, 105,110, 120, and 130%, to determine a range of threshold values tailored to the training set.This process is called threshold calibration on the given set of sample genes. Note that athreshold for the Gene rule is also determined, though this rule is not invoked by other rulesbut only at the top level by the parser.After threshold calibration, and with each mixing parameter � having been set by aprocedure to be described, the parse can proceed. For each setpoint level in order of increas-ing percentage (i.e., decreasing stringency), the top level rule is invoked for a given input{ generally an entire GenBank entry sequence. The Prolog-based parser implements a top-down, backtracking search according to the grammar, and wherever a complete candidategene is found compares it to the GenBank annotations and records various measures of the\quality" of the result (see below). The parser immediately backtracks to produce as manyalternative results as possible, until either a speci�ed maximum number of parses is reached(typically 100) or a time limit is exceeded (typically 2 minutes on a SPARCstation10). Atthis point, the next higher percentage setpoint is tried, except that the top-level thresholdis now decreased to the maximum cost already encountered at the higher stringency. Wheneither all setpoints have been tried, or a timeout has occurred at some setpoint with noparses having been produced, the parse terminates, and in batch mode the parser moves onto the next sequence in the database.This protocol proved e�ective over a wide range of genes, with minimum-cost parses fordi�erent genes distributed among all setpoints. The 80% level parsing generally proceededquickly due to the higher stringency, and where parses were found established a lower top-level threshold that in turn sped up the subsequent lower stringency (90%) parsing, and soon. This coarse-grained branch-and-bound technique, as well as the chart parsing describedabove, was necessary to produce large numbers of alternative structures under the inherentlycostly parsing methodology, though the number examined are still small compared to othercombinatorial algorithms which perform exhaustive searches [9, 21].Training and Test SetsOur philosophy in selecting and normalizing training sets of sequence database entries was todo this in as automated a fashion as practicable, in part so as to help drive out human bias,but primarily to permit the uniform and rapid treatment of multiple species (and eventuallyother subdivisions of the data). Consequently, rather than using hand-picked training sets,GenLang scripts were written to select various data sets directly from GenBank. Thecurrent version of Genlang uses a DCG of GenBank entry syntax to scan the at �leversions of the database, performing selections on and extracting various header �elds ofinterest. In addition to human entries, mouse and drosophila entries were selected (genus`Mus' and `Drosophila', respectively), and a much broader collection of dicot plants (class`Magnoliopsida').The sets of entries extracted for each of these phylogenetic groups are as follows:A. cDNA Gene Set. This set contained entries selected as being of type `m-RNA' andhaving the substring `complete cds' in their description �eld. The coding sequence ex-tracted from these entries can thus be expected to be full length. These sequences were9

used to compile statistics for start codon weight matrices, coding position asymmetrycoe�cients, and in-frame coding hextuple frequency tables.B. Genomic Gene Set. This set consisted of entries of type `ds-DNA', of length greaterthan 1000, and with a CDS annotation listing more than one coding region in a singletranscript, i.e. containing at least one intron. These complete and partial genomicsequences were used to compile splice junction weight matrices, non-coding positionasymmetry coe�cients, and non-coding hextuple frequency tables.C. Complete Gene Set. This set, essentially a subset of the genomic gene set, consisted ofentries of type `ds-DNA' having the substring `complete cds' in their description �eld.These complete genomic DNA sequences were used to assess the average number ofexons per gene and average internal exon length, and to compile hextuple frequencytables for regions up to 200 bps upstream of the start codons (since only in `completecds' entries could the beginning of the CDS list be trusted to be the actual start codon).This region can be expected to contain hextuple entries including known proximalpromoter elements such as TATA boxes; this was con�rmed by direct examination ofthe frequency tables.D. Parsing Gene Set. To serve as a pool for training to establish � and � values, andfor testing the gene grammar, 48 entries from the complete gene set were selected atrandom, with the following constraints:� Only sequences less than 20,000 bp were selected. As a practical matter, thispermitted a more uniform depth of parsing for each gene in the training setwithin the time limits set, and in any case few current entries exceed this length.Parsing of longer genes will be addressed below.� Sequences with unknown bases were not selected. Some sensors were not designedto deal with unknown bases, and while many other algorithms substitute bases atrandom in such cases, we found that simply skipping them eliminated only a smallpercentage of complete gene entries and greatly simpli�ed the interpretation.� Entries exhibiting multiple gene products, for example due to known alternativesplicing, were eliminated. This was accomplished by selecting only entries witha single CDS feature. Like longer gene entries, this class is growing in size andcontains some of the more \interesting" gene structures, but the evaluation ofperformance (see below) is problematic in these cases. Parsing of alternativelyspliced genes will be discussed below.These 48 entries were removed from the genomic as well as the complete gene set, inboth cases before the statistics indicated above were compiled. Moreover, membersof the cDNA gene set with blast scores exceeding 1200 against any member of theparsing gene set were removed; this served to exclude cDNAs of the same gene as wellas closely related genes in a family. The same criterion was applied to ensure that notwo closely-related genes were included in the parsing gene set itself.E. Training/Test Sets. The parsing gene set was divided randomly (except as noted below)into sets of 16 for three-fold cross-validation during training of the gene grammar.10

