Computer Vision and Image Understanding
Vol. 75, Nos. 1/2, July/August, pp. 86—98, 1999

Atrticle ID cviu.1999.0765, available online at http://www.idealibrary.coml DE %

|.®

Unifying Textual and Visual Cues for Content-Based Image
Retrieval on the World Wide Web

Stan Sclaroff, Marco La Cascia, and Saratendu Sethi

Computer Science Department, Boston University, Boston, Massachusetts 02215
E-mail: sclaroff@bu.edu, marco@bu.edu, sethi@bu.edi

and

Leonid Taycher

Cognex Corporation, One Vision Drive, Natick, Massachusetts 01760
E-mail: ltaycher@cognex.com

A system is proposed that combines textual and visual statistics
in a single index vector for content-based search of a WWW image
database. Textual statistics are captured in vector form using latent
semantic indexing based on text in the containing HTML docu-
ment. Visual statistics are captured in vector form using color and
orientation histograms. By using an integrated approach, it becomes
possible to take advantage of possible statistical couplings between
the content of the document (latent semantic content) and the con-
tents of images (visual statistics). The combined approach allows
improved performance in conducting content-based search. Search
performance experiments are reported for a database containing
350,000 images collected from the WWW.  © 1999 Academic Press
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1. INTRODUCTION

available in a WWW index, it is difficult to guarantee that there
will be even one relevant image shown in the initial page. W
call this thepage zero problem

Other WWW image engines allow the user to form a quer
in terms of SQL keywords [18, 48]. This alleviates the pag
zero problem, since the user can give text information that ne
rows the scope of possible images displayed on page zero.
build the image index, keywords are extracted heuristically fror
HTML documents containing each image, and/or from the inr
age URL. It is assumed that textual cues extracted from tf
text near an image in the HTML document will provide clues
about that image’s semantic content. Unfortunately, it is dif
ficult to include visual cues within an SQL framework. This
results in systems that inherently force visual information int
textual form, or systems that treat textual and visual cues di
jointly.

We present an approach that is a natural integration of te
tual cues and visual cues. The proposed technique allows
textual information and visual information to be used togethe
in a vector space representation of the images without givir

The growing importance of the World Wide Web has led tany different and arbitrary importance to the different source

the birth of a number of image search engines [18, 23, 46, 484, information. By truly unifying textual and visual statistics,
48]. The Web's staggering scale puts severe limitations on thee would in fact expect to get better results than either us:
types of indexing algorithms that can be employed. Luckily, duseparately.
to the scale and unstructured nature of the WWW, even the mosin our system text statistics are captured in vector form usir
basic indexing tools are welcome. Existing image engines alldatent semantic indexing (LSI) [12, 29a]. The text associate
usersto search forimages via an SQL keyword interface [18, 48th an image, as it appears in the HTML document, is repre
and/or via query by image example (QBE) [23, 46, 48]. sented by low-dimensional vectors that can be matched agai
In QBE, the system presents an initial page of representativger queries in the LSI “semantic” space. Visual statistics (e.c
(or randomly selected) image thumbnails to the user [15]. Thelor and orientedness) are also computed for each image. T
user then marks one or more images as relevant to the seak@i.vector and visual statistics vector are then combined into
The visual statistics for these images are then used in definingfied vector that can be used for content-based search of
a query. The user’s success in locating images in the databeeslting image database.
depends in great part on which images appear within this initial By using an integrated approach, we are able to take adve
group of thumbnails. Given the numerous and diverse imagesgye of possible statistical couplings between the content of t
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document (latent semantic content) and the contents of imagiesn used in computing the similarity of image trigram feature:
(image statistics). Furthermore, LS| implicitly addresses probt multiple scales, based on Kullback relative information.

