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Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as
their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives,
are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has
implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology.

1. Introduction

Less than 2% of the mammalian genome is in protein-
encoded regions, and the remainder is in noncoding RNAss
(ncRNAs) [1]. Most long noncoding RNA (lncRNAs) are
transcribed by RNA polymerase (Pol) II/Pol I, and some are
transcribed by RNA Pol III [2]. The ncRNAs with nucleotide
lengths of <200 and >200 are classified as short and long
ncRNAs (lncRNAs), respectively.The lncRNAs can be further
classified in terms of their orientation and location relative to
neighboring genes as sense/antisense, divergent/convergent,
and intronic/intergenic [3]. The lncRNAs function as chro-
matin scaffolds for complex assembly, as enhancers and
decoys for improving and inhibiting transcription of tar-
get genes, and as cis-acting or trans-acting regulators of
gene expression [4–6]. Cis-acting lncRNAs mediate local
genes whereas trans-lncRNAs mediate multiple targets [6].

By dysregulating target gene expression, abnormal lncRNA
expression causes cell dysfunction and disease progression.
The official symbols of lncRNAs were designated by the
HUGO Gene Nomenclature Committee [7].

2. The lncRNAs and Gene Expressions

The lncRNAs modulate cell cycle distribution and cell dif-
ferentiation. For example, DNA damage-inducible lncRNA,
namely, growth-arrested DNA damage-inducible gene 7
(gadd7), binds to TAR DNA-binding protein (TDP-43).
By blocking the interaction between TDP-43 and cyclin-
dependent kinase 6 (Cdk6) mRNA, gadd7 regulates cell cycle
progression by promoting the decay of Cdk6mRNA [17].The
lncRNAs reportedly modulate the differentiation of cells [18],
the induction of pluripotent stem cell [19], and the induction
of embryonic stem cells [20].
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Some lncRNAs also have modulating effects on apoptosis
[21]. For example, lncRNA, namely, erythroid prosurvival
(EPS) is upregulated in terminal differentiation of murine
erythroid cells [22] by inhibiting apoptosis [23]. Similarly, a
study of melanoma cell lines showed that by downregulating
sprouty homolog 4 intronic transcript 1 (SPRY4-IT1), lncR-
NAs inhibit cell proliferation and apoptosis [24].

In human cells, lncRNAs epigenetically regulate gene
expression [25, 26] through chromatin remodeling [27]. For
example, the mouse lncRNA, namely, potassium voltage-
gated channel, KQT-like subfamily, member 1 (KCNQ1) over-
lapping transcript 1 (Kcnq1ot1) has a chromatin-interacting
ability and can downregulate multiple genes in the Kcnq1
domain [28].This gene silencing was reported to bemediated
by DNAmethylation at some target genes [29]. Other studies
of cancer patients show that silenced tumor suppressor genes
are often hypermethylated [30–32]. In the case of tumor
suppressor genes, the epigenetic effect may have a role in
carcinogenesis. In Hox antisense intergenic RNA (HOTAIR),
long intergenic noncoding RNA (lincRNA), which is lncR-
NAs transcribed from noncoding DNA regions between
protein-coding genes [33], may function as scaffolds for
assembly of histone modification machinery [34].

Some lncRNAs may function through repeat sequences.
For example, some lncRNAs that contain Alu elements [35]
may transactivate Staufen 1- (STAU1-)mediatedmRNAdecay
(SMD) by base pairing of Alu elements within both lncRNAs
and 3󸀠 untranslated region of the SMD target.These lncRNAs
then downregulate several SMD targets [35].

3. The lncRNAs and Diseases

The functions of lncRNAs that are known to have roles
in diseases have been reviewed previously [36, 37]. Recent
studies suggest that lncRNAs have roles in neurodegenerative
disorders [38, 39] and brain development [40]. In Hunting-
ton’s disease, for example, neural lncRNAs are upregulated
in taurine upregulated 1 (TUG1) and in nuclear paraspeckle
assembly transcript 1 (NEAT1) but are downregulated in
maternally expressed 3 (MEG3). The metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) lncRNA is
reportedly highly upregulated in neurons. In cultured hip-
pocampal neurons, synaptic density is reduced by MALAT1
depletion but rescued byMALAT1 overexpression. Studies of
patients with alcohol addiction reveal upregulated MALAT1
in the cerebellum, hippocampus, and brain stem [41], which
suggests that the lncRNA network may have key roles in
neurodegenerative processes [42].

Studies of patients with facioscapulohumeral muscular
dystrophy (FSHD) involving Polycomb/Trithorax epigenetic
regulation show a deregulated copy number in D4Z4 repeat
mapping to 4q35 [43]. A recent study of FSHD patients
further showed that selective upregulation of DBE-T, a
chromatin-associated lncRNA, reverses repression of 4q35
gene transcription [44]. These results suggest that lncRNAs
derived from repetitive sequences may contribute to disease
development through epigenetic regulation.

Recently, the single nucleotide polymorphisms (SNPs)
of lncRNAs have been found to play important roles for

disease association studies. For example, the SNP rs1333049
in the lncRNA, namely, antisense noncoding RNA in the
INK4 locus (ANRIL) is reportedly associated with myocar-
dial infarction as well as the pharmacogenomic evaluation
in hypercholesterolemia [45]. SNP rs2383207 on lncRNA-
ANRIL and SNP rs11066001 on protein-coded BRCA1
associated-protein (BRAP) gene were both associated with
ankle-brachial index in a Taiwanese population [46]. Three
SNPs (rs2067051, rs2251375, and rs4929984) located in 5󸀠
region of the H19 imprinted maternally expressed transcript
(H19) genes were reportedly associated with birth weight
[47]. Additionally, the rs2839698 TC genotype of H19 was
reportedly associated with a low risk for nonmuscle-invasive
disease [48].

4. The lncRNAs and Cancers

Aberrant lncRNA expression contributes to tumor develop-
ment in many cancer types [49–55]. For example, an lncRNA
microarray showed that some lncRNAs contribute to glioma
carcinogenesis [56, 57]. The lncRNAs also have important
roles in the development of lung [58], breast [59], and liver
cancers [60].

The accumulating evidence of lncRNA involvement in
carcinogenesis includes findings that downregulation of
maternally expressed gene 3 (MEG3), an imprinted lncRNA,
is associated with carcinogenesis of meningiomas [61] and
bladder cancer [62]. The lncRNA, namely, ANRIL also
contributes to the development of plexiform neurofibromas
in neurofibromatosis type 1 [63]. The ANRIL downregulates
tumor suppressor gene p15 (INK4B) expression by bind-
ing to and recruiting the suppressor of zeste 12 homolog
(Drosophila) (SUZ12), a component of the Polycomb Repres-
sive Complex 2 [64]. When DNA damage occurs, ANRIL is
upregulated by the ATM-E2F1 signaling pathway [65].

In human colorectal cancer, lncRNA H19 and H19-
derived miR-675 are overexpressed in cell lines and pri-
mary tissues but not in adjacent noncancerous tissues [66].
ExogenousmiR-675 expression also downregulates the tumor
suppressor retinoblastoma,which is a direct target ofmiR-675
and increases tumor cell growth. Upregulation of H19 is also
known to contribute to gastric cancer cell proliferation [67]
and bladder cancer metastasis [68].

The HOTAIR is overexpressed in breast [69], nasopha-
ryngeal [70], and liver [71] cancers. Loss of HOTAIR mod-
erates the invasiveness of breast cancer, particularly in cells
with upregulated PolycombRepressive Complex 2 (PRC2). In
nasopharyngeal and hepatocellular carcinoma, upregulated
expression of HOTAIR indicates a poor prognosis [70, 71].

In lung cancer cells, downregulation of MALAT1 by
siRNA decreases cell motility and downregulates motility-
related genes [72], which suggests that MALAT1 promotes
lung cancer metastasis. Similarly, MALAT1 is important
in regulating cell proliferation, migration, and invasion of
colorectal cancer metastasis [73]. In bladder cancer tissues,
MALAT1 is overexpressed. Downregulation of MALAT1
by siRNA, the epithelial-to-mesenchymal transition-related
genes, and cell migration of bladder cancer cells are inhibited
[74]. After liver transplantation, MALAT1 is overexpressed
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in both cell lines and tissues of patients with hepatocellular
carcinoma. Additionally, upregulated MALAT1 is associated
with increased risk of liver tumor recurrence [75].

An lncRNA of highly upregulated liver cancer (HULC)
is reportedly overexpressed in hepatocellular carcinoma [76].
The HULC may downregulate miR-372 and induce phos-
phorylation of cAMP responsive element binding protein
1 (CREB1) in liver cancer [77]. Similarly, overexpressed
lncRNA, namely, urothelial carcinoma associated 1 (UCA1)
affects cell proliferation and invasion in bladder cancer [78].
The CREB1 is involved in the UCA1-mediated cell cycle
distribution of bladder cancer [79]. Another lncRNA, UCA1a
(cancer-upregulated drug-resistant gene, CUDR), reportedly
regulates the carcinogenesis of human bladder cancer [80].

Methylation may also have a modulating role in lncRNA
expression. For example, a study of triple-negative breast can-
cer cell lines showed hypermethylation and downregulation
in both miR-31 and its MIR31 host gene (MIR31HG) [81].The
lncRNA, namely, colorectal neoplasia differentially expressed
(CRNDE) is overexpressed in colorectal cancer and leukemia
[82]. In esophageal adenocarcinoma, high-resolution methy-
lome analyses have shown hypomethylated noncoding DNA
regions and upregulated lncRNA in actin filament-associated
protein 1 (AFAP1) antisense RNA 1 (AFAP1-AS1) [83].

Similar to the disease association studies as described
above, the accumulating evidence of SNPs in lncRNAs has
been reported in cancer association studies. For example,
SNP array-based study reported that several SNPs in lncR-
NAs were associated with prostate cancer risk [84]. An
lncRNA prostate cancer gene expressionmarker 1 (PCGEM1)
is overexpressed in prostate cancer [85]. Two tagSNPs
(rs6434568 and rs16834898) of the PCGEM1 were reported
to be associated with prostate cancer [86]. Several lncRNAs
contain SNPs such as rs7763881 in highly upregulated in
liver cancer long noncoding RNA (HULC) and rs619586 in
MALAT1 which are reportedly associated with decreased
hepatocellular carcinoma risk [87].

5. The lncRNAs and Their
Potential Modulators

Chemically engineered oligonucleotides that have proven
effectivess for targeting endogenous miRNAs in mice [88]
have potential applications in lncRNAs. For example, anti-
sense oligonucleotides targeted at the mouse lncRNA Malat1
correct RNA gain-of-function effects of myotonic dystrophy
[89]. Using siRNA treatment to lncRNA, the lncRNA, namely,
antidifferentiation ncRNA (ANCR) is downregulated to pro-
mote osteoblast differentiation [90]. Similarly, siRNA-based
downregulation of lncRNA associated with liver regeneration
(LALR1) inhibits hepatocyte proliferation and cell cycle
progression during liver regeneration [91]. Data obtained by
a recent systematic transcriptome-wide analysis of lncRNA-
miRNA interactions [92] may reveal additional regulators
of lncRNA expression such as miRNAs that contribute
to lncRNA degeneration. For example, in some lncRNAs
targeted by breast cancer-related miRNAs, changes in gene
expressions differ between women with and without breast
tumors [93].

Inhibitors that modulate lncRNA function have also
been identified. For example, small molecules such as
diazobenzene-related compounds are now known to inhibit
the function of miR-21 [94], a polyadenylated lncRNA [95].
5-aza-2󸀠-deoxycytidine (5-aza-dC), a methylation inhibitor,
inhibits the methylation of putative imprinted control region
(ICR) of H19 gene and leads to the downregulation of the H19
mRNA expression in blastocysts derived from vitrified two-
cell embryos [96].This finding suggests that epigenetic agents
may be themodulators for lncRNA expression as well as their
related targeting signals.

The hypothesis that environmental exposures are another
cause of ncRNA alterations [97] was tested by exposing
aquatic midges to xenobiotics, which revealed upregulation
of lncRNAs derived from repetitive sequences [98]. Addition-
ally, telomeric and centromeric ncRNA can be activated by
bisphenol A, a synthetic chemical with estrogen-like effects
[98]. Based on these findings, some drugs may also modulate
lncRNA expression. Therefore, many natural products and
their derivatives are likely to prove suitable for screening and
identifying these modulators in lncRNAs.

