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Abstract: A method for the HMPA (hexamethylphosphoric triamide)-catalyzed metal-free transfer
hydrogenation of pyridines has been developed. The functional group tolerance of the existing
reaction conditions provides easy access to various piperidines with ester or ketone groups at the
C-3 site. The suitability of this method for the reduction of other N-heteroarenes has also been
demonstrated. Thirty-three examples of different substrates have been reduced to designed products
with 45–96% yields.
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1. Introduction

Piperidines are very important structural building blocks of numerous biologically active
compounds, such as the Topo inhibitor, the Chk1 inhibitor, Tiagabine and Focalin XR [1].
The catalytic hydrogenation of pyridines provides one of the most straightforward methods to access
piperidines [2–18], although it is essential to overcome some inherent challenges presented by catalyst
deactivation and pyridine dearomatization. In the last decade, various transition-metal catalyst systems
have been studied for the direct hydrogenation of pyridines, but the metal-free catalytic reduction of
pyridines is a great challenge [19–24].

In recent years, frustrated Lewis base pairs have been proven as efficient catalyst systems for
the regio- and chemoselective reduction of pyridines with various reducing agents. In particular,
Stephan [25] and Du [26], respectively, reported the metal-free organoborane-catalyzed hydrogenation
of pyridines with H2. Later on, Du [27] developed a method for the metal-free organoborane catalyzed
transfer hydrogenation of pyridines with ammonia boranes. Chang [28] and Wang [29] reported
the B(C6F5)3 catalyzed reduction of pyridines with Et2SiH2 and PhMe2SiH, respectively (Figure 1).
For the reduction of the 3-carbonyl pyridines, Rueping reported the first example of organocatalytic
transfer hydrogenation of 3-carbonyl pyridines with Hantzsch ester for the preparation of chiral
1,4-dihydropyridine (DHP) derivatives [30]. Although a variety of 3-carbonyl piperidines derivatives
could be prepared with these methods, there are still some drawbacks: (1) For most of these reactions,
a high temperature and (2) high pressure of H2 was required. Therefore, the search for new methods
for the reduction of 3-carbonyl pyridines still remains a challenging task.

Molecules 2019, 24, 401; doi:10.3390/molecules24030401 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules24030401
http://www.mdpi.com/journal/molecules
http://www.mdpi.com/1420-3049/24/3/401?type=check_update&version=2


Molecules 2019, 24, 401 2 of 15
Molecules 2019, 24, x 2 of 15 

 

 

Figure 1. Selected examples for the synthesis of piperidines through the catalytic reduction of 
pyridines. 

Trichlorosilane with a Lewis base as an activator is a well-known unsaturated double bond 
reduction method. Its strength has been well demonstrated by others and ourselves in terms of 
asymmetric reduction of double bonds [31–38]. However, to the best of our knowledge, the reduction 
of pyridines by use of this system still presents a great challenge, and no successful protocol has been 
reported. In our previous study, we found trichlorosilane could activate the imine substrate through 
coordination of the nitrogen atom. A similar coordination was also found when trichlorosilane and 
pyridines were added together. Thus, we envisioned that pyridines would be reduced by 
trichlorosilane with a proper Lewis base activator. Here in, we wish to communicate the results of 
our study and present a highly effective new method to reduce 3-carbonyl pyridines under an organic 
Lewis base activated trichlorosilane system. 

2. Results and Discussion 

To implement our design, phenyl(pyridin-3-yl)methanone 1a was used as a model substrate to 
test the catalytic activity of various commercially available Lewis bases. We found that the reduced 
product could be obtained with 49% and 37%, respectively, when 0.2 equivalent of HMPA 
(hexamethylphosphoric triamide) or POPh3 were used. However, only a trace amount of reduced 
product could be detected when DMF (N,N-dimethylformamide) was used, which has been proven 
as an efficient catalyst for the reduction of C=O and C=N bonds with trichlorosilane. Dichloromethane 
was the most suitable solvent for this reaction. An 86% yield could be obtained when six equivalents 
of trichlorosilane were added as a reducing agent. The yield could be increased further to 96% when 
the reaction was stirred at 25 °C for 24 h. Decreasing the amount of HMPA to 10 mol% and 5 mol%, 
respectively, both caused a clear drop in the yield. After a careful investigation, we identified the best 
reaction conditions in which the substrate 1a was reduced with trichlorosilane (6.0 equivalent) under 
the catalysis of HMPA (20 mol%) in DCM (dichloromethane) at 25 °C for 24 h (Table 1). 

Table 1. Optimization of reaction conditions a. 
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Figure 1. Selected examples for the synthesis of piperidines through the catalytic reduction of pyridines.

Trichlorosilane with a Lewis base as an activator is a well-known unsaturated double bond
reduction method. Its strength has been well demonstrated by others and ourselves in terms of
asymmetric reduction of double bonds [31–38]. However, to the best of our knowledge, the reduction
of pyridines by use of this system still presents a great challenge, and no successful protocol has been
reported. In our previous study, we found trichlorosilane could activate the imine substrate through
coordination of the nitrogen atom. A similar coordination was also found when trichlorosilane and
pyridines were added together. Thus, we envisioned that pyridines would be reduced by trichlorosilane
with a proper Lewis base activator. Here in, we wish to communicate the results of our study and
present a highly effective new method to reduce 3-carbonyl pyridines under an organic Lewis base
activated trichlorosilane system.

2. Results and Discussion

To implement our design, phenyl(pyridin-3-yl)methanone 1a was used as a model substrate
to test the catalytic activity of various commercially available Lewis bases. We found that the
reduced product could be obtained with 49% and 37%, respectively, when 0.2 equivalent of
HMPA (hexamethylphosphoric triamide) or POPh3 were used. However, only a trace amount of
reduced product could be detected when DMF (N,N-dimethylformamide) was used, which has
been proven as an efficient catalyst for the reduction of C=O and C=N bonds with trichlorosilane.
Dichloromethane was the most suitable solvent for this reaction. An 86% yield could be obtained
when six equivalents of trichlorosilane were added as a reducing agent. The yield could be increased
further to 96% when the reaction was stirred at 25 ◦C for 24 h. Decreasing the amount of HMPA to
10 mol% and 5 mol%, respectively, both caused a clear drop in the yield. After a careful investigation,
we identified the best reaction conditions in which the substrate 1a was reduced with trichlorosilane
(6.0 equivalent) under the catalysis of HMPA (20 mol%) in DCM (dichloromethane) at 25 ◦C for 24 h
(Table 1).
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Table 1. Optimization of reaction conditions a. 
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Entry Solvent LB (Equiv.) Temp (°C) Yield (%) b Entry Solvent LB (Equiv.) Temp (◦C) Yield (%) b