That is, three training runs were performed, each time using 32 entries for trainingand leaving out 16 entries for testing, with di�erent non-overlapping sets of 16 omittedin each run.In addition to removing the parsing gene set from the cDNA, genomic, and completegene sets, the latter were each normalized to give approximately equal consideration toevery closely-related gene family, as opposed to each individual gene. For example, so as notto give undue weight to the large number of globin gene entries in sequence databases, it isdesirable to cluster these into a single representative class, as in [9]. This was done by thesimple expedient of counting the number of blast scores greater than 1200 for each entrycompared against each of the other entries in the set, and assigning a weight to that entryequal to the inverse of the number of `hits'. Then, in compiling frequency tables, weightmatrices, etc., each sequence contributed its weight, instead of unity, to the counts. It canbe seen that every member of a closely-related family of genes would thus contribute a weightequal to one over the size of the family, so that the entire family would possess unit weight.By the same token, unique genes would also have unit weight. Unlike the case with hand-picked representative training sets, each member of a cluster thus has a `vote' in the overallconsensus. We �nd that this technique used with a threshold of 1200 produces clusters that,upon subjective examination, contain nearly all obviously related entries without includinga large number of unexpected associations or more distant evolutionary relationships. Notethat equal weighting for each gene family actually may not be the best policy for de novodiscovery of genes, which might be expected to occur in proportion to the current distributionof gene classes in the databases. However, for purposes of validation of the technique, it isimportant to minimize \crosstalk" between the training and test sets, such as might occur ifthe latter happened to contain genes bearing more remote similarities to large families thatwere heavily represented in the training set.The sizes of the training sets and results of normalization are summarized in TableI. (The sharp reductions observed upon clustering drosophila genomic and complete genesets are due to the very large number of alcohol dehydrogenase genes represented.) Thecomplete parsing sets may be obtained by anonymous FTP from cbil.humgen.upenn.edu, inthe directory /pub/genlang/testsets.Table I: E�ective sizes of data sets employed (number of entries).Gene Set Stage Human Mouse Drosophila DicotcDNA initial selection 1663 813 208 235less parsing set 1598 784 203 210after clustering 1028 557 168 158genomic initial selection 325 179 336 153less parsing set 277 131 288 105after clustering 187 87 103 77complete initial selection 223 115 146 122less parsing set 175 67 98 74after clustering 130 55 35 5011

Performance AssessmentA variety of means have been used to assess the quality of gene structure predictions, whichwe classify into the following groups:A. Correct Genes. This method simply counts the number of genes correctly predictedin the entirety of their coding sequence, and expresses this as a fraction of the totalnumber of genes attempted. This is the most stringent test and no existing softwarehas produced very high scores.B. Correct Exons. This method counts the number of exons correctly predicted from endto end, and again gives the fraction of the total. It may also be useful to count \halfright" exons, or more explicitly to determine the number of splice sites of either typecorrectly predicted, as well as start and stop codons; note that this is di�erent fromassessing these individual signal sensors in isolation, since they are here required to becorrect in some wider context.C. Exon Overlap. This method determines the degree to which the set of predicted exonsoverlaps the authentic exons. This is done by counting the number of bases correctlypredicted as exonic (i.e. true positives, TP), falsely predicted (FP), correctly excluded(TN), and falsely excluded (FN), and then applying a variety of statistical metrics,such as sensitivity and speci�city.We measure exon overlap using the following de�nitions:Sensitivity = TPTP + FN Speci�city = TPTP + FPCorrelation Coe�cient = (TP � TN � FP � FN)q(TP + FP)(FP + TN)(TP + FN)(FP + FN)Note that de�nitions vary among authors. In particular, our formula for speci�city is thatused by [21]; it is called `Sen2' by [9], and appears elsewhere in the literature as positivepredictive value [12]. (A di�erent formula is often used for speci�city, which counts truenegatives, but these numbers are generally too large in this application to be informative;in nearly every case this formula produced values that varied only between 0.95 and 0.98.)There appears to be a consensus that Matthews' correlation coe�cient (CC) [13] is the bestoverall indicator of overlap, providing as it does a single scalar metric of performance. Forall sequence entries of a given set, individual and average values for each of these metrics forthe minimum cost parse were compiled. For purposes of comparison, two di�erent methodsof aggregating results were used, to be described in Results.Training RegimenAs noted above, training of grammar parameters proceeded by way of a three-fold cross-validation using training sets of 32 entries and test sets of 16. The following regimen was12