lems with synonyms, word sense, lexical matching, and termAltaVista’s A/V Photo Finder [1] indexes images based on

omission. textual and visual cues. As a precomputation, index terms al

A guantitative evaluation of the retrieval performance of owextracted from the HTML document containing each image, an

system, based on tharget testing paradigniil1], is also re- image features are extracted via Virage's Image Engine [25

ported. During a query, the user first specifies words that describe th

desired image. Photo Finder then retrieves thumbnails of inr

2 RELATED WORK ages in the index that best match the initial keyword query. Fo

any particular retrieved image, the user can ask Photo Finder

To date’ there have been a number of query_by_image Conteiﬁplay 24 Othel’ “ViSUa"y Similar" imageS. Unfortunately, these
(QBIC) demos available via the web, e.g., Virage [25], iBnvyisually similar images are retrieved ignoring the key words
QBIC [15], Cypress [16], Photobook [40], VisualSeek [48]§pecified earlier in the query. Visual and textual cues cannc
Jacob [29], and Mars [38]. Nearly all systems include som€ combined in guiding the query, nor is relevance feedbac
form of color- and texture-based image similarity measures. B@ssible.
addition, some systems provide search on image compositiodn WebSeer [18] the information for finding images on the
[25], shape [15, 33, 40], faces [5, 40], and/or groupings of coVWW is obtained from two sources: the associated HTML tex
ored blobs [37]. None of these systems provides a Web seafdl§l the image itself. The textit uses to describe animage is eas
engine in that each only operates on a local demo database &d in the HTML document containing the image. In particu-
few thousand images stored at the host web site. However, e the filename, the caption, the alternate text, the hyperlink:
a|gorithms deve'oped in these and Other QB|C Systems Seﬁm the HTML t|t|e are Considered reIeVant. |nf0rma’[i0n Ob'
as an excellent starting point for building WWW image seardgined directly from the image is some statistics (width, height
engines. file size, type, etc.) and the number of faces present. These tv

|mageRover iS joined by Others in the first wave of imaggjurces of information are then integrated in a standard SQ
search engines: AltaVista's A/V Photo Finder [1], Yahoo's Imframework.
age Surfer [52], Lycos media search tool [32], Corbis Picture Ex-A different approach in the exploitation of textual and visual
perience [2], WebSeer [18], WebSeek [48], ImageSearch [30]formation is taken in PICTION [49] (picture and caption),
and PicToSeek [23]. Two of these systems [2, 32] use orffyough not to images on the WWW. In this system the imag
standard textual information within a SQL framework and deaption is used as a cue to identify human faces in an accomp
not allow content-based search. The others allow some formng newspaper photograph. Even though this technique cou
content-based search. be successfully used to index magazine pictures, its applicatic

PicToSeek [23] indexes images collected from the Ww\{® HTML documents on the WWW is not straightforward.
using purely visual information (no text cues). In particular, in- If carefully extracted, keywords may help guide the search t
variant color image features are extracted from the images.h@sic categories. Unfortunately, keywords may not accurately ¢
addition, the collected images are automatically cataloged &§mpletely describe image content. Cues about image conte
image analysis methods into various image styles and typB¥istalso come directly from the image, especially once the us
JFIF-GIF, gray—color, photograph—synthetic, size, date of cdéants to narrow the search within a basic category, e.g., cats |
ation, and color depth. cars. The ImageRover approach is most similar in spirit to that

A similar system, WebhSeek [48], performs Semi_automatwebseer; however, |mageROVEr differs in that it allows searche
classification of images into a taxonomy of categories, usiffjWWeb images based directly on image content. ImageRover
associated text and filename cues. Color histogram based spygrall system architecture and underlying algorithms will now
ilarity matching can then be used to find images with a simil&€ described in detail.
color content within a category or over the entire catalog.

In Yahoo's Image Surfer [52], the images, collected from the 3. APPROACH
Internet, are manually classified into categories. The user is al-
lowed to search for visually similar images inside the category. The system we implemented uses precomputed features. F
The image similarity measure is based on color, texture, aadch image collected from the Internet a vector characterizatio
structure. based on the visual content and on the surrounding text, is cor

ImageSearch [30] allows the user to specify the search g@uted off line. The vectors are then used in the query phase. |
ample via an iconic sketch interface. The interface allows tlmther words, the search for images on the WWW is conducte
user to position representative image icons to form the exaas a simpleék-nearest-neighbor problem search with relevance
ple image (e.g., human face, sky, sand stone, and grass). Seteetiback [46] in a local database.
of the index is then conducted using trigrams derived from theIn our current implementation the visual statistics computec
binary contour map of each image. A weighting framework igre a color histogram and an orientation histogram. Other imag
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features that can be expressed in vector form can be easily added TABLE 1
to the system. The textual statistics are based on LSI [12] and Word Weights Based on HTML Tags
consist of a fixed size vector per image.

To start a query the user inserts a few words related to the HTML tags Weights
images he or she is looking for. The system projects the query Al field of IMG 6.00
document (i.e., the words given by the user) into the LSI space Title 5.00
to obtain a vector representation of the query and to compute the H1 4.00
k-nearest neighbors in the LS| subspace of the complete feature H2 3.60
space. This solves theage zergproblem as, in general, most :i 3'431(5)
of the images returned by the system are related by context to H5 230
what the user is looking for. The user can then steer the system H6 2.20
toward the desired images by simply selecting the most rele- B 3.00
vant images and iterating the query. These refinements of the Em 2.70
query are performed in the complete feature space and the dif- 'Stron 22-730
ferent sources of information are mixed through our relevance (No tfg 1.00

feedback framework.

Basically, the way we combine the textual and the visual statis-
tics is based on user feedback. Dissimilarity is expressed as
a weighted combination of distances between subvectors.
main idea is to give more weight to the features that are con
tent across the example set chosen by the user.

Tshu%sequent occurrences of the word are counted as weight val
Sé\%’cording to category in Table 1.

In addition, words appearing before and after a particular in
age are also assigned a weight based upon their proximity
the image. The weighting value is computedoage20-Poydist
whereposis the position of the word with respect to the image

The contextin which animage appears can be abstracted franddistis the maximum number of words considered in apply
the containing HTML document using the LSI method [12]. LSihg such weighting. In the current implementation, tist is
works by statistically associating related words to the semanti®é and 20 for words appearing before and after the image 1
context of the given document. The idea is to project words gpectively. The constapt= 5.0, so that the words nearest to the
similar documents to an implicit underlying semantic structurenages get weighted slightly less than and equal to the wor:
This structure is estimated by a truncated singular value decaappearing in thailt field of that image and thitle of the Web
position (SVD). The latent semantic indexing procedure is agage, respectively.
follows. The choice of this weighting function was dictated by the

To begin with, each image’s associated HTML document assumption that words close to animage in the HTML docume
parsed and a word frequency histogram is computed. The dace related to the image itself. We also assumed that the deg
uments in the database are not similar in length and structuvérelatedness decreases exponentially with the distance fre
Also, allwords in the same HTML document may not be equallje image. This may not always be the case; however, we fou
relevant to the document context. Hence, words appearing witlese assumptions reasonable in most Web pages we visite
specific HTML tags are given special importance by assignirag informal survey of WWW sites.
them higher weight as compared to all other words in the docu-As a result of this weighting scheme, images appearing
ment. different locations in an HTML document will have different

The system assigns different weights to the words appearingl indices. Each image in the Web page is now associated w
in thetitle andheadersand in thealt fields of theimgtags along its unique context within a document by selectively weightin
with words emphasized with different fonts likeld anditalics words based on proximity to the image.

(see Table 1). These weight values were chosen heuristicallyA term x image matrixA is created; the elemeat; repre-

according to their approximate likelihood of useful informatiosents the frequency of terinin the document containing image
that may be implied by the text. Selective weighting of wordg with a weight based on its status and position with respe
appearing between various HTML tags helps in emphasizitg the image. Retrieval may become biased if a term appes
the underlying information of that document. Related weightingeveral times or never appears in a document. Hence further
schemes are proposed in [18, 43]. cal and global weights may be applied to increase/decrease

The weights given are computed by just counting a singi@portance of a term in and among documents. The elegent
occurrence of the word as many times as the correspondiagxpressed as the product of the lodai( j)) and the global
weight value for which it qualifies in the table. For example, iveight (G(i)). Several weighting schemes have been suggest
the word ‘satellite’ appears between thitle tags in the HTML in the literature. Based on the performance reported in [14], tl
document once, then it is counted as 5.00 instead of 1.00. Af-entropyscheme was chosen. According to this weightin

3.1. Latent Semantic Indexing (LSI)
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scheme, the local and the global weights are given as clear that one can draw any definitive conclusion about thei

efficacy for indexing general imagery on the WWW.
aj = L(i, J) x G(i) Q) The visual statistics we use to describe an image are the col
L@, j) = log(a;j + 1) @ histogram and dominant orientation histogram. The statistics al
’ J computed over the whole image and five overlapping region
pik log(pik) [46]. The technique provides a reasonable compromise betwe

G(i) = Z i (3) : . b

og(ndocs computational complexity and descriptive power. In any case
the choice of the optimal image statistics is beyond the currer
Pik = tfik/thik, (4) scope of the ImageRover system. The ImageRover architectu
K is general enough to allow inclusion of any image descripto

_ N that can be expressed in vector form. This allows easy extensi
wheret fix is the pure term frequency for tefinm HTML docu-  of the system when future, improved representations becon
mentk not weighted according to any scheme, addcsis the available.

number of documents used in the training set. o
The matrixA’ =&/, ] is then factored intdJ, ¥, V matrices ~ 3-2-1. Color. Color distributions are calculated as follows.
i

using the singular value decomposition Image color histograms are computed in the CHa*v* color
space [27], which has been shown by Gargu and Kasturi [21] t
A=UxVT, (5) correspond closely to the human perception of color. To trans
form a point fromRG Bto L*u*v* color space, it is first trans-
whereUTU =VTV =1, ¥ = diag, on), anda; > 0 for formed into CIEXY Zspace. In our implementation we use the
1<i<r,o;=0forj>r+1. conversion matrix for CIE Illuminant C (overcast sky at noon).

The columns obJ andV are referred to as the left and right! NeL"U*v" values are then calculated as

singular vectors, respectively, and the diagonal elements of

. . 1/3
are the singular values éf The firstr columns of the orthogonal 25- (100- Yio)

—16 if Yio > 0.008856

matricesU andV define the orthonormal eigenvectors associ- L"= 9033 otherwise (7)
ated with ther nonzero eigenvalues &A™ and AT A, respec- Yo
tively. For further details about the SVD and the information  y+ — 13 *(u' — up) 8)
conveyed by the matrices, readers are directed to [7].

The SVD decomposes the original term-image relationships ~ v* = 13L*(v" — vp) 9)
into a set of linearly independent vectors. The dimension of the ax
problem is reduced by choosing tkemost significant dimen- u = X 15y 37 (20)
sions from the factor space which are then used for estimating + +
the original index vectors. Thus SVD derives a set of uncorre- ,_ 9y

, ) , , = 11
lated indexing factors, whereby each image is represented as a v X +4+15Y +3Z (11)

vector in thek-space
where the reference values ar¥o( Yo, Zp) = (0.981, 1.000,
Xl = qTngk—l, (6) 1.182) and (g, vp) =(0.201Q 0.4609), for white under CIE
Nluminant C.
whereq is the word frequency histogram for the image with the For each of the subimages, the color distribution is then calct
appropriate weight applied. The resulting LS| vectog pro- lated using the histogram method [26]. Each histogram quantize
vides the context associated with an image and is combined wi#§ color space into 64 (4 for each axis) bins. Each histogram
its computed visual feature vectors and stored in the datab&8émalized to have unit sum and then blurred.

index. 3.2.2. Texture orientation. The texture orientation distribu-

tion is calculated using steerable pyramids [19, 24]. For thi
application, a steerable pyramid of four levels was found to b
Several color spaces, histogram techniques, and similarstyfficient. If the input image is color, then it is first converted to
metrics have been proposed (see for example [15, 39, 47, 5@Fayscale before pyramid computation. At each pyramid leve
Due to the lack of a common testbed and the high degreetekture direction and strength at each pixel is calculated usin
subjectivity involved in image retrieval tasks, it is still uncleathe outputs of seveiX-Y separable, steerable quadrature pail
which technique most closely mimics human perception [2Z4}asis filters.
Similarly, the use of texture content [15, 17, 31, 42, 51] forim- The separable basis set and interpolation functions for th
age retrieval has still some unanswered questions. Finally, esatond derivative of a Gaussian were implemented directly usir
though the Brodatz [10] data set has been used extensivelytia nine-tap formulation provided in Appendix H (Tables IV and
comparing different techniques for texture indexing, it is notl) of [19]. The resulting basis is composed of thi@g filters

3.2. Visual Statistics
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to steer the second derivative of a Gaussian andibdiltersto  are the covariances of the subvectgrsSimilarly the meany
steer the Hilbert transform of the second derivative of a Gaussiscomposed by the meaps, of the subvectors;. Restated in
At each level in the pyramid, the output of these filters isquation form:
combined to obtain a first-order approximation to the Fourier
series for oriented enerdyg,+, as a function of angle, X1 Mxy ] 0
X2 Hx, 3
Eg,h, = C1 + C2C0S(®) + Cssin(d), (12) Xvs=| . [ mx=| . | ¥=

where the term€,, C,, Cz are as prescribed in [19], Appendix . Xn Hxa 0 in
Dominant orientation anglgy and the orientation strength (15)

at a given pixel are calculated via the formulae )
Note that théZ; anduy, can be precomputed on a large train-

ing set of images selected at random from the full database.
practice, we have found that a training set of 50,000 image
taken at random from the full image database is sufficient 1
S, =+/C5+C2. (14) characterize the distribution. Assuming a diverse training se
there is no need to recompute them when new images are ad
Orientation histograms are then computed for each level in tigethe system.
pyramid. Each orientation histogram is quantized ove§[Z]. ~ Given X anduy, it is then possible to reduce the dimen-
In the current implementation, there are 16 histogram bins, thgignality for each subspace via principal components analy:
the number of bins allocated for direction information store@PCA) [13, 20]. For théth subspace, we compute the eigenval
per subimage is 64 (4 level$6 bins/level). Each histogram isues and eigenvectors of the subspace covariance nxatrikhe
then normalized to have unit sum. Once computed, the histogregsulting eigenvalues and eigenvectors are sorted in decreas
must be circularly blurred to obviate aliasing effects and to alloarder by eigenvalue. The eigenvectgrsdescribe the principal
for “fuzzy” matching of histograms during image search [41].axes of the distribution and are stored as columns in the PC
In practice, there must be alower bound placed on the accepii@sform matrix®;. The associated eigenvalugs describe
orientation strength allowed to contribute to the distribution. Fépe variances along each principal axes and are stored in |
the ImageRover implementation, all the points with the strengtiagonal matrixA; .
magnitude less than 0.005 are discarded and not counted in thé€he transform matrix®; decouples the degrees of freedomn
overall direction histogram. in the subspace. Once it is decoupled, it is possible to compt
The orientation measure employed in ImageRover diffegstruncated feature space that accounts for most of the cove
from that proposed by Gorkani and Picard [24]. While both sygnce of the distribution. Although all eigenvectors are needed
tems utilize steerable pyramids to determine orientation stregpresent the distribution exactly, only a small number of vec
gths at multiple scales, there is a difference in how histograri@gs are generally needed to encode samples in the distributi
are compared. In the system of Gorkani and Picard, histogravithin a specified tolerance. In practice, the fkstigenvectors
peaks are first extracted and then image similarity is compute® used, such thétis chosen to represent the variance in ths
in terms of peak-to-peak distances. In practice, histogram pe&lataset within some error threshaldIn our experiments set-
can be difficult to extract and match reliably. In our system, higng t =0.1 (10% error) resulted in a dimensionality reductior
tograms are compared directly via histogram distance, theretfyover 85%.
avoiding problems with direct peak extraction and matching. Once eigenvalues and eigenvectors are computed, it is pos
ble to compute a truncated basis that accounts for most of t
'covariance of the distribution and then project each vextor
to the new basis to obtain,

1
g = Earg[cz, Cal (13)

3.2.3. Dimensionality reduction.For each image digested
there aren visual statistics vectors computed. In the curre
implementatiom = 2 x 6 as we use two image analysis modules
(color and texture) and compute the statistics over six image X = Ai_l/2<I>iT (Xi — ix ), (16)
regions (the whole image plus five regions [46]). These visual
statistics vectors can be combined to form an aggregate viswdlere the columns o®; are the principal eigenvectors of the

statistics vectoKy;s. distribution and the diagonal matrix; is composed of the cor-
In ImageRover, it is assumed that the probability distributioresponding eigenvalues.
of the visual statistics vectors is Gaussian and than th&vec- Note that, onceA;, ®;, and .y, have been computed on a

tors are independent. This may only provide a fair approximatioraining set, there is no need to recompute them when new imag
to the true distribution of image statistics; however, the assungre added to the system. The transformation (16) is computed
tion simplifies computation considerably and can alleviate tleach image during the initialization of the system and the rest
empty spaceroblem [13]. Under such assumptions, the covaris stored in the archive as a much lower dