
[6] H. Meijer and S. G. Akl. Optimal computation of pre�x sums on a binary tree of

processors. International Journal of Parallel Programming, 16:127{136, 1987.

[7] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new gen-

eralized connection network. JACM, 29:642{667, 1982.

[8] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and

Systems, 2:484{521, 1980.

[9] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville, MD,

1984.

[10] P. Varman and K. Doshi. Sorting with linear speedup on a pipelined hypercube. Tech-

nical Report TR{8802, Rice University, Department of Electrical and Computer Engi-

neering, February 1988.

Ernst W. Mayr received a diploma in Mathematics from the Technical University in Munich

(Germany) in 1975, a master's degree in computer science and electrical engineering from

MIT in 1977, and his Ph.D. from the Technical University in Munich in 1980. He was

then a visiting scientist at MIT and Stanford, and from 1982 through 1988 on the faculty

of the Stanford Computer Science Department. Since 1988, he is Professor for Theoretical

Computer Science at the Johann Wolfgang Goethe-University in Frankfurt, Germany. His

interests are combinatorial algorithms, parallel algorithms, and complexity theory.

C. Greg Plaxton graduated with a B.A.Sc. in Engineering Science (Computer Science option)

from the University of Toronto in 1985, and received his Ph.D. in Computer Science from

Stanford University in 1989. He was a Postdoctoral Fellow at the MIT Laboratory for

Computer Science for one year before joining the faculty of the University of Texas at Austin

as an Assistant Professor in the Department of Computer Science. His research interests

include parallel computation, the analysis of algorithms, and lower bounds.

15



Finally, we note that a substantial theoretical advance has been made on the problem

of hypercube sorting subsequent to the work described in this paper. Namely, Cypher and

Plaxton [4] have developed a hypercube sorting algorithm with running time O(lg n(lg lg n)

2

)

(assuming one item per processor). On the other hand, the pipelined merging approach

described in this paper continues to provide strictly the fastest known algorithms for merging

on the pipelined hypercube, and for sorting on the pipelined hypercube when the load per

processor (i.e., n=p) exceeds a modest threshold. Furthermore, the multiplicative constant

of the O(lg n(lg lg n)

2

) algorithm of [4] is much higher than any of the constants appearing

in this paper.

References

[1] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation algorithms

for bin packing. Technical Report STAN{CS{88{1200, Stanford University, Department

of Computer Science, March 1988.

[2] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Optimal simulations

of tree machines. In Proceedings of the 27th Annual IEEE Symposium on Foundations

of Computer Science, pages 274{282, October 1986.

[3] G. E. Blelloch. Scans as primitive parallel operations. In Proceedings of the 1987 IEEE

International Conference on Parallel Processing, pages 355{362, 1987.

[4] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the

hypercube and related computers. In Proceedings of the 22nd Annual ACM Symposium

on Theory of Computing, pages 193{203, May 1990.

[5] C.-T. Ho and S. L. Johnsson. Distributed routing algorithms for broadcasting and per-

sonalized communication in hypercubes. In Proceedings of the 1986 IEEE International

Conference on Parallel Processing, pages 640{648, 1986.

14



Algorithm MultiWayMergeSort

1. Mark one input value at each of the processors that holds dn=pe values. Concentrate

the resulting set of marked values to the lowest-numbered processors. This can be done

in 2l + 2m time steps with a pre�x sum followed by a concentration route.

2. Each column of the array now contains k values. Route these values to the top of the

column (i.e., to row 0). As in Step 7 of MultiWayMerge, this takes k + l time steps.

3. At every processor in row 0, sort the set of k values using an e�cient sequential sorting

routine. This takes O(k lg k) time steps.

4. Repeatedly call MultiWayMerge. The length of the sorted lists increases by a factor of

2

l

after each call. Thus, after dm=le iterations all of the values have been sorted. The

cost of the ith iteration is 14k+5l+19il time steps (see the analysis of MultiWayMerge),

for a total cost of approximately (14k + 5l +

19

2

m)m=l time steps.

5. The values have been sorted, but they are not con�gured appropriately (i.e., all of the

values are in row 0). All of the values can be routed to the correct output locations

using k pipelined inverse concentration routes, which takes k + lg p time steps.

The total running time of MultiWayMergeSort is minimized (to within a constant factor) by

setting k = lg p, and for this choice of k the running time is dominated by the cost of Step 4.

Observing that l = lg(pk=n) and m = lg p� l � lg p, we �nd that for k = lg p the algorithm

runs in

47

2

lg

2

p= lg((p lg p)=n) + O(lg p lg lg p) time steps. For the case n = p, we can set

k = lg p= lg lg p and reduce the running time to

19

2

lg

2

p= lg lg p +O((lg p= lg lg p)

2

).

6 Concluding Remarks

In order to better assess the practical speed of the various algorithms presented in this paper,

we have computed the coe�cient of the leading term of the running time in each case. It

is quite possible that one or more of the moderately large coe�cients in Section 5 could be

improved with only minor modi�cations to the algorithm.

13



In other words, route the rank of each value back to the processor that contained the

value before Step 3. This is a pipelined inverse concentration, and can be performed

in k +m time steps. Where i = j, simply label each value with its rank in X

i

.

5. Compute the rank of every value in X. The processors of row i are used to perform this

computation for the elements of the set X

i

, 0 � i < 2

l

. For each set X

i

j

, we perform

a pipelined sum over a subcube of dimension l, adding the ranks computed in Step 4

and routing the results to the �rst block of 2

m

processors in each row. This takes k+ l

time steps using the MSBT embedding.

6. In row i, route the elements of X

i

to the correct output column (given by the 
oor

of the rank computed in Step 5 divided by k), 0 � i < 2

l

. This is a pipelined inverse

concentration in a subcube of dimension l +m, and takes k + l +m time steps.

7. Each column of the array now contains k values. Route these values to the top of the

column (row 0). This can be performed in k+ l time steps using the MSBT embedding

over subcubes of dimension l.

Summing all of the costs stated above, the total running time of MultiWayMerge is readily

seen to be 14k + 5l + 19m time steps.

By repeatedly applying MultiWayMerge over successively larger subcubes, we can obtain

a fast sorting algorithm for the case n < p lg p. The running time of this algorithm, which

we refer to as MultiWayMergeSort, will be shown to be O(lg

2

p= lg((p lg p)=n))), as opposed

to O(lg

2

p= lg(p=n)) for the sorting algorithm of Nassimi and Sahni. For the interesting

case n = p, the running time of MultiWayMergeSort is O(lg

2

p= lg lg p), a slight asymptotic

improvement over that of Batcher's bitonic sort.

We now give a more formal description of the MultiWayMergeSort algorithm, and analyze

its time complexity. The algorithm is designed to sort n = k2

m

values on a hypercube with

p = 2

l+m

processors. It is useful to view the processors as being arranged in a 2

l

by 2

m

array,

where the processor in row i and column j has ID i2

m

+ j (row-major order).

12



be denoted X

i

, 0 � i < 2

l

, and let the set of k elements of X

i

with ranks between jk and

(j+1)k�1 (inclusive) be denoted X

i

j

, 0 � j < 2

m

. The set X

i

j

is initially stored at processor

i2

m

+ j. Let the output list be denoted X. At the end of the merging process, the elements

of X with ranks between jk and (j + 1)k � 1 (inclusive) should be stored at processor j,

0 � j < 2

l+m

. It is useful to view the processors of the given hypercube as forming a 2

l

by

2

l+m

array, where the processor in row i and column j has ID i2

l+m

+ j (row-major order).

Our algorithm makes use of pipelined broadcast and sum operations over entire subcubes.