0.6

0.7

0.8

0.9

1.0

30%

40%

50%

60%

Start 1st 2nd 3rd

CC
Exons

human 0.6

0.7

0.8

0.9

1.0

30%

40%

50%

60%

Start 1st 2nd 3rd

CC
Exons

drosophilaFigure 2: Training of the gene grammar on two of the four data sets (mouse and dicot not shown).Connected points are median values, while error bars indicate the remaining values, for the threecross-validated test sets. Circles give values for correlation (i.e., exon overlap) using the scaleson the left, while squares indicate exon fraction correct (in percent) using the scales on the right.Filled circles and dashed lines indicate training set results, while open �gures and solid lines givetest set results. The horizontal axes indicate the progression of the training through three epochs,corresponding to perturbations of 0.3, 0.2, and 0.1, respectively, from the starting mixing coe�cientsof 0.5.arrived at after testing a variety of \hill-climbing" schemes for adjusting parameters to alocal optimum.Training began with all mixing parameters set to � = 0:5; threshold parameters werearrived at by thresholding on the training set itself at each stage. (The same thresholds wereused subsequently for the test sets.) Each training epoch consisted of a perturbation stepfollowed by a combination step. For the perturbation step, a series of parses of the entiretraining set were run in which �N for each node N in the grammar was changed both upand down by some value �, with the parameters on all other nodes being held constant.Of all the results, the changes producing the �ve highest average CCs were collected forthe combination step. In this step, all possible combinations of the �ve changes were triedtogether, and the combination producing the highest average CC was selected as the outcomeof the training epoch. These changes, with all other node parameters left at their previousvalues, constituted the baseline for the next epoch. A total of three such epochs were run,with values of � equal to 0.3, 0.2, and 0.1, respectively.This ad hoc training regimen, while not formally justi�ed on probabilistic or other the-oretical grounds, was adjudged the most e�ective of a number of alternatives tried. Thealternation of perturbation and combination steps was found to be particularly important,as an earlier attempt that used only perturbation revealed that some favorable changes indistinct mixing coe�cients were \self-cancelling" in combination. The amount of time re-13

quired by the parsing methodology is limiting in a number of respects, including the sizes ofthe training and test sets, the degree of cross-validation, and most importantly, the numberof di�erent vectors of parameters that could be independently tested. However, as will beseen in the next section, training appeared to progress rapidly and e�ectively even under thelimitations of the architecture.ResultsGrammar TrainingSome results of grammar training are illustrated in Figure 2. In all cases, training sets showedsharp improvements after the initial epoch, and generally much less improvement thereafter.Human test sets started at an unexpectedly high level in terms of both correlation coe�-cient and exon fraction correct, showed improvement in the initial epoch, but then declinedwith further training; this suggested that the grammar was overtraining, or adapting to thespeci�c training sets in ways that did not generalize well to the test sets. The mouse testsets (not shown) started at a somewhat lower level of performance and demonstrated contin-ued increasing average performance through three epochs, eventually achieving correlationcoe�cients similar to the human peak. Drosophila and dicot test sets improved through twoepochs, with drosophila sets starting at the highest levels overall. Both these sets achievedhigher average performance than did those from vertebrates. We believe that this is primar-ily because to a �rst approximation vertebrates have short exons and long introns, while theopposite is the case for drosophila and dicots; for this reason global signals are stronger inthe latter.Figure 3 gives some indication of the nature of the grammars at the end of training. Theparse trees shown for representative data sets are depicted in such a way that the width ofeach pair of arcs from parent nodes to children reects the relative cost contribution of thosechildren to the parent's overall cost, as determined by the mixing coe�cient at the parentusing input costs from the children at their 95% threshold values; these threshold valuesare chosen as being representative of critical cuto�s during the parses, but essentially thesame results are observed when average input costs are used. Also, the grayscale intensity ofthe arcs is an indication of the \criticality" of the mixing coe�cient of the parent node, asdetermined by the deviation observed in the correlation coe�cient with the perturbation ofthat � in the �nal training epoch. That is, the correlation coe�cients for �+0:1 and ��0:1are compared with that for � at its penultimate trained value, by taking the square root ofthe sum of the squares of their di�erences from the correlation coe�cient for �.The combination of width and intensity of these arcs gives some indication of the ow ofcosts up the parse tree. Some extreme di�erences in cost weighting between children, suchas the width disparities below the Initial Exon, Upstream, and Exon nodes, can be somewhatdiscounted in importance because of the generally faint criticalities of the arcs; this indicateslittle sensitivity to change in � at these nodes. It is important to note, in addition, thatsmall weight or criticality for an arc does not indicate that the child node is unimportantto the result, but rather that the cost of that child need not be evaluated in combinationwith other costs at a higher level, or in the overall cost. Such a node may constitute strong14