1 DCM HMPA (0.2) 0 49.0
2 DCM DMF (0.2) 0 trace
3 DCM POPh3 (0.2) 0 37.0
4 DCM HMPA (0.2) −10 38.0
5 DCM HMPA (0.2) 25 82.0
6 THF HMPA (0.2) 25 64.0
7 CHCl3 HMPA (0.2) 25 76.0
8 CCl4 HMPA (0.2) 25 trace
9 DCE HMPA (0.2) 25 77.0

10 toluene HMPA (0.2) 25 trace
11 MeCN HMPA (0.2) 25 trace

12 c DCM HMPA (0.2) 25 60.0
13 d DCM HMPA (0.2) 25 81.0
14 e DCM HMPA (0.2) 25 86.0
15 f DCM HMPA (0.2) 25 96.0
16 f DCM HMPA (0.1) 25 82.0
17 f DCM HMPA (0.05) 25 54.0

a Unless otherwise specified, all reactions were performed with pyridines (0.1 mmol), HMPA and HSiCl3 (0.6 mmol)
in solvent (1 mL) for 12 h. b Isolated yield. c HSiCl3 (0.4 mmol). d HSiCl3 (0.5 mmol). e HSiCl3 (0.8 mmol). f Reaction
time is 24 h. hexamethylphosphoramide (HMPA).

With the optimized reaction conditions in hand, the scope and limitations for the substrates
were investigated. We found a series of phenyl(pyridin-3-yl)methanone derivatives could be
reduced under the existing reaction conditions to get the desired product with good yields
(Figure 2). The desired products 2b–2h were obtained with 62–91% yields when the phenyl
group of phenyl(pyridin-3-yl)methanone was replaced with other aryl and alkyl substituents.
The 3,5-disubstituted pyridines could also be reduced under the existing reaction conditions.
The substituents of the 5-position of the pyridine ring could be aryl and alkyl groups. The 5-phenethyl
and 5-methyl substituted substrates could be reduced to the desired products 2i and 2j with 61%
and 77% yields, respectively. When the 5-position substituent groups of pyridines were Ph, 4-MePh,
4-FPh and 1-napthyl, these pyridines could be reduced to 3,5-disubsitituted piperidines with 82–88%
yields. The substrates with a hetero aromatic group at the 5-position of the pyridines are also
tolerated. The desired products 2o and 2p were obtained with 73% and 82% yields, respectively, when
the thiopen-2-yl and thiopen-3-yl substituted substrates were reduced under the existing reaction
conditions. Next, we found that the 3,6-disubstituted substrates could be reduced with moderate
yields. The desired reducing products 2q–2s could be obtained with 40–53% yields.

Ethyl nicotinate and its 5-position substituted derivatives are tolerated under the existing
reaction conditions. Ethyl nicotinate was reduced to the corresponding product 2t with a 75% yield.
The 5-methly substituted ethyl nicotinate was reduced with a 41% yield, and the 5-Ph, 4-MeOPh and
4-FPh substituted ethyl nicotinate were reduced to their corresponding products 2v–2x with 75–76%
yields. The 5-BnO substituted ethyl nicotinate could also be reduced to the corresponding product 2y
with a 45% yield. In order to confirm the relative configuration of the main product, compounds 5
and 6 were synthesized according the literature, and the trans product was confirmed to be the main
product [39].



Molecules 2019, 24, 401 4 of 15
Molecules 2019, 24, x 4 of 15 
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(3a) and 2-phenylquinoxaline (3b) could be reduced to their tetrahydroquinoxaline derivatives 4a 
[29] and 4b [40] with high yields. The substrates 3c and 3d were partially reduced to the products 4c 
and 4d. Quinolone (3e) and isoquinoline (3f) were reduced to products 4e [41] and 4f [41], 
respectively, with moderate yields. 1,5-Naphthyridine (3g) and 1,10-phenanthroline (3h) could only 
be partially reduced to the products 4g [42] and 4h [43] (Figure 3). All attempts to achieve the fully 
reduced products of 3c, 3d, 3g and 3h have failed.  

Figure 2. Substrate scope of the HMPA-catalyzed reduction of pyridines.

Pyridine derivatives such as 3-Br, 3-CF3, 3-NO2, and 3-CN substituted pyridines could not be reduced
under the existing reaction conditions. However, other N-heteroarenes such as quinoxaline (3a) and
2-phenylquinoxaline (3b) could be reduced to their tetrahydroquinoxaline derivatives 4a [29] and 4b [40]
with high yields. The substrates 3c and 3d were partially reduced to the products 4c and 4d. Quinolone
(3e) and isoquinoline (3f) were reduced to products 4e [41] and 4f [41], respectively, with moderate yields.
1,5-Naphthyridine (3g) and 1,10-phenanthroline (3h) could only be partially reduced to the products 4g [42]
and 4h [43] (Figure 3). All attempts to achieve the fully reduced products of 3c, 3d, 3g and 3h have failed.
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Figure 3. Substrate scope of the HMPA-catalyzed reduction of N-heteroarenes. 

In order to shed light on the mechanistic pathway, in situ NMR analysis was performed. We first 
found that ethyl nicotinate could form a complex with HSiCl3 when the reaction was set in CDCl3 
under the otherwise identical reaction conditions. An obvious chemical shift in the aromatic region 
could be detected when HSiCl3 was added to the solution of 1t. Besides the signals of the designed 
products, a group of peaks that matched the intermediate C were also detected at the beginning. The 
intensity of these peaks would decrease with the addition of water. At the end of the reaction, only 
the peaks of designed product and HMPA could be detected (Figure 4). 

Figure 3. Substrate scope of the HMPA-catalyzed reduction of N-heteroarenes.

In order to shed light on the mechanistic pathway, in situ NMR analysis was performed. We first
found that ethyl nicotinate could form a complex with HSiCl3 when the reaction was set in CDCl3
under the otherwise identical reaction conditions. An obvious chemical shift in the aromatic region
could be detected when HSiCl3 was added to the solution of 1t. Besides the signals of the designed
products, a group of peaks that matched the intermediate C were also detected at the beginning.
The intensity of these peaks would decrease with the addition of water. At the end of the reaction, only
the peaks of designed product and HMPA could be detected (Figure 4).
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reduced to D with HSiCl3 under the catalysis of HMPA. The D to E step is the rate-determining step, 
since only the intermediate D could be detected and isolated from the reaction. The proton which is 
coming from the hydrochloride that is formed by the hydrolysis of HSiCl3 is important for the existing 
reaction.  

Figure 4. 1H-NMR spectra for mechanism studies.

Based on the above observations and precedents indicating a stepwise process in the reduction
of unsaturated pyridines [27], we proposed a possible mechanistic pathway for the present
HMPA-catalyzed reduction of pyridines (Figure 5). The first step was assumed to be the formation of
a HSiCl3 and substrate complex, followed by the hydride attack at the C-4 position to produce the
1,4-dihydropyidine intermediate, A, which will transfer to B in the presence of a proton, and then be
reduced to D with HSiCl3 under the catalysis of HMPA. The D to E step is the rate-determining step,
since only the intermediate D could be detected and isolated from the reaction. The proton which
is coming from the hydrochloride that is formed by the hydrolysis of HSiCl3 is important for the
existing reaction.
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Materials. Reactions were monitored by thin layer chromatography, using silica gel HSGF254 plates. 
Flash chromatography was performed using silica gel HG/T2354-92. 1H- and 13C-NMR (400 and 100 
MHz, respectively) spectra were recorded in CDCl3. The 1H-NMR chemical shifts are reported in ppm 
(δ) relative to tetramethylsilane (TMS), with the solvent resonance employed as the internal standard 
(CDCl3, δ 7.26 ppm). Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, 
t = triplet, q = quartet, m = multiplet, br = broad, dd = double doublet), coupling constants (Hz) and 
integration. 13C-NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the 
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Mass Spectrometry) spectra were recorded on BioTOF Q (Bruker, Billerica, MA, USA). 
  

Figure 5. Proposed mechanism of HMPA-catalyzed reduction of ethyl nicotinate with HSiCl3.

In order to illustrate the synthetic potential of these methodologies, a gram-scale reaction was
carried out using 1t as the substrate. Fortunately, the desired product, 2t, was obtained in a yield of
69% (Figure 6).
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Figure 6. The gram-scale reaction of 1t.

3. Materials and Methods

All solvents used in the reactions were distilled from the appropriate drying agents prior to
use. All substrates were analogously prepared and characterized as reported in the Supplementary
Materials. Reactions were monitored by thin layer chromatography, using silica gel HSGF254 plates.
Flash chromatography was performed using silica gel HG/T2354-92. 1H- and 13C-NMR (400 and
100 MHz, respectively) spectra were recorded in CDCl3. The 1H-NMR chemical shifts are reported
in ppm (δ) relative to tetramethylsilane (TMS), with the solvent resonance employed as the internal
standard (CDCl3, δ 7.26 ppm). Data are reported as follows: Chemical shift, multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = double doublet), coupling constants
(Hz) and integration. 13C-NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with
the solvent resonance as the internal standard (CDCl3, δ 77.0 ppm). ESIMS (Electron Spray Ionization
Mass Spectrometry) spectra were recorded on BioTOF Q (Bruker, Billerica, MA, USA).
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3.1. Reduction of Pyridines and N-Heteroaromatics

Under an argon atmosphere, pyridine 1 or N-heteroaromatic 3 (0.10 mmol) and HMPA (3.5 mg,
0.02 mmol) were added in anhydrous DCM (0.7 mL) and stirred at room temperature for 10 min,
and then trichlorosilane (2.0 M, 0.3 mL) was added. The reaction was stirred at room temperature for
24 h, quenched with H2O, and then the pH was adjusted to ~7–8 with saturated NaHCO3. The mixture
was extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine, dried over
anhydrous Na2SO4, concentrated under reduced pressure and purified with column chromatography
(silica gel, DCM/MeOH/TEA = 10/1/0.1) to afford a pure product.

3-Benzoylpiperidin-1-ium Chloride (2a). Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 7.97–7.95 (m, 2H),
7.58–7.55 (m, 1H), 7.49–7.45 (m, 2H), 3.64–3.46 (m, 1H), 3.27–3.24 (m, 3H), 3.10 (d, J = 12.3 Hz, 1H), 2.90
(dd, J = 12.4, 9.9 Hz, 1H), 2.71–2.69 (m, 1H), 2.04–2.02 (m, 1H), 1.84–1.56 (m, 3H). 13C-NMR (101 MHz,
CDCl3): δ 202.4, 136.0, 133.1, 128.7, 128.3, 48.9, 46.3, 44.7, 28.0, 25.4. HRMS (+ESI) m/z calculated for
[M + H]+ 190.1226, found 190.1230.

3-(4-Methylbenzoyl)piperidin-1-ium Chloride (2b). Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 7.87 (d, J =
8.2 Hz, 2H), 7.32–7.23 (m, 2H), 3.74 (br, 2H), 3.67–3.56 (m, 2H), 3.29 (d, J = 12.2 Hz, 1H), 3.16 (d, J = 12.7 Hz,
1H), 2.94 (dd, J = 12.4, 10.2 Hz, 1H), 2.80–2.64 (m, 1H), 2.41 (s, 3H), 2.10–1.97 (m, 1H), 1.82–1.75 (m, 1H),
1.74–1.62 (m, 1H), 1.48 (t, J = 7.3 Hz, 1H). 13C-NMR (101 MHz, CDCl3): δ 201.4, 144.1, 133.2, 129.5, 128.5,
48.2, 45.8, 43.7, 27.8, 24.6, 21.6. HRMS (+ESI) m/z calculatedfor [M + H]+ 204.1383, found 204.1387.

3-(4-Fluorobenzoyl)piperidin-1-ium Chloride (2c). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 8.00 (dd, J =
8.7, 5.5 Hz, 2H), 7.17–7.13 (m, 2H), 3.63–3.45 (m, 1H), 3.34 (br, 2H), 3.26 (d, J = 12.1 Hz, 1H), 3.12 (d, J =
11.8 Hz, 1H), 2.96–2.82 (m, 1H), 2.72 (t, J = 9.6 Hz, 1H), 2.10–2.05 (m, 1H), 1.86–1.62 (m, 3H). 13C-NMR
(101 MHz, CDCl3): δ 200.5, 166.8 (d, J = 253.0 Hz), 132.2 (d, J = 3.0 Hz), 131.0 (d, J = 9.0 Hz), 115.9 (d, J =
22.0 Hz), 48.6, 46.1, 44.3, 27.9, 25.0. HRMS (+ESI) m/z calculatedfor [M + H]+ 208.1132, found 208.1136.

3-(2-Methylbenzoyl)piperidin-1-ium Chloride (2d). Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 7.63 (d, J
= 7.8 Hz, 1H), 7.40–7.36 (m, 1H), 7.32–7.24 (m, 2H), 5.03 (br, 2H), 3.64–3.59 (m, 1H), 3.42 (dd, J = 12.4,
2.8 Hz, 1H), 3.27 (dt, J = 12.4, 3.6 Hz, 1H), 3.05–2.93 (m, 1H), 2.87–2.71 (m, 1H), 2.45 (s, 3H), 2.11–1.99
(m, 1H), 1.84 (tt, J = 7.2, 3.6 Hz, 2H), 1.66–1.51 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ 204.9, 138.2,
136.8, 132.0, 131.4, 128.1, 125.8, 46.9, 45.4, 45.2, 26.9, 23.7, 21.0. HRMS (+ESI) m/z calculated for [M +
H]+ 204.1383, found 204.1387.