6. Long Noncoding RNA and
Bioinformatics Resources

Computational methods for predicting lncRNA function
have been well reviewed [99]. Recently, consistently improv-
ing computational capability enabled rapid development of
functional analyses and bioinformatics resources for lncR-
NAs [100]. Except for NRED [8], ncFANs [9], and lncRNAdb
[10], we summarize the update progression of bioinformatics
resources for lncRNAs during 2012-2013 as shown in Table 1.

For example, the NRED [8] database of lncRNA expres-
sion includes both microarray and in situ hybridization
data for human and mouse lncRNAs. The noncoding RNA
Function Anotation server (ncFANs) [9], a web server for
functional anotation of lncRNAs, includes ten reannotated
human andmousemicroarray datasets.The lncRNAdb [10] is
a comprehensive database of eukaryotic lncRNA anotations.
The data contained in the lncRNAdb include sequences,
structures, genomic contexts, expressions, and subcellular
distributions. Most (∼75%) lncRNAs in the database were
collected from mammals.

The NONCODE v3.0 [11] is an integrated database of
lncRNA anotations obtained from re-annotated and updated
microarray data from NONCODE v2.0 [101]. The NON-
CODE v3.0 database includes a visualized Genome Browser
and a BLAST-based sequence alignment search. Since the
secondary structure of an lncRNA may affect its protein
interactions, the LNCipedia [12] provides helpful information
for visualizing the structures of annotated lncRNA sequences.
The LNCipedia also uses an algorithm for predicting poten-
tial coding scores for each transcript and an HMMER
algorithm for searching for RNA sequences in Pfam protein
domains.The LncRNADisease [102] provides experimentally
validated lncRNA—disease associations for 166 diseases in
curated lncRNA interacting partners at the protein, RNA,
miRNA, and DNA levels. Similarly, DIANA-LncBase pro-
vides experimentally verified and computationally predicted
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Table 1: The lncRNA bioinformatics resources.

Name Description
NRED [8] Database of lncRNA expression. (http://nred.matticklab.com/cgi-bin/ncrnadb.pl/)
ncFANs [9] Web server for functional annotation of lncRNAs. (http://ebiomed.org/ncfans/)
lncRNAdb [10] Database of comprehensive annotations of functional lncRNAs. (http://www.lncrnadb.org/)
NONCODE [11] Database of integrative annotations of lncRNAs. (http://www.noncode.org/NONCODERv3/guide.htm)
LNCipedia [12] Database of annotations and structures of lncRNA sequences. (http://www.lncipedia.org/)
LncRNADisease [13] Database of lncRNA-associated diseases. (http://cmbi.bjmu.edu.cn/lncrnadisease/)
DIANA-LncBase [14] Database of microRNA targets on lncRNAs. (http://www.microrna.gr/LncBase/)

iSeeRNA [15] The lincRNA transcripts identified from transcriptome sequencing data.
(http://www.myogenesisdb.org/iSeeRNA/)

ChIPBase [16] Database for annotating and exploring the expression profiles in transcriptional regulation of lncRNAs and
other ncRNAs. (http://deepbase.sysu.edu.cn/chipbase/)

miRNA target sites of human and mouse lncRNAs [14].
The iSeeRNA [15] webserver was constructed by using a
support vector machine- (SVM-) based classifier to identify
lincRNAs from transcriptome sequencing data. Based on
next-generation sequencing (ChIP-Seq) data, ChIPBase [16]
provides anotations and identifyies information for tran-
scription factor binding sites (TFBS) of lncRNAs and miR-
NAs from chromatin immunoprecipitation. A database of the
regulatory relationships of transcription factors/lncRNA and
transcription factors/miRNA is also being considered.

7. Conclusion

Various lncRNA functions are essential for regulating gene
expression. This study focused on lncRNA dysregulation
associated with disease progression and carcinogenesis and
on the development of drugs for modulating lncRNA func-
tion. Since lncRNA is rarely studied in natural products,
the resources mentioned in the paper may provide helpful
information for researchers studying natural products.
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