human

Gene

Translation

Initial
Exon

Initiation

Start Codon
Consensus

Upstream

ATG
Spacing

Upstream
Words

Remainder

Intron/Exon

Intron

Donor Acceptor

Exon

Exon
Size

Coding

Coding
Words

Position
Asymmetry

Donor
Consensus

Donor
Words

Acceptor
Consensus

Acceptor
Words

Termination

Exon
Number

Exon
Quality

Splice
Quality

Coding
Quality

drosophila

Gene

Translation

Initial
Exon

Initiation

Start Codon
Consensus

Upstream

ATG
Spacing

Upstream
Words

Remainder

Intron/Exon

Intron

Donor Acceptor

Exon

Exon
Size

Coding

Coding
Words

Position
Asymmetry

Donor
Consensus

Donor
Words

Acceptor
Consensus

Acceptor
Words

Termination

Exon
Number

Exon
Quality

Splice
Quality

Coding
QualityFigure 3: Nature of the grammars resulting from training on the data sets of Figure 2. The treesrepresent grammars as in Figure 1, and the arcs indicate status after the third epoch. Width ofeach arc indicates relative weight accorded that arc by the trained mixing coe�cient, and grayscaleintensity indicates \criticality" of the mixing coe�cient to the �nal result, as de�ned in the text.independent evidence which discriminates well based on its own local threshold, such thatthere is simply no great advantage to passing its cost further up the parse tree.Values of these parameters are given as the means for the three training sets. Theresulting grammars demonstrated some degree of intra-species variation in the �nal mixingcoe�cients among the three cross-validated training runs, perhaps greater than might beexpected given the relative uniformity of the results of Figure 2 (see Discussion). Severalother striking di�erences in relative weights of mixing, such as between Consensus andWordscomponents of splice Donor and Acceptor rules, are however of only moderate criticality inall but a few instances, and these criticalities also tend to be inconsistent among trainingruns.Among the more consistent observations, however, was the greater weight put on theTranslation cost in human and mouse at the top level, as compared to the Termination costwhich was emphasized more in drosophila and dicot. Recall that the Translation rule is an\on-line" procedural rule that assesses the developing cost of the gene on the y, while theTermination rule is an \o�-line" post hoc evaluation of an overall gene; the results observedsuggest that both components are indeed important in combination, and in varying ratios,for the e�ective evaluation of the overall Gene. The Termination node itself also shows fairlyconsistent criticality, suggesting that the bias toward greater Exon Number built into the leftchild is e�ective in balance with an overall indication of Exon Quality.Within the Translation subtree, the vertebrate datasets showed a consistent weighting andcriticality at the recursive Remainder node, indicating that, for species in which this subtreeis given greatest weight, the e�ective window in which Intron/Exon pairs are evaluated,as described in the Methods section, is an important parameter. Beneath the Intron/Exonnode, the Intron rule is given somewhat greater weight than the Exon rule, and the criticalitysuggests that in the animal datasets it is fruitful to threshold them in combination at thisparticular ratio. 15

Every e�ort was made to ensure that test sets were properly separated from training sets,as noted in the Methods section. Not only the removal of training sequences showing a highsimilarity score with test set sequences, but also the clustering of highly similar entries inthe training sets, should have helped to avoid any undue inuences. In addition, we believethat this is the �rst cross-validated study in the arena of gene prediction. In order to ensurethat more subtle similarities within the �nal training sets were not a�ecting test results, welooked for any correlation between performance and the cumulative BLAST scores betweenindividual test sequences and the training set as a whole. We found no suggestion of any suchcorrelation, measuring performance either by exon overlap or exon fraction correct (data notshown).Comparative StudiesThese overall results appear to be similar to those achieved with a variety of other special-purpose gene assembly algorithms, even though the GenLang parser is a general-purposepattern matching tool not especially adapted to exhaustive combinatorial search. Directcomparisons are di�cult, for a number of reasons:� Test sets are not well standardized, and even comparisons on test sets that have ap-peared previously must generally use slight variations because of faults identi�ed inentries, changes in the underlying databases, or individual limits or requirements ofthe systems under test.� Di�erent metrics and standards are employed by di�erent workers. We have describedsome of the di�erences in performance measures, but other authors use completelydi�erent means of evaluation. Moreover, it is di�cult to adjust for di�erences betweenauthors in separation of training and test sets, normalization of training sets to adjustfor clusters of similar genes, and cross-validation.� Systems are generally distinct by virtue of their overall architectures, their selectionsof sensors, their means of combining evidence, and their approach to the combinatoricsof exon assembly, so it is di�cult to attribute performance di�erences to any particularfactor.� Gene prediction is a very active �eld of research, and systems are constantly beingimproved, so that any comparative results are likely to have been \leapfrogged" by thetime they reach press.With these caveats in mind, we nevertheless compared GenLang's performance withseveral other programs in current use. Table II shows the results of such a comparisonwith a recent version of GRAIL (XGRAIL, October 1993, obtained by anonymous FTPfrom arthur.epm.ornl.gov). Statistics from individual entries are averaged in two ways: bygene, as in [9], and by base (i.e. by summing results on a nucleotide by nucleotide basis),as in [21]. Thus, for example, for a test set of n sequence entries the formula for sensitivityby gene would be (Pni=1(TPi=(TPi + FNi)))=n, while that for sensitivity by base would be(Pni=1TPi)=Pni=1(TPi + FNi). We use the former method in presenting our other data,16

Table II: Comparison with GRAIL using GenLang Test Sets.*Test by gene by baseProgram Set Gene Exon CC Sn Sp CC Sn SpGenLang 1 .06 .49 .76 .86 .78 .74 .84 .722 .19 .50 .79 .85 .82 .77 .83 .793 .13 .52 .75 .79 .82 .74 .77 .81mean .13 .50 .77 .83 .81 .75 .81 .77GRAIL 1 .00 .40 .72 .73 .83 .78 .78 .852 .19 .47 .81 .81 .86 .85 .85 .913 .37 .62 .81 .76 .94 .85 .78 .97mean .19 .50 .78 .77 .88 .83 .80 .91* Data shown are Gene and Exon fractions correct, and statistics forcorrelation (CC), sensitivity (Sn), and speci�city (Sp) calculated by geneor by base for human test sets, as described in the text.because it gives a better indication of the success rate over each attempted sequence entry,and avoids lending extra weight to genes with longer, \easier" exons. The results in Table IIillustrate why the distinction is important: in terms of overall correlation the two programsare comparable when measured gene by gene, but GRAIL performs better when averagedby base. We believe that this is because GRAIL does slightly better on genes with largernumbers of exons, and GenLang is better at recognizing exons less than 100 bases inlength (data not shown); both these factors would tend to favor GRAIL when performanceis measured base by base. (A more recent version of GRAIL achieves improved performanceon smaller exons in part by allowing for assessment of coding measures over variable windowsizes [E. Uberbacher, personal communication], which is inherent in the GenLang system.)Table II indicates that, as a rule, GRAIL performs with higher speci�city, while Gen-Lang is relatively more sensitive. Reports of GRAIL results generally emphasize speci�cityas a measure of performance [24], probably reecting an orientation toward the use of GRAILto predict putative exons for further laboratory investigation, a situation in which false pos-itives can prove very costly. Figure 4 shows a direct comparison of the two systems for eachgene attempted; the degree of scatter between the individual results of the two programs in-dicates that to some extent they have disjoint strengths and weaknesses, and that in generalit may be advisable to perform multiple analyses of novel sequence data.We also analyzed the performance of GenLang relative to two other special-purposegene prediction programs, GeneID [9] and GeneParser [21], based on data from these originalpapers using the GeneID test set. To do this we retrained the GenLang grammar using 35entries from our training/test sets which did not appear in this new test set (also removingfrom our larger sets all entries similar to any member of the new test set, by the criteriaused previously). Based on the training results above, only a single training epoch was used,and it was again con�rmed that this was su�cient to achieve peak performance. Table IIIcompares these results with original data (recalculated as required for direct comparison)from [9] and [21]. 17

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0CC

Gen
Lan

g

GRAILFigure 4: Performance of GRAIL vs. GenLang on individual entries from the GenLang humantest sets. Each circle represents a single entry, with correlation scores from the two programsindicated by positions on the respective axes. Thus, points above and to the left of the dashed linerepresent entries for which GenLang's correlation score exceeded that of GRAIL. The radius ofeach circle is proportional to the number of exons in the gene, ranging from three to 14.Once again, GenLang demonstrates generally greater sensitivity and lower speci�citythan the other programs, and comparable overall correlation scores. The GeneID test setcontained slightly less than half human sequences, the remainder being mostly rodent. SinceGenLang showed lower correlation using this test set than it did with its cross-validationtest sets, the human subset (consisting of 12 sequences) was extracted and tested separately.Indeed, GenLang's performance improved in all respects and was more consistent with thehuman-only study above. At the same time, results with GeneID itself (whose training setwas of mixed species composition, similar to the test set) did not show such improvement.Because the grammars were trained to maximize correlation, which essentially representsa tradeo� between sensitivity and speci�city, there would presumably be some degree offreedom on this axis. We also tried training GenLang grammars using maximization ofspeci�city as the selection criterion. Table III shows that this change did indeed result inhigher values for speci�city, but at the expense of both sensitivity and correlation, and not tothe speci�city levels achieved by GRAIL in the data of Table II. Training for maximizationof exon fraction produced identical results to those seen with correlation training (data notshown).Phylogenetic Speci�cityThe data of Table III suggests that performance may have been enhanced by training andtesting in a species-speci�c manner. To test this we tried the individual grammars on eachheterologous phylogenetic group, with results shown in Figure 5.18

Table III: Comparison with GeneID and GeneParser using GeneIDTest Sets.* Test by gene by baseProgram Set Gene Exon CC Sn Sp CC Sn SpGenLang total .07 .47 .69 .77 .73 .72 .78 .74human .17 .52 .76 .82 .77 .79 .85 .79GeneID total .11 .44 .67 .69 .84 .67 .65 .78human .17 .46 .66 .72 .80 .69 .70 .80GeneParser total | .49 | | | .69 .68 .78GenLang total .04 .26 .60 .55 .83 .58 .46 .85(Sp-trained) human .08 .37 .69 .61 .89 .65 .55 .87* The total test set was the mixed vertebrate set used by [9] but excludingthe HAMRPS14A entry (as in [21]), for a total of 27 entries; the human testset consisted of the 12 human sequences in the total test set. Data wereas in Table II, and were taken from [21] for GeneParser and from [9] forGeneID, in the latter case by recalculation from the original entries for thehuman subset and for the statistics by base.These results indicate that there are indeed di�erences among the grammars, althoughthe di�erences between the human and mouse grammars are slight and not likely to bestatistically signi�cant, based on the variation observed in the cross-validation. For example,the human-trained grammar gave a correlation of 0.75 on a human test set, 0.72 on mouse,but only 0.27 on dicot plants. Similarly, the dicot-trained grammar produced a correlationof only 0.21 on the human test set. Performances for exon fraction showed similar patterns,and with a few exceptions the matrices are roughly symmetric. In order to summarize cross-species di�erences we calculated an ad hoc distance between each pair of phylogenetic groups,de�ned for correlation as (CC1;1 �CC2;2)�(CC1;2 �CC2;1), where CC1;2 indicates the individualcorrelation between training set 1 and test set 2, etc. (and similarly for exon fraction).In an attempt to dissect out the reasons for the apparent phylogenetic di�erences inthe grammars, we performed mixing experiments in which various compositional and sig-nal measures, as well as grammar parameters, were combined from and applied to di�erentspecies. Thus, for example, the human-trained grammar from Figure 5, which demonstrateda correlation of 0.75 and exon fraction of 0.51, was tested with drosophila compositionalmeasures (hextuple tables and position asymmetry frequencies) substituted for the humanones; this reduced the performance metrics to 0.47 and 0.26, respectively. When the humangrammar was used with drosophila local signals (weight matrices for splice junctions, etc.),the e�ect was less deleterious, with performance reduced to 0.70 correlation and 0.37 exonfraction. Similar results were obtained when drosophila mixing coe�cients, governing thecombination of evidence, were substituted in the human grammar: 0.66 and 0.35, respec-tively. These mixing experiments were tried for all combinations of species (data not shown)with essentially analogous results, though varying in overall degree. To summarize, composi-tional measures were the most important factors in performance, but there were indicationsthat all aspects of the grammars contribute in some degree.19

Correlation
test

train
H
R
D
P

H R D P
.75 .72 .31 .27
.75 .77 .63 .55
.33 .36 .83 .47
.21 .23 .61 .87

Exon Fraction
test

train
H
R
D
P

H R D P
.51 .52 .17 .16
.48 .55 .28 .26
.10 .14 .55 .26
.05 .06 .35 .67

Distance
correlation

exon
frac-
tion

H
R
D
P

H R D P
.04 .52 .60

.03 .41 .54

.26 .26 .44

.33 .35 .28Figure 5: Application of grammars to heterologous phylogenetic groups. Row and column la-bels indicate phylogenetic groups of training and test sets employed, where H=human, R=mouse,D=drosophila, and P=dicot plants. The �rst two matrices give results for correlation and exonfraction, while the last matrix shows correlation and exon fraction distances, as de�ned in the text.Mixing coe�cients and test sets used were selected from the previous cross-validation experimentbased on the results which gave the highest combined performance on training and test sets, andthen applied consistently across other species.DiscussionIn general the parser was surprisingly robust in the face of varying vectors of mixing coe�-cients. Direct examination of the trained coe�cients suggested that only a few key changeswere required in any species to achieve most of the results observed, and most individualperturbations produced a neutral or only slightly detrimental e�ect. In fact few generaliza-tions were possible concerning the optimization process. In each species the three trainingsets did not always appear to be converging on the same vector of coe�cients, even though�nal results were comparable, suggesting that in this system the surface of optimal vectorsmay be relatively shallow and \corrugated" with many local optima. Indeed, when trainingwas performed on one species starting with coe�cients that had been developed by trainingon another species, the �nal vector of coe�cients had characteristics of both the species'�nal vectors under the usual training, and the �nal performance was somewhat degraded(data not shown).There is no guarantee that we have arrived at global or near global optima under thead hoc training regimen used, and the observations above suggest that there may be manysuboptimal local cost minima to which it is susceptible. Possibly a more e�ective trainingmethodology would result in even better performance, but the length of time required totest each change by parsing limits the amount of search that can be accomplished with thepresent technique. (The results of this paper required on the order of three CPU-monthsof computer time.) We are currently investigating means by which this process may besped up to allow more extensive search, perhaps by analyzing parse trees to allow creditassignment at a more detailed level (short of complete parses) for backpropogation, as wellwith as alternative search methodologies such as genetic algorithms. Any improvement ine�ciency would allow us to increase the number of training examples, which at 32 is notlarge compared to the number of parameters (14 mixing coe�cients), though it should benoted that there were typically 100-200 exons in the training sets for the critical internalnodes.On the other hand, the overtraining observed and the variation among test sets in �nal20

mixing coe�cient vectors suggests that additional training may produce diminishing returns.This is supported also by the observation that, during training, improvements in one subsetof genes would typically produce o�setting losses in another subset, even after several epochs.This suggests the possibility of disjunctive grammars that essentially subclassify genes, by\branching" the training process. In e�ect, something like this is already being done byway of the sliding threshold values, which on some genes produce many alternatives at thestringent earlier thresholds, and on others produce no parses at all until the thresholds aregreatly relaxed. Others have observed a \feast or famine" e�ect whereby sequence entriesvary tremendously in the numbers of potential genes they produce (ranging continuouslyover �ve orders of magnitude in [9]).It would of course be most interesting if such disjunctive grammars actually recognizedfunctional di�erences in the \types" of genes that they recognized, for instance if they hap-pened to classify genes by time or tissue of expression, perhaps reecting subtle di�erences inthe gene expression machinery. The apparent species speci�cities we have identi�ed may infact reect nothing more than selection biases in the types of genes most commonly isolatedfrom various species and entered in the database. In many ways this would actually be amore interesting eventuality, and we are actively investigating this possibility. It should alsobe emphasized that the training and test results depend upon the integrity of the databaseannotations of coding sequence, which is certainly in doubt in many cases; indeed, it must besaid that GenLang is not trained to recognize authentic genes but rather GenBank featuretables.It is apparent that a general-purpose parser such as GenLang can, with appropriately-designed grammars, produce results comparable to special-purpose gene prediction algo-rithms. While the latter are speci�cally designed and optimized to exhaustively search thecombinatorial space of exon assemblies, the parser uses a grammar formalism that servesequally well for other higher-order structures such as tRNA genes, and moreover examinesonly the �rst 100 complete parses produced. Compare this with GeneID, which typicallyevaluates tens of thousands of gene models each of which includes multiple \equivalent"exon clusters [9], or with GeneParser, which uses a dynamic programming matrix to literallyexamine every possible assignment of intron and exon boundaries in a sequence [21]. Thesmaller number of parses examined by GenLang is in fact necessitated by the well-knowntime penalty paid by general-purpose parsers as compared to fully customized code, thoughin fact GenLang, which averaged 2.5{3 minutes total per sequence on a SPARCstation 10,is less than an order of magnitude slower than the version of GRAIL we tested on the sameplatform. (More recently, we have ported the system to a native code compiler and achieveda two-fold speedup, while collaborators have developed parallel versions that promise evenbetter performance.)Performance comparisons are problematic in this domain, for reasons enumerated above,and also because these programs were designed for slightly di�erent problems; for exam-ple, GeneID was meant to take pre-mRNA as input, and GeneParser was intended only torecognize internal exons, though both have been generalized to deal with genes embeddedin intergenic sequences as well. It is possible that these other programs may prove supe-rior on sequences longer than 20,000 bases (the limit imposed in the present study), and inparticular on genes with very large numbers of exons, since GenLang depends upon back-tracking left-to-right search. However, we feel that by taking advantage of the chart parser21

and designing grammar rules specialized for scanning lengthy sequences [19], we will be ableto adapt GenLang to deal with such complex genes e�ectively, though perhaps not at thelevel of the intrinsically bottom-up approaches of other programs.GenLang could return multiple genes in a sequence with some simple extensions, andin fact we have demonstrated this previously with multiple parses in a globin gene region[20]. Partial genes are more problematic, since the grammar represents a model of an entiregene, but grammars are easily written which span only subtrees. Pseudogenes or diseasegene alleles with mutations that a�ect translation would also not be recognized (at leastin their entirety) by the grammar described here, but again we have shown that similargrammars can be \relaxed" to allow for the detection of untranslateable messages, suchas are produced with certain splicing defects [20]; all that is required is that the forms ofmutations be modelled with the grammar as well, by methods we have described elsewhere[16, 18].The inherent non-determinism of the GenLang parser may prove to be an advantage inaddressing alternative splicing. In several alternatively-spliced genes we have examined, theknown gene products all ranked high in the parse ordering, particularly when the mode ofalternative splicing �t the backtracking scheme well (as in the three alternative �nal exons ofdrosophila aldolase). One might even argue that the left-to-right parsing paradigm in someway represents a better model of processive aspects of gene expression, known and perhapsunknown. There may be evidence of this in the fact that, of the up to 100 parses returnedfor each sequence, the minimal cost parse was in fact found relatively early in general: onthe 26th parse for the vertebrate species on average, and on only the 12th parse for the othergroups. For drosophila in particular, 42% of entries in the test sets produced the authenticgene as the �rst parse returned, though for only 31% was this also the minimum cost parse.(For all species, the best parses returned were signi�cantly better than the minimum costparses, e.g. for human data the best parses would have produced a correlation coe�cientof 0.85 and an exon fraction of 0.59, indicating that there is room for improvement in theevaluation of gene structures generated by the grammar.)In any case, we feel that the grammar representation constitutes an excellent foundationfor further work in this domain. Not only are grammar rules intrinsically modular, hierarchi-cal, and well-suited for rapid prototyping, but they have proven to be a suitable frameworkfor embedding other algorithms as sensors, and for managing the combination of evidencefrom them. We note that the sensors used thus far are not among the most sophisticatedcurrently under study, which include compositional measures drawn from signal processingand information theory (reviewed in [4]) and signal measures based on connectionist andclassi�cation techniques from machine learning (e.g. [1, 11]). The ability to apply such ad-vanced sensors in a \plug and test" mode in a variety of grammar architectures and evidencecombination schemes should allow them to be used to the best e�ect. Moreover, we believewe have yet to take full advantage of the capacity of grammars to represent the syntacticcomplexity and diversity that may be expected in this domain. As information about adja-cent regulatory regions accumulates, and as models of splicing become more elaborate, theexibility of grammars should increasingly come to the fore in representing and predictinggene structure.The GenLang parser used for this work is available in the form of Quintus Prologsource code, and the system has recently been ported to the less expensive SICStus envi-22

ronment as well. Grammars described are also freely available, and runtime versions arecurrently under development. Contact D.B.S. at the address above or by electronic mail atdsearls@cbil.humgen.upenn.edu.AcknowledgementsThe authors thank Kyle Hart, Kevin Atteson, Jim Fickett, Chris Overton, and CharlesBailey for helpful discussions and other contributions. This work was supported by grantnumber DE-FG02-92ER61371 from the U.S. Department of Energy.References[1] S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA donor andacceptor sites from the DNA sequence. J. Mol. Biol., 220:49{65, 1991.[2] J.-M. Claverie, I. Sauvaget, and L. Bougueleret. k-Tuple frequency analysis: Fromintron/exon discrimination to T-cell epitope mapping.Methods in Enzymology, 183:237{252, 1990.[3] J. W. Fickett. Recognition of protein coding regions in DNA sequences. Nucleic AcidsRes., 10:5303{5318, 1982.[4] J. W. Fickett and C.-S. Tung. Assessment of protein coding measures. Nucleic AcidsRes., 20(24):6441{6450, 1992.[5] C. A. Fields and C. A. Soderlund. gm: a practical tool for automating DNA sequenceanalysis. CABIOS, 6(3):263{270, 1990.[6] K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Inc., Engle-wood Cli�s, NJ, 1982.[7] M. S. Gelfand. Computer prediction of the exon-intron structure of mammalian pre-mRNAs. Nucleic Acids Res., 18:5865{5869, 1990.[8] M. S. Gelfand and M. A. Roytberg. A dynamic programming approach for predictingthe exon-intron structure. BioSystems., 30:173{182, 1993.[9] R. Guigo, S. Knudsen, N. Drake, and T. Smith. Prediction of gene structure. J. Mol.Biol., 226:141{157, 1992.[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, andComputation. Addison-Wesley, Reading MA, 1979.[11] M. Kudo, S. Kitamura-Abe, M. Shimbo, and Y. Lida. Analysis of context of 5' splice sitesequences in mammalian mRNA precursors by subclass method. CABIOS, 8(4):367{376, 1992. 23

[12] R. H. Lathrop, T. A. Webster, R. Smith, P. Winston, and T. F. Smith. IntegratingAI with sequence analysis. In L. Hunter, editor, Arti�cial Intelligence and MolecularBiology, chapter 6, pages 210{258. AAAI Press, 1993.[13] B. W. Matthews. Comparison of the predicted and observed secondary structure of t4phage lysozyme. Biochimica et Biophysica Acta, 405:443{451, 1975.[14] F.C.N. Pereira and D.H.D. Warren. De�nite clause grammars for language analysis.Artif. Intell., 13:231{278, 1980.[15] D. B. Searls. Representing genetic information with formal grammars. In Proceedings ofthe National Conference on Arti�cial Intelligence, pages 386{391. American Associationfor Arti�cial Intelligence, 1988.[16] D. B. Searls. Investigating the linguistics of DNA with de�nite clause grammars. InE. Lusk and R. Overbeek, editors, Logic Programming: Proceedings of the North Amer-ican Conference, pages 189{208. MIT Press, 1989.[17] D. B. Searls. The linguistics of DNA. American Scientist, 80(6):579{591, 1992.[18] D. B. Searls. The computational linguistics of biological sequences. In L. Hunter,editor, Arti�cial Intelligence and Molecular Biology, chapter 2, pages 47{120. AAAIPress, 1993.[19] D. B. Searls and S. Dong. A syntactic pattern recognition system for DNA sequences. InH. A. Lim, J. Fickett, C. R. Cantor, and R. J. Robbins, editors, Proceedings of the 2ndInternational Conference on Bioinformatics, Supercomputing, and Complex GenomeAnalysis, pages 89{101. World Scienti�c, 1993.[20] D. B. Searls and M. O. Noordewier. Pattern-matching search of DNA sequences usinglogic grammars. In Proceedings of the Conference on Arti�cial Intelligence Applications,pages 3{9. IEEE, 1991.[21] E. E. Snyder and G. D. Stormo. Identi�cation of coding regions in genomic DNAsequences: an application of dynamic programming and neural networks. Nucleic AcidsRes., 21:607{613, 1993.[22] R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic AcidsRes., 12:505{519, 1984.[23] G. D. Stormo. Consensus patterns in DNA. Methods Enzymol., 183:211{221, 1990.[24] E. C. Uberbacher and R. J. Mural. Locating protein-coding regions in human DNAsequences by a multiple sensor-neural network approach. Proc. Nat. Acad. Sci. USA,88:11261{11265, 1991. 24