3-(2-Naphthoyl)piperidin-1-ium Chloride (2e). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 8.55 (s, 1H),
8.09–7.97 (m, 2H), 7.95–7.85 (m, 2H), 7.64–7.55 (m, 2H), 4.29 (br, 2H), 3.94–3.82 (m, 1H), 3.44 (d, J =
11.7 Hz, 1H), 3.30–3.20 (m, 1H), 3.04 (dd, J = 12.3, 10.4 Hz, 1H), 2.90–2.75 (m, 1H), 2.18–2.09 (m, 1H),
1.95–1.84 (m, 2H), 1.80–1.73 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ 201.3, 135.7, 132.8, 132.6, 130.1,
129.7, 128.7, 128.7, 127.8, 126.9, 124.0, 48.1, 45.7, 43.5, 27.7, 24.3. HRMS (+ESI) m/z calculated for [M +
H]+ 240.1383, found 240.1387.

3-Pentanoylpiperidin-1-ium Chloride (2f). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 3.61–3.55 (m, 1H),
3.46 (t, J = 14.0 Hz, 2H), 3.14 (tt, J = 11.5, 3.4 Hz, 1H), 3.03–2.91 (m, 1H), 2.82 (td, J = 12.6, 3.3 Hz, 1H),
2.54–2.43 (m, 2H), 2.18 (d, J = 13.4 Hz, 1H), 2.07–2.04 (m, 1H), 2.00–1.85 (m, 1H), 1.63–1.40 (m, 4H),
1.36–1.30 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). 13C-NMR (101 MHz, CDCl3): δ 209.7, 45.3, 44.7, 43.9, 40.7,
25.9, 25.4, 22.3, 21.9, 13.8. HRMS (+ESI) m/z calculated for [M + H]+ 170.1539, found 170.1543.

3-Isobutyrylpiperidin-1-ium Chloride (2g). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 3.88 (br, 1H),
3.55–3.40 (m, 2H), 3.40–3.27 (m, 2H), 3.05–2.95 (m, 1H), 2.93–2.73 (m, 2H), 2.15–1.93 (m, 3H), 1.58–1.40
(m, 1H), 1.15–1.08 (m, 6H). 13C-NMR (101 MHz, CDCl3): δ 213.4, 44.9, 43.9, 43.3, 39.3, 25.8, 19.3, 18.6,
17.8. HRMS (+ESI) m/z calculated for [M + H]+ 156.1383, found 156.1386.

3-(Thiophene-2-carbonyl)piperidin-1-ium Chloride (2h). Yellow oil.1H-NMR (400 MHz, CDCl3): δ 7.82
(d, J = 3.8 Hz, 1H), 7.68 (d, J = 4.9 Hz, 1H), 7.19–7.14 (m, 1H), 3.55–3.44 (m, 1H), 3.33 (d, J = 12.0 Hz,
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1H), 3.21–3.08 (m, 3H), 3.02–2.93 (m, 1H), 2.77 (t, J = 11.5 Hz, 1H), 2.10–2.07 (m, 1H), 1.91–1.67 (m, 3H).
13C-NMR (101 MHz, CDCl3): δ 194.7, 143.5, 134.1, 132.1, 128.3, 48.7, 46.0, 29.7, 28.0, 24.9. HRMS (+ESI)
m/z calculated for [M + H]+ 196.0791, found 196.0794.

3-Benzoyl-5-phenethylpiperidin-1-ium Chloride (2i). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 8.03 (d, J =
7.3 Hz, 0.45H), 7.96 (d, J = 7.3 Hz, 0.92H), 7.70–7.40 (m, 4H), 7.28–7.02 (m, 5H), 4.29–4.15 (m, 1H), 4.03
(d, J = 4.2 Hz, 1H), 3.72–3.55 (m, 2H), 3.45–3.41 (m, 1H), 3.21–2.85 (m, 2H), 2.77–2.49 (m, 3H), 2.47–2.17
(m, 1H), 2.13–1.99 (m, 1H), 1.91–1.84 (m, 2H), 1.79–1.47 (m, 2H). 13C-NMR (101 MHz, CDCl3): δ 201.4,
199.0, 161.8, 159.2, 141.2, 140.7, 134.8, 134.3, 134.2, 133.9, 129.1, 129.0, 128.7, 128.7, 128.6, 128.5, 128.3,
128.2, 126.2, 48.7, 47.8, 45.4, 44.8, 37.2, 35.6, 33.9, 33.4, 33.1, 32.6, 31.1, 29.7, 29.7. HRMS (+ESI) m/z
calculated for [M + H]+ 294.1852, found 294.1855.

3-Benzoyl-5-methylpiperidin-1-ium Chloride (2j). Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 7.98 (d, J =
7.5 Hz, 1.5H), 7.93 (d, J = 7.5 Hz, 0.3H), 7.61–7.57 (m, 1H), 7.51–7.47 (m, 2H), 3.59–3.52 (m, 1H), 3.29 (t, J =
10.8 Hz, 1H), 3.09 (d, J = 12.8 Hz, 0.72H), 3.01 (d, J = 12.8 Hz, 0.24H), 2.74 (t, J = 11.7 Hz, 1H), 2.37 (dd, J =
12.9, 9.0 Hz, 0.18H), 2.25 (dd, J = 12.9, 9.0 Hz, 0.78H), 2.20–2.12 (m, 0.2H), 2.02 (d, J = 13.3 Hz, 0.91H), 1.77
(td, J = 11.2, 7.0 Hz, 0.94H), 1.69–1.60 (m, 0.31H), 1.39–1.22 (m, 2H), 0.91 (dd, J = 13.4, 6.6 Hz, 3H).13C-NMR
(101 MHz, CDCl3): δ 201.8, 136.0, 133.2, 128.8, 128.3, 53.6, 53.0, 48.4, 47.4, 45.3, 40.4, 36.5, 34.8, 31.5, 29.3,
19.4, 18.8. HRMS (+ESI) m/z calculated for [M + H]+ 204.1383, found 204.1387.

3-Benzoyl-5-phenylpiperidin-1-ium Chloride (2k). Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 8.02 (d, J
= 7.4 Hz, 1.68H), 7.95 (d, J = 7.4 Hz, 0.32H), 7.61–7.57 (m, 1H), 7.51–7.47 (m, 2H), 7.37–7.19 (m, 5H),
4.43 (br, 2H), 4.06–3.90 (m, 1H), 3.62–3.46 (m, 1H), 3.44–3.41 (m, 0.78H), 3.35–3.33 (m, 0.28H), 3.25–3.12
(m, 1H), 3.05 (t, J = 12.0 Hz, 1H), 2.96–2.87 (m, 0.4H), 2.84 (t, J = 12.1 Hz, 0.76H), 2.31–2.28 (m, 1H),
2.03–1.85 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ 200.5, 141.8, 141.8, 135.5, 135.4, 133.5, 133.4, 128.9,
128.8, 128.3, 128.4, 127.2, 127.1, 52.0, 51.6, 47.3, 46.5, 43.8, 41.7, 40.0, 38.6, 34.7, 33.1. HRMS (+ESI) m/z
calculated for [M + H]+ 266.1539, found 266.1545.

3-Benzoyl-5-(4-methoxyphenyl)piperidin-1-ium Chloride (2l). Colorless oil. 1H-NMR (400 MHz, CDCl3):
δ 8.00 (d, J = 7.3 Hz, 1.66H), 7.93 (d, J = 7.3 Hz, 0.38H), 7.61–7.57 (m, 1H), 7.54–7.44 (m, 2H), 7.18 (d,
J = 8.6 Hz, 1.61H), 7.13 (d, J = 8.6 H, 0.39H), 6.88–6.84 (m, 2H), 3.80 (s, 2.3H), 3.79 (s, 0.57H), 3.72 (tt,
J = 11.5, 3.4 Hz, 1H), 3.49 (d, J = 12.3 Hz, 0.24H), 3.38 (d, J = 12.3 Hz, 0.82H), 3.28–3.24 (m, 0.88H),
3.20–3.16 (m, 0.18H), 3.03 (dd, J = 13.6, 3.9 Hz, 0.26H), 2.95–2.87 (m, 1.52H), 2.79–2.65 (m, 2H), 2.62
(br, 2H), 2.35–2.32 (m, 0.31H), 2.26–2.17 (m, 0.81H), 2.01–1.84 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ
203.9, 201.6, 158.4, 158.2, 136.0, 135.9, 135.8, 135.4, 133.2, 133.1, 128.8, 128.3, 128.1, 128.0, 114.0, 113.9,
55.3, 53.5, 53.1, 48.6, 47.2, 45.6, 42.4, 40.6, 38.5, 36.9, 35.1, 33.7. HRMS (+ESI) m/z calculated for [M +
H]+ 296.1645, found 296.1647.

3-Benzoyl-5-(4-fluorophenyl)piperidin-1-ium Chloride (2m). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ
8.04–7.97 (m, 1.39H), 7.97–7.90 (m, 0.49H), 7.62–7.57 (m, 1H), 7.52–7.47 (m, 2H), 7.23–7.16 (m, 2H),
7.03–6.96 (m, 2H), 3.76 (tt, J = 11.5, 3.6 Hz, 0.72H), 3.68–3.64 (m, 0.29H), 3.50 (d, J = 13.5 Hz, 0.27H),
3.41 (d, J = 12.4 Hz, 0.7H), 3.29–3.21 (m, 1H), 3.12–2.82 (m, 4H), 2.82–2.65 (m, 1H), 2.33 (d, J = 13.2 Hz,
0.28H), 2.26–2.18 (m, 0.81H), 2.17–2.08 (m, 0.24H), 2.02–1.84 (m, 0.75H). 13C-NMR (101 MHz, CDCl3): δ
203.6, 201.3, 161.7 (d, J = 243.0 Hz), 161.5 (d, J = 243.0 Hz), 139.3 (d, J = 3.0 Hz), 138.7 (d, J = 4.0 Hz),
135.8 (d, J = 8.0 Hz), 133.3 (d, J = 11.0 Hz), 128.8, 128.6, 128.5, 128.3, 115.4 (d, J = 21.0 Hz), 115.23 (d, J =
21.0 Hz),53.1, 52.8, 48.4, 47.1, 45.2, 42.3, 40.4, 38.5, 34.9, 33.6. HRMS (+ESI) m/z calculated for [M + H]+

284.1445, found 284.1453.

3-Benzoyl-5-(naphthalen-1-yl)piperidin-1-ium Chloride (2n). Colorless oil. 1H-NMR (400 MHz, CDCl3):
δ 8.23 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 7.4 Hz, 1.58H), 7.99 (d, J = 7.4 Hz, 0.65H), 7.89 (d, J = 8.0 Hz,
0.69H), 7.84 (d, J = 8.0 Hz, 0.4H), 7.76 (d, J = 8.0 Hz, 0.62H), 7.73 (d, J = 8.0 Hz, 0.33H) 7.65–7.36 (m, 7H),
3.98–3.60 (m, 3H), 3.81–3.42 (m, 1.45H), 3.15 (dd, J=13.6, 4.0 Hz, 0.46H), 3.08–2.97 (m, 1H), 2.83 (t, J =
11.7 Hz, 1H), 2.57 (d, J = 13.5 Hz, 0.45H), 2.38 (d, J = 13.2 Hz, 0.77H), 2.27–2.16 (m,1H), 2.13– 2.00 (m,
2H). 13C-NMR (101 MHz, CDCl3): δ 203.6, 201.3, 162.9, 162.7, 160.4, 160.3, 139.3, 138.8, 138.7, 135.8,
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135.8, 133.3, 133.2, 128.8, 128.6, 128.5, 128.3, 115.5, 115.4, 115.3, 115.2, 53.1, 52.8, 48.4, 47.1, 45.2, 42.3,
40.4, 38.5, 34.9, 33.6. HRMS (+ESI) m/z calculated for [M + H]+ 316.1696, found 316.1701.

3-Benzoyl-5-(thiophen-2-yl)piperidin-1-ium Chloride (2o). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 8.01
(d, J = 7.3 Hz, 1.67H), 7.93 (d, J = 7.3 Hz, 0.28H), 7.61–7.57 (m, 1H), 7.51–7.47 (m, 2H), 7.31–7.25 (m,
1H), 7.04 (d, J = 1.7 Hz, 1H), 7.00 (dd, J = 5.0, 0.8 Hz, 1H), 4.03 (br, 2H), 3.91 (tt, J = 11.8, 3.3 Hz, 1H),
3.59–3.53 (m, 0.17H), 3.47 (d, J = 12.2 Hz, 2H), 3.38–3.31 (m, 0.24H), 3.29–3.22 (m, 0.9H), 3.13–3.05 (m,
0.35H), 3.02–2.96 (m, 0.89H), 2.93–2.87 (m, 0.22H), 2.77–2.72 (m, 1H), 2.66 (d, J = 9.3 Hz, 1H), 2.40–2.33
(m, 1H), 2.26–2.15 (m, 0.29H), 1.89–1.80 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ 203.1, 200.7, 147.0,
146.1, 135.7, 133.4, 133.3, 128.9, 128.8, 128.4, 126.8, 126.8, 123.5, 123.3, 123.3, 53.2, 52.7, 47.9, 44.6, 40.3,
37.8, 36.0, 34.7, 34.2, 29.7. HRMS (+ESI) m/z calculated for [M + H]+ 272.1104, found 272.1110.