Formally, a pipelined broadcast operation takes k values stored at a single processor and

broadcasts them over the entire subcube. For a pipelined sum operation, processor i initially

holds k values a

ij

, 0 � i < p, 0 � j < k. The output is the k sums

P

0�i<p

a

ij

, 0 � j < k,

all of which are output at a single designated processor. Although such operations can be

performed using Pre�x, other implementations exist that are more e�cient by a constant

factor. For example, using the multiple spanning binomial tree (MSBT) embedding of Ho

and Johnsson [5] it is possible to perform k broadcasts (or sums) in k + lg p time steps.

Algorithm MultiWayMerge

1. Broadcast X

i

j

to all of the processors in column i2

m

+ j, 0 � i < 2

l

, 0 � j < 2

m

. Each

of the columns is an independent subcube of dimension l. Thus, the broadcasts can be

performed in k + l time steps using an MSBT embedding within each column.

2. Replicate list X

i

across the ith row, 0 � i < 2

l

. In other words, route a copy of X

i

j

to

each column of the ith row that is congruent to j mod 2

m

. This can be done in k + l

time steps using the MSBT embedding over subcubes of dimension l.

3. Merge the lists X

i

and X

j

using the jth block of 2

m

processors of row i (i.e., columns

j2

m

to (j + 1)2

m

� 1), 0 � i; j < 2

l

, i 6= j. This takes 8k + 17m time steps (see the

analysis of Merge).

4. In the jth block of 2

m

processors of row i, \unmerge" the rank of each element of X

i

in

X

j

(this is the rank of that value in X

i

[X

j

minus its rank in X

i

), 0 � i; j < 2

l

, i 6= j.

11



5. Assuming the set X

i

was routed to processor j

i

in the previous step, broadcast X

i

to

all processors with IDs in the range j

i

+ 1 to j

i+1

, 0 � i < p. This can be done in

2k + 4 lg p time steps with a single application of Pre�x

0

.

6. Assuming the set Y

i

was routed to processor j

i

in the previous step, broadcast Y

i

to

all processors with IDs in the range j

i�1

to j

i

� 1, 0 � i < p. This can be done with a

single application of a \backwards" version of Pre�x

0

, and takes 2k + 4 lg p time steps.

7. At this point, processor j contains a copy of Z

0

2j

, Z

0

2j+1

, the largest X

i

with x

i

< z

2j

and

the smallest Y

i

with y

i

> z

2j+1

, 0 � j < p. As observed above, the union of these sets

contains the desired set Z

j

, and the values to be discarded (i.e., those not belonging

to Z

j

) can be determined by computing the exact rank of either z

2j

or z

2j+1

. These

sets can be merged, and the rank computation performed, with O(k) local operations.

Our de�nition of a time step allows these local operations to be interleaved with the

computations of Steps 5 and 6 at no extra cost.

The total running time of Merge is 8k + 17 lg p time steps. For k = 
(lg p), this running

time is within a constant factor of optimal. Furthermore, as observed by Varman and Doshi,

this optimal merging routine immediately implies an optimal algorithm for sorting when the

number of values to be sorted, n, exceeds the number of processors, p, by a factor k that is


(lg p). The idea is to sort the set of k values at each processor locally, and then to merge

sorted subcubes repeatedly until the entire hypercube has been sorted. At each level, even

subcubes are sorted in ascending order and odd subcubes are sorted in descending order.

The running time of this algorithm, which we refer to as MergeSort, is

X

0�i<lg p

(8k + 17i) = 8k lg p+O(lg

2

p):

We now describe a pipelined version of the multi-way merging procedure of Nassimi and

Sahni [7] that runs on the pipelined hypercube. The input consists of 2

l

sorted lists of length

k2

m

, and the output is a single sorted list of length k2

l+m

. The merging is performed in

O(k + lg p) time steps on a hypercube with p = 2

2l+m

processors. Let the ith input list

10



sorted locally.