3-Benzoyl-5-(thiophen-3-yl)piperidin-1-ium Chloride (2p). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ

8.02–7.99 (m, 1.64H), 7.95–7.90 (m, 0.33H), 7.62–7.57 (m, 1H), 7.55–7.46 (m, 2H), 7.30–7.28 (m, 1H),
7.06–6.98 (m, 2H), 3.78 (tt, J = 11.6, 3.4 Hz, 0.81H), 3.71–3.62 (m, 0.23H), 3.46–3.36 (m, 2H), 3.28 (br,
2H), 3.22–3.01 (m, 2H), 3.02–2.83 (m, 1H), 2.79–2.60 (m, 1H), 2.41–2.32 (m, 1H), 2.26–2.13 (m, 0.31H),
1.92–1.82 (m, 0.89H). 13C-NMR (101 MHz, CDCl3) δ203.2, 200.3, 143.4, 142.5, 135.4, 133.6, 133.5, 128.9,
128.9, 128.5, 128.4, 126.7, 126.4, 126.1, 125.9, 120.4, 120.1, 51.1, 50.9, 46.9, 46.4, 43.4, 39.8, 34.7, 34.1, 33.1,
29.7. HRMS (+ESI) m/z calculated for [M + H]+ 272.1104, found 272.1110.

5-Benzoyl-2-phenylpiperidin-1-ium Chloride (2q). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 8.09–8.02 (m,
1.33H), 7.99–7.94 (m, 0.64H), 7.73–7.64 (m, 0.73H), 7.64–7.55 (m, 1.42H), 7.55–7.48 (m, 2.52H), 7.47–7.44
(m, 1.47H), 7.39–7.34 (m, 2H), 3.88–3.80 (m, 0.36H), 3.79–3.70 (m, 1.41H), 3.61–3.56 (m, 0.59H), 3.48–3.36
(m, 0.75H), 3.21 (dd, J = 13.9, 4.3 Hz, 0.38H), 3.04 (t, J = 11.5 Hz, 0.75H), 2.65 (br, 2H), 2.18–2.11 (m, 1H),
2.02–1.96 (m, 1H), 1.87–1.82 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ 203.7, 201.9, 136.0, 133.2, 133.1,
132.1, 132.1, 132.0, 128.8, 128.6, 128.5, 128.4, 128.3, 127.6, 127.4, 126.8, 126.6, 61.7, 60.0, 49.5, 47.5, 44.1,
39.5, 33.4, 29.7, 29.3, 28.6. HRMS (+ESI) m/z calculated for [M + H]+ 266.1539, found 266.1545.

5-(4-Methoxybenzoyl)-2-(4-methoxyphenyl)piperidin-1-ium Chloride (2r). Yellow oil. 1H-NMR (400 MHz,
CDCl3): δ 7.97 (d, J = 8.2 Hz, 0.28H), 7.87 (d, J = 8.2 Hz, 1.92H), 7.32–7.28 (m, 4H), 7.16 (d, J = 7.9 Hz,
2.24H), 4.50 (br, 2H), 3.96–3.86 (m, 1H), 3.78–3.75 (m, 0.17H), 3.67–3.51 (m, 1.87H), 3.48–3.45 (m, 0.19H),
3.24 (dd, J = 13.4, 3.7 Hz, 0.93H), 3.05 (t, J = 11.7 Hz, 0.14H), 2.44 (s, 3.09H), 2.40 (s, 0.19H), 2.34 (s,
2.84H), 2.30 (s, 0.2H), 2.25–2.07 (m, 2H), 1.92–1.84 (m, 2H). 13C-NMR (101 MHz, CDCl3): δ 203.1, 144.2,
138.8, 137.3, 133.1, 129.5, 129.3, 128.6, 126.6, 59.2, 47.0, 39.0, 28.7, 26.5, 21.7, 21.1.

5-(4-(Trifluoromethyl)benzoyl)-2-(4-(trifluoromethyl)phenyl)piperidin-1-ium Chloride (2s). Yellow oil.
1H-NMR (400 MHz, CDCl3): δ 8.03 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H),
7.48 (d, J = 8.3 Hz, 2H), 3.87–3.71 (m, 1H), 3.60 (dt, J = 13.1, 2.1 Hz, 1H), 3.51–3.47 (m, 1H), 3.20 (dd, J
= 13.2, 3.9 Hz, 1H), 2.41–2.24 (m, 1H), 2.14–1.95 (m, 1H), 1.89 (br, 2H), 1.86–1.79 (m, 2H). 13C-NMR
(101 MHz, CDCl3): δ 202.6, 148.3, 139.2, 134.1 (q, J = 32.6 Hz), 129.3 (q, J = 32.3 Hz), 125.8 (q, J =
3.7 Hz), 125.4 (q, J = 3.8 Hz), 124.2(q, J = 272.7 Hz ), 123.6 (q, J = 273.7 Hz), 60.3, 48.1, 40.7, 30.1, 26.2.
HRMS (+ESI) m/z calculated for [M + H]+ 402.1287, found 402.1309.

3-(Ethoxycarbonyl)piperidin-1-ium Chloride (2t) [23]. Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 4.13 (q,J
= 7.1 Hz, 2H), 3.16 (dd, J = 12.4, 3.6 Hz, 1H), 2.93 (dt, J = 12.2, 3.9 Hz, 1H), 2.81 (dd, J = 12.4, 9.3 Hz, 1H),
2.72–2.57 (m, 1H), 2.47–2.40 (m, 1H), 2.06–1.94 (m, 2H), 1.75 (br, 2H), 1.71–1.59 (m, 2H), 1.53–1.38 (m, 1H),
1.25 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 174.3, 60.2, 48.5, 46.3, 42.4, 27.3, 25.40, 14.2.

3-(Ethoxycarbonyl)-5-methylpiperidin-1-ium Chloride (2u). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ
4.34–4.11 (m, 2H), 3.77–3.65 (m, 1H), 3.60–3.54 (m, 1H), 3.47–3.32 (m, 1H), 3.21–3.10 (m, 1H), 3.04–2.92
(m, 0.67H), 2.84 (t, J = 12.6 Hz, 0.35H), 2.75–2.69 (m, 0.64H), 2.65 (d, J = 9.3 Hz, 0.24H), 2.26–2.14 (m,
0.70H), 2.11–2.06 (m, 1.34H), 1.64–1.53 (m, 0.7H), 1.51–1.47 (m, 0.29H), 1.33–1.25 (m, 3H), 1.08 (d, J =
7.8 Hz, 1.77H), 1.01 (d, J = 7.8 Hz). 13C-NMR (101 MHz, CDCl3): δ 172.2, 171.3, 61.9, 61.2, 49.6, 49.5,
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44.3, 44.0, 38.7, 36.2, 34.3, 32.2, 25.5, 18.6, 18.3, 14.1, 14.1. HRMS (+ESI) m/z calculatedfor [M + H]+

172.1332, found 172.1339.

3-(Ethoxycarbonyl)-5-phenylpiperidin-1-ium Chloride (2v). Colorless oil. 1H-NMR (400 MHz, CDCl3): δ
7.37–7.31 (m, 2H), 7.28–7.21 (m, 3H), 4.34–4.13 (m, 2H), 3.51 (d, J = 13.2 Hz, 0.74H), 3.43 (d, J = 13.2 Hz,
0.31H), 3.25–3.20 (m, 1H), 2.91–2.65 (m, 4H), 2.43 (d, J = 13.5 Hz, 0.86H), 2.33 (d, J = 13.5 Hz, 0.44H),
2.22 (br, 2H), 1.99–1.92 (ddd, J = 13.6, 9.6, 4.4 Hz, 0.86H), 1.86–1.77 (q, J = 12.6 Hz, 0.37H ), 1.34–1.28 (m,
3H). 13C-NMR (101 MHz, CDCl3): δ 174.5, 143.7, 128.6, 128.5, 127.1, 126.8, 126.5, 60.6, 53.0, 47.0, 34.4,
32.9, 29.7, 14.3, 14.2, 12.0. HRMS (+ESI) m/z calculated for [M + H]+ 234.1489, found 234.1493.

3-(Ethoxycarbonyl)-5-(4-methoxyphenyl)piperidin-1-ium Chloride (2w). Colorless oil. 1H-NMR (400 MHz,
CDCl3): δ 7.18–7.12 (m, 2H), 6.91–6.84 (m, 2H), 4.36–4.09 (m, 2H), 3.81 (s, 3H), 3.50 (d, J = 13.2 Hz,
0.77H), 3.44 (d, J = 13.2 Hz, 0.32H), 3.21 (t, J = 13.5 Hz, 1H), 2.90–2.75 (m, 2H), 2.73 (br, 2H), 2.71–2.59
(m, 2H), 2.40 (d, J = 13.1 Hz, 0.83H), 2.31 (d, J = 13.1 Hz, 0.36H), 1.95–1.87 (ddd, J = 13.6, 9.6, 4.4 Hz,
0.79H), 1.81–1.72 (q, J = 12.6 Hz, 0.34H), 1.34–1.25 (m, 3H). 13C-NMR (101 MHz, CDCl3): δ 174.4, 173.3,
158.4, 158.2, 135.7, 134.9, 128.0, 114.0, 113.9, 60.7, 60.6, 55.3, 53.0, 52.4, 47.4, 46.8, 39.6, 39.2, 34.5, 33.1,
29.7, 14.3, 14.2. HRMS (+ESI) m/z calculated for [M + H]+ 264.1594, found 264.1598.

3-(Ethoxycarbonyl)-5-(4-fluorophenyl)piperidin-1-ium Chloride (2x). Colorless oil. 1H-NMR (400 MHz,
CDCl3): δ 7.22–7.16 (m, 2H), 7.05–6.97 (m, 2H), 4.31–4.11 (m, 2H), 3.49 (d, J = 13.3 Hz, 0.7H), 3.43–3.35
(m, 0.33H), 3.16 (d, J = 11.7 Hz, 1H), 2.89–2.81 (m, 1H), 2.76–2.59 (m, 3H), 2.44–2.35 (m, 0.72H), 2.31–2.26
(m, 0.34H), 2.00 (br, 2H), 1.92–1.85 (ddd, J = 13.6, 9.6, 4.4 Hz, 0.84H), 1.81–1.72 (q, J = 12.6 Hz, 0.40H),
1.34–1.26 (m, 3H). 13C-NMR (101 MHz, CDCl3): δ 174.1, 172.8, 161.7 (d, J = 244.0 Hz), 161.6 (d, J =
243.0 Hz), 139.0 (d, J = 3.0 Hz), 138.0 (d, J = 3.0 Hz), 128.5 (d, J = 8.0 Hz), 128.4 (d, J = 8.0 Hz), 115.5 (d, J
= 22.0 Hz), 115.4 (d, J = 21.0 Hz), 60.8, 52.7, 51.7, 46.8, 46.6, 41.9, 41.1, 39.4, 39.0, 34.2, 32.9, 29.7, 14.3,
14.2. HRMS (+ESI) m/z calculated for [M + H]+ 252.1394, found 252.1399.

3-(Benzyloxy)-5-(ethoxycarbonyl)piperidin-1-ium Chloride (2y). Yellow oil. 1H-NMR (400 MHz, CDCl3): δ
7.55–7.30 (m, 5H), 4.91 (br, 2H), 4.70–4.62 (m, 0.62H), 4.64–4.54 (m, 1.62H), 4.24–4.04 (m, 2H), 3.94–3.80 (m,
1H), 3.62–3.33 (m, 2H), 3.21–3.02 (m, 1H), 3.03–2.78 (m, 2H), 2.45–2.41 (m, 0.56H), 2.34–2.31 (m, 0.52H),
1.92–1.79 (m, 0.56H), 1.79–1.66 (m, 0.49H), 1.28–1.23 (m, 3H). 13C-NMR (101 MHz, CDCl3): δ 172.3, 171.8,
137.6, 128.5, 128.5, 127.9, 127.9, 127.8, 127.6, 71.1, 70.7, 70.6, 68.5, 61.4, 61.2, 47.6, 46.8, 45.4, 44.9, 37.5, 35.6,
31.6, 30.2, 14.1, 14.1. HRMS (+ESI) m/z calculated for [M + H]+ 264.1594, found 264.1598.

1,2,3,4-Tetrahydroquinoxaline (4a) [29]. Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 6.63–6.61 (m, 2H),
6.56–6.47 (m, 2H), 3.45 (s, 4H). 13C-NMR (101 MHz, CDCl3) δ 133.7, 118.8, 114.7, 41.4.

2-Phenyl-1,2,3,4-tetrahydroquinoxaline (4b) [40]. White solid. 1H-NMR (400 MHz, CDCl3): δ 7.50–7.39
(m, 4H), 7.38–7.34 (m, 1H), 6.70–6.67 (m, 2H), 6.64 –6.61 (m, 2H), 4.52 (dd, J = 8.2, 3.1 Hz, 1H), 3.92 (br,
2H), 3.50 (dd, J = 11.0, 3.1 Hz, 1H), 3.37 (dd, J = 11.0, 8.2 Hz, 1H). 13C-NMR (101 MHz, CDCl3) δ 141.9,
134.2, 132.9, 128.7, 127.9, 127.0, 118.9, 118.8, 114.7, 114.5, 54.8, 49.2.

2-(4-Chlorophenyl)-4-methyl-3,4-dihydroquinazoline (4c). Yellow solid. 1H-NMR (400 MHz, CDCl3): δ 7.79
(d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.27–7.23 (m, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.13–7.09 (m, 1H),
7.04 (d, J = 7.4 Hz, 1H), 4.91 (q, J = 6.5 Hz, 1H), 1.54 (d, J = 6.5 Hz, 3H). 13C-NMR (101 MHz, CDCl3): δ
152.9, 141.0, 136.7, 133.9, 128.8, 128.1, 128.0, 125.8, 125.1, 125.0, 123.3, 49.3, 25.6.

4-(4-Chlorophenyl)-1-methyl-1,2-dihydrophthalazine (4d). Yellow solid. 1H-NMR (400 MHz, CDCl3): δ
7.59 (d, J = 8.4 Hz, 2H), 7.48–7.42 (m, 3H), 7.34–7.27 (m, 1H), 7.25–7.22 (m, 2H), 6.07 (br, 1H), 4.41 (q, J =
6.4 Hz, 1H), 1.55 (d, J = 6.5 Hz, 3H). 13C-NMR (101 MHz, CDCl3): δ 148.1, 137.2, 135.0, 134.1, 130.7,
129.7, 128.6, 127.3, 125.3, 125.0, 123.7, 49.9, 18.1.

1,2,3,4-Tetrahydroquinoline (4e) [41]. Colorless oil. 1H-NMR (400 MHz, CDCl3): δ 7.08–7.03 (m, 2H),
6.72–6.68 (m, 1H), 6.55 (dd, J = 7.8, 0.6 Hz, 1H), 3.84 (br, 1H), 3.42–3.32 (m, 2H), 2.85 (t, J = 6.4 Hz, 2H),
2.08–1.97 (m, 2H). 13C-NMR (101 MHz, CDCl3) δ 144.9, 129.6, 126.8, 121.5, 117.0, 114.3, 42.1, 27.1, 22.3.
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1,2,3,4-Tetrahydroisoquinolin-2-ium Chloride (4f) [41]. Colorless oil. 1H-NMR (400 MHz, CDCl3): δ

7.27–7.18 (m, 2H), 7.18–7.13 (m, 1H), 7.13–7.07 (m, 1H), 5.47 (br, 2H), 4.27 (s, 2H), 3.38 (t, J = 6.1 Hz,
2H), 3.08 (t, J = 6.1 Hz, 2H). 13C-NMR (101 MHz, CDCl3) δ 136.1, 134.9, 129.4, 126.3, 126.0, 125.8, 48.4,
44.0, 29.3.

1,2,3,4-Tetrahydro-1,5-naphthyridine (4g) [42]. Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 7.88 (d, J =
4.5 Hz, 1H), 6.91 (dd, J = 8.0, 4.7 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 3.39–3.24 (m, 2H), 2.96 (t, J = 6.5 Hz,
2H), 2.09–2.02 (m, 2H). 13C-NMR (101 MHz, CDCl3) δ 151.2, 137.9, 124.4, 121.9, 120.2, 41.5, 30.3, 21.8.

1,2,3,4-Tetrahydro-1,10-phenanthroline (4h) [43]. Yellow oil. 1H-NMR (400 MHz, CDCl3): δ 8.71 (d, J
= 3.1 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.32 (dd, J = 8.2, 4.2 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H), 7.00 (d,
J = 8.2 Hz, 1H), 5.95 (s, 1H), 3.60–3.52 (m, 2H), 2.95 (t, J = 6.3 Hz, 2H), 2.17–2.04 (m, 2H). 13C-NMR
(101 MHz, CDCl3) δ 147.0, 140.7, 137.5, 135.9, 129.1, 127.4, 120.6, 116.6, 113.1, 41.3, 27.1, 21.8.

Ethyl 1,4,5,6-tetrahydropyridine-3-carboxylate (intermediate C) [12]. Yellow oil. 1H-NMR (400 MHz,
CDCl3): δ 7.48 (d, J = 6.1 Hz, 1H), 4.45 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.27–3.15 (m, 2H), 2.34 (t, J =
6.2 Hz, 2H), 1.82 (dt, J = 11.9, 6.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H).

3.2. The Stereochemical Assignment of Disubstituted Piperidines

2v (41.2 mg, 0.15 mmol) and l-bromopropane (30.1 mg, 0.23 mmol) were refluxed in absolute
ethanol (2 mL) with sodium bicarbonate (47.7 mg, 0.45 mol) for 18 h. The mixture was filtered through
a pad of Celite. The inorganic salts were washed with several portions of fresh ethanol. The combined
filtrates were evaporated in vacuo and the residue was purified by flash column chromatography to
obtain compounds 5 (20.2 mg, 0.07 mmol, 46.5%) and 6 (5.4 mg, 0.02 mmol, 13.3%).

trans-Ethyl 1-butyl-5-phenylpiperidine-3-carboxylate (5) [39]. Yellow oil. 1H-NMR (400 MHz, CDCl3) δ
7.30 (d, J = 4.8 Hz, 4H), 7.23–7.17 (m, 1H), 4.23–4.15 (m, 2H), 3.29 (d, J = 9.6 Hz, 1H), 3.16–3.09 (m, 1H),
2.87 (dd, J = 11.4, 4.0 Hz 1H), 2.78–2.68 (m, 1H), 2.46–2.11 (m, 5H), 1.69–1.62 (m, 1H), 1.57–1.38 (m, 2H),
1.38 (m, 5H), 0.91 (t, J = 7.3 Hz, 3H).

cis-Ethyl 1-butyl-5-phenylpiperidine-3-carboxylate (6) [39]. Yellow oil. 1H-NMR (400 MHz, CDCl3) δ
7.40–7.30 (m, 2H), 7.24–7.19 (m, 3H),4.16 (q, J = 7.6 Hz, 1H), 3.26 (dt, J = 11.8 Hz, 1.6 Hz 1H), 3.04
(dt, J = 11.8 Hz, 1.6 Hz 1H), 2.95–2.82 (m, 1H), 2.82–2.68 (m, 1H), 2.42 (t, J = 7.2 Hz, 2H), 2.24 (d, J =
12.6 Hz, 1H), 2.05 (t, J = 11.3 Hz, 1H), 1.97 (t, J = 10.8 Hz, 1H), 1.64 (q, J = 12.3 Hz, 1H), 1.57–1.44 (m,
2H), 1.39–1.31 (m, 2H), 1.26 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.3 Hz, 1H).

4. Conclusions

In conclusion, we have developed a HMPA-catalyzed metal-free transfer hydrogenation method
for the reduction of pyridines. The functional group tolerance of this method provides an easy
access method to various piperidines with ester or ketone groups at the C-3 position. The suitability
of the method for the reduction of other N-heteroarenes has also been demonstrated. Efforts to
extend the application of chiral HMPA derivatives in metal free pyridine reduction with HSiCl3 are
currently underway.
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product characterization data, 1H- and 13C-NMR spectra substrates and NMR spectra.
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