Our approach is to �rst merge X

0

and Y

0

, and then to use the resulting list to guide the

merging of X and Y . Let Z

0

denote the sorted list of length 2p that results from merging X

0

and Y

0

. Let z

j

denote the value with rank j in Z

0

, 0 � j < 2p. Let Z

0

j

denote the set of k

values associated with z

j

, that is, either z

j

= x

i

for some x

i

2 X

0

and Z

0

j

= X

i

, or z

j

= y

i

for

some y

i

2 Y

0

and Z

0

j

= Y

i

. Note that if z

j

2 X

0

then the rank of z

j

in Z is between jk and

(j + 1)k � 1, inclusive. The exact rank of z

j

in Z can be determined by computing its rank

in the set Y

i

, where y

i

is the least element of Y

0

exceeding z

j

. Similarly, if z

j

2 Y

0

then the

rank of z

j

in Z is between jk and (j + 1)k � 1, and the exact rank of z

j

in Z depends upon

the set X

i

, where x

i

is the largest element of X

0

that is less than z

j

. Furthermore, it is easy

to check that the set Z

j

is contained in the union of Z

0

2j

, Z

0

2j+1

, the set X

i

corresponding to

the largest x

i

that is less than z

2j

(if such a set X

i

exists), and the set Y

i

corresponding to

the smallest y

i

that is greater than z

2j+1

(if such a set Y

i

exists). For example, it is clear

that no element of any set Y

k

such that y

k

< z

2j

could belong to Z

j

, since the rank of y

k

(the largest element in Y

k

) is at most 2jk � 1, whereas the rank of the smallest element in

Z

j

is 2jk. The foregoing observations lead to the following pipelined merging algorithm.

Algorithm Merge

1. Reverse list Y

0

, routing y

i

to processor p� i� 1, 0 � i < p. This takes lg p time steps.

2. Merge X

0

and Y

0

by simulating a bitonic merge over 2p processors. This takes 2 lg p

time steps.

3. Route the rank of each value in Z

0

back to the processor which originally held that

value. This takes 2 lg p time steps.

4. Route each set X

i

to the processor that held x

i

after Step 2, 0 � i < p. The ID of

that processor can be computed from the rank received by processor i in Step 3. This

route can be performed in 2k+2 lg p time steps using a pipelined inverse concentration.

Route the Y

i

's similarly, for a total cost of 4k + 4 lg p time steps.

9



as well as the hardware implementation details.

We only need the pipelined model of the hypercube for performing pipelined inverse

concentration routes. It is interesting to note that we do not require pipelined concentration

routes, nor do we require the pipelined inverse concentration with copy operation of Varman

and Doshi. Concentration and inverse concentration routes were de�ned by Nassimi and

Sahni [7], and it is easy to show that k such operations can be performed in k + lg p time

steps on the pipelined hypercube model. Furthermore, there is no hope of achieving this

asymptotic time bound on the 1-port model, since there is a lower bound of 
(k lg

1=2

p)

time steps in this case. To prove this lower bound, consider a set of k monotone routes for

which the source processors are exactly those with strictly more 0's than 1's in their IDs, and

the destination processors are those with more 1's than 0's. In such a case, 
(kp) packets

must pass through the O(p lg

�1=2

p) processors with an equal number of 0's and 1's (or one

more 0 than 1, say, if lg p is odd), which implies a lower bound of 
(k lg

1=2

p) time steps

for performing k monotone routes. Since a monotone route is equivalent to a concentration

route followed by an inverse concentration, and these operations have equal complexity, this

lower bound also applies to the pipelined concentration and inverse concentration operations.

We now describe a pipelined algorithm for merging two sorted lists X and Y , each of

length pk, on p processors. The algorithm is similar to that proposed by Varman and

Doshi [10], but is somewhat simpler. The optimal merging algorithm of Anderson, Mayr,

and Warmuth for the EREW PRAM also takes a similar approach [1]. For simplicity, it will

be assumed that all of the 2pk input keys are distinct (this assumption is not essential). For

both X and Y , the values with ranks (numbered from 0) in the range ik to (i + 1)k � 1

are initially stored at processor i, 0 � i < p. The two ordered sets of k values located at

processor i will be referred to as X

i

and Y

i

, respectively. Let x

i

denote the least element of

X

i

, and let y

i

denote the greatest element of Y

i

, 0 � i < p. Let X

0

and Y

0

denote the set

of all x

i

's and y

i

's, respectively. Let Z denote the sorted list of length 2pk that results from

merging X and Y . Those elements of Z with ranks in the range 2ik to 2(i+1)k�1, denoted

Z

i

, must be routed to processor i by the end of the computation, 0 � i < p, and must be

8



Dropping the inner parentheses and simplifying, this amounts to

(a

0

; b

0

; x

0

)�

0

(a

1

; b

1

; x

1

) = (a

0

or a

1

; if a

1

then b

1

else b

0

or b

1

;

if (a

1

or not b

0

) then x

1

else x

0

):

Note that the above formulation allows bit pipelining in the sense described by Blelloch [3].

Finally, we observe that the data distribution operation de�ned by Ullman [9] is equivalent

to a segmented Pre�x operation with the Copy operator. Thus, the techniques outlined in

this paper immediately lead to e�cient pipelined implementations of this primitive for the

complete inorder binary tree, hypercube, and shu�e-exchange.

5 Sorting on a Pipelined Hypercube

In this section, we describe a simpli�ed implementation of the optimal merging algorithm of

Varman and Doshi [10], and show how this can be used to develop a pipelined version of the

sorting algorithm of Nassimi and Sahni [7] for a pipelined model of the hypercube.

The Sort operation is de�ned as follows. Given n O(lg p)-bit values, with bn=pc or dn=pe

located at each processor, rearrange the n values so that every value in processor i is less

than or equal to every value in processor j whenever 0 � i < j < p. In addition, we require

that there be bn=pc or dn=pe values at any processor, and that the set of values within any

particular processor be sorted. There has been a great deal of previous research related to

the problem of sorting on the hypercube and related networks, under a variety of di�erent

models of computation. For an overview of the hypercube sorting literature, the reader is

referred to [4].

The time bounds for the merging and sorting algorithms described in this section do not

apply to the 1-port model of computation that we have been considering up to this point.

Instead, we will make use of a restricted form of the less realistic (lg p)-port model, in which

a processor can send and/or receive a packet from each of its lg p neighbors in a single time

step. This model, which we refer to as the pipelined hypercube model, was originally de�ned

by Varman and Doshi [10], and we refer the reader to their paper for both the strict de�nition

7



In Section 5, we will make use of a variant of the Pre�x operation, Pre�x

0

, de�ned as

follows. Rather than computing x

0

� � � � � x

i

at processor i, 0 � i < p, Pre�x

0

outputs 0

�

at

processor 0 and x

0

�� � ��x

i�1

at processor i, 1 � i < p. This is sometimes more convenient,

particularly when the operator � is not invertible. Our Pre�x algorithms may be trivially

modi�ed to implement Pre�x

0

with the same time bounds.

4 Data Distribution

Consider the binary associative operator � : D�D ! D such that x�y = x for all x; y 2 D.

This is sometimes referred to as the Copy operator. Observe that the e�ect of applying Pre�x

with the Copy operator is to perform a broadcast of a single value from processor 0 to all other

processors. Of course, there are simpler techniques for broadcasting a single value over the

processors of any of the networks we have considered. However, combining this observation

with the results of the previous section immediately implies that k segmented broadcasts

can be executed in 2k + 4 lg p time steps on the tree or hypercube, and in 6k + 10 lg p time

steps on the shu�e-exchange.

In order to fully illustrate the techniques discussed in Section 2, we now study the im-

plementation of segmented Pre�x with the Copy operation in greater detail. Assume that

processor i initially holds the Boolean value a

i

, and x

i

2 D, 0 � i < p. Note that there

is no identity element for the Copy operation in D. In order to remedy this situation, we

can extend the domain of Copy from D to B�D and de�ne every pair with �rst component

false, say, to be an identity element. Formally, we have

(b

0

; x

0

)� (b

1

; x

1

) = (b

0

or b

1

; if b

0

then x

0

else x

1

);

for all b

0

; b

1

2 B and x

0

; x

1

2 D.

In order to reduce segmented Pre�x with operator � = Copy to ordinary Pre�x with

operator �

0

= Copy

0

, we de�ne �

0

as follows:

(a

0

; (b

0

; x

0

))�

0

(a

1

; (b

1

; x

1

)) = (a

0

or a

1

; if a

1

then (b

1

; x

1

) else (b

0

; x

0

)� (b

1

; x

1

)):

6



Figure 1: A shu�e-exchange embedding for the high-numbered processors.

Figure 2: A shu�e-exchange embedding for the low-numbered processors.

(0 to p=2 � 1) at its leaves. We can make use of these embeddings to obtain a pipelined

implementation of k Pre�x operations as follows. First, we use the embedding of Figure 1 to

compute the k sets of partial sums over the high-numbered processors. This takes 2k+4 lg p

time steps. Similarly, the embedding of Figure 2 can be used to perform k pre�x sums over

the low-numbered processors in 2k + 4 lg p time steps. It is now su�cient to broadcast,

in a pipelined fashion, the k total sums over the low-numbered processors to the p=2 high-

numbered processors, and to add these values to the partial sums computed earlier. This last

phase can be performed in 2k+2 lg p time steps using the embedding of Figure 2 (note that

the desired sums are already available at the root), so k Pre�x operations can be executed

in 6k + 10 lg p time steps on the shu�e-exchange.

5



its parent. During the downward pass, each processor receives from its parent the sum over

all processors with IDs less than those in T (p), computes the sum over all processors with

IDs less than those in its right subtree, and sends the appropriate values to its left and right

children. The entire algorithm runs in 4 lg p time steps.

Note that in any given time step, only two of the levels of the tree are active, implying

that the algorithm can be pipelined level by level. By initiating a new pre�x computation

every second time step, it is possible to perform k Pre�x operations on the inorder complete

binary tree in 2k + 4 lg p time steps.

Hypercube. It is straightforward to implement Pre�x to run in exactly lg p time steps

on a p-processor hypercube. Unfortunately, this single-pass algorithm cannot be pipelined

because it uses all of the processors at every time step. To achieve pipelined speedup we can

make use of the dilation 2 inorder complete binary tree embedding [2]. In this embedding,

the left child of a non-leaf processor is connected directly to its parent, while the right child

is connected to its parent via the left child. It is easy to verify that the pipelined algorithm

stated earlier for the inorder complete binary tree can be modi�ed to run in the same time

bound on the dilation 2 inorder complete binary tree embedding. Hence, k Pre�x operations

can be performed in 2k + 4 lg p time steps on the hypercube.

Shu�e-exchange. As in the case of the hypercube, it is straightforward to implement

Pre�x to run in lg p steps on a p-processor shu�e-exchange. Once again, however, the

basic approach does not lead to an e�cient pipelined implementation. Furthermore, certain

edges of the inorder complete binary tree correspond to 
(lg n)-length paths in the shu�e-

exchange. For this reason, a straightforward emulation of the inorder complete binary tree

algorithm would also be very ine�cient. Instead, we make use of the dilation 2 complete

binary tree embeddings depicted, for the case p = 16, in Figures 1 and 2. The leaves of the

tree in Figure 1 are the high-numbered processors (those with IDs in the range p=2 to p�1),

numbered inorder. In this embedding, the ID of the left child of an internal processor is the

shu�e of the ID of its parent, and siblings communicate via the exchange connection. The

embedding of Figure 2 is de�ned in a similar fashion, and has the low-numbered processors

4



belongs to an \unde�ned" interval; it is false for output index i if and only if a

0

; : : : ; a

i

are all false. As observed by Schwartz [8], this reduces coding segmented pre�x to coding

ordinary pre�x.

3 Network Implementations

In this section, we describe e�cient implementations of the Pre�x operation for the complete

binary tree, hypercube, and shu�e-exchange families of networks. We will be concerned

with p-processor network implementations of the Pre�x operation where processor i initially

contains the value x

i

, 0 � i < p, and n = p. The computation is considered to be complete

when the partial sum y

i

= x

0

� � � � � x

i

has been computed at processor i, 0 � i < p.

The model of computation that we adopt for our networks may be de�ned as follows.

Each processor has an in�nite local memory con�gured in O(lg p)-bit words and can per-

form the usual set of CPU operations in constant time on word-sized operands. Processors

communicate with one another by sending packets over the links provided by the network.

A packet consists of a single word of data. The complexity of our algorithms will be stated

in terms of time steps. Unless otherwise stated, running times should be assumed to be ac-

curate to within an additive constant. In a single time step, each processor can send and/or

receive at most one packet (1-port communication), and can also execute a constant number

of CPU operations on local data. All of our algorithms are SIMD. We will assume that the

x

i

's, as well as all partial sums of the x

i

's, are word-sized quantities.

Binary tree. The �rst implementation of Pre�x that we consider is the standard two-

pass algorithm for the inorder complete binary tree (see, for example, [3, 6]). Assume that

we are given a tree of size p = 2

d

� 1, with processors numbered \inorder" (i.e., numbered

according to an inorder traversal of the tree) from 0 to 2

d

�2. The �rst pass of the algorithm

is upward, from the leaves to the root, and the second pass is downward. For every processor

p, let T (p) denote the subtree rooted at processor p. Note that the IDs of the processors in

T (p) form a contiguous block of integers. During the upward pass, each processor receives

the sum of its left and right subtrees, computes the sum of T (p), and passes the result to

3



true and extends up to, but not including, the next highest integer j such that a

j

= true.

The �rst interval begins at index 0 regardless of the value of a

0

, and the last interval ends at

index n� 1. The segmented Pre�x operation executes a pre�x operation over each interval.

Extending the example of the preceding paragraph, assume that a

2

and a

4

are true while a

0

,

a

1

, and a

3

are false. Then the x

i

values are partitioned into the intervals fx

0

; x

1

g, fx

2

; x

3

g,

and fx

4

g and the output of the segmented Pre�x operation is y

0

= 5, y

1

= 7, y

2

= 6, y

3

= 10,

and y

4

= 9.

We will assume the existence of an identity element for � in D, which we denote 0

�

.

This assumption can be made without loss of generality because if no such element exists,

we can simply augment the set D with an identity element 0

�

such that 0

�

� x = x and

x� 0

�

= x for all x 2 D.

De�nition 2.1 For all pairs of Boolean values a

0

; a

1

and all x

0

; x

1

2 D, let �

0

denote the

binary operation

(a

0

; x

0

)�

0

(a

1

; x

1

) = (a

0

_ a

1

; if a

1

then x

1

else x

0

� x

1

):

The operation �

0

will be referred to as the segmented � operation.

The following four facts are straightforward to prove: (i) the operation �

0

has identity

0

�

0

= (false;0

�

); (ii) the �

0

operation is not commutative, assuming jDj > 1; (iii) the �

0

operation is associative; (iv) for k � 0,

(a

0

; x

0

)�

0

� � � �

0

(a

k

; x

k

) = (a

0

_ � � � _ a

k

; x

j

� � � � � x

k

);

where j is the highest index less than or equal to k such that a

j

= true, or 0 if there

is no such index. Facts (iii) and (iv) demonstrate that any segmented Pre�x computation

with operator � mapping D �D to D is equivalent to an ordinary Pre�x computation with

operator �

0

mapping (B � D) � (B � D) to B � D, where B denotes the set of Boolean

values ftrue; falseg. The second component of each output pair is the result of the desired

segmented Pre�x computation, and the �rst component indicates whether or not that index

2



1 Introduction

In this research note, we review previously known parallel algorithms for the pre�x operation,

extend these algorithms to run in a \pipelined" mode, and then apply the pipelined paral-

lel pre�x primitive to obtain e�cient algorithms for merging and sorting on the pipelined

hypercube model.

The paper is organized as follows. Section 2 de�nes the pre�x operation, and reviews

a number of simple results related to that operation. Section 3 describes pipelined parallel

implementations of the pre�x operation for several commonly-studied �xed interconnection

networks. Section 4 applies these results to obtain e�cient pipelined implementations of the

\data distribution" primitive of Ullman [9]. In Section 5, we make use of the pipelined data

distribution primitive to obtain a simpli�ed implementation of the optimal merging algorithm

of Varman and Doshi [10], which runs on a pipelined model of the hypercube. This merging

routine leads to an optimal sorting algorithm for the pipelined hypercube when the number

of values to be sorted, n, exceeds the number of processors, p, by an 
(lg p) factor. Section 5

also describes a pipelined version of the multi-way merge sort algorithm of Nassimi and

Sahni [7] for the pipelined hypercube.

2 The Pre�x Operation

We will now review the basic de�nitions necessary to understand the pre�x and segmented

pre�x operations. These operations were �rst introduced and implemented by Schwartz [8],

where they are referred to as \summing" and \summing by groups", respectively.

Let � denote a binary associative operator over some domain D. Given fx

0

; : : : ; x

n�1

g

belonging to D, the Pre�x operation computes each of the partial sums y

i

= x

0

� � � � � x

i

,

0 � i < n. For example, assuming that � denotes ordinary addition, n = 5, x

0

= 5, x

1

= 2,

x

2

= 6, x

3

= 4, and x

4

= 9, then the output of Pre�x is y

0

= 5, y

1

= 7, y

2

= 13, y

3

= 17,

and y

4

= 26.

Given an additional n Boolean values a

0

; : : : ; a

n�1

, we can partition the n given x

i

values

into contiguous intervals in the following manner: an interval begins at each i such that a

i

=

1



Pipelined Parallel Pre�x Computations, and

Sorting on a Pipelined Hypercube

�

Ernst W. Mayr

y

C. Greg Plaxton

z

Abstract

This paper brings together a number of previously known techniques in order to

obtain practical and e�cient \pipelined" implementations of the pre�x operation for

the complete binary tree, hypercube, and shu�e-exchange families of networks. In each

case, we provide a scheme for performing k pre�x operations in O(k + lg p) time on p

processors. The same bounds are shown to apply to the \data distribution" operation

of Ullman [9]. The data distribution primitive leads to a simpli�ed implementation of

the optimal merging algorithm of Varman and Doshi [10], which runs on a pipelined

model of the hypercube. Finally, a pipelined version of the multi-way merge sort of

Nassimi and Sahni [7], running on the pipelined hypercube model, is described. Given

p processors and n < p lg p values to be sorted, the running time of the pipelined

algorithm is O(lg

2

p= lg((p lgp)=n)).

Proposed running head: Pipelined Parallel Pre�x.

�

This work was supported in part by a grant from the AT&T Foundation, NSF grant DCR-8351757 and

ONR grant N00014-88-K-0166.

y

Fachbereich Informatik, J. W. Goethe University, Frankfurt, Germany.

z

Primarily supported by a 1967 Science and Engineering Scholarship from the Natural Sciences and

Engineering Research Council of Canada. Department of Computer Science, Stanford University, Stanford

CA 94305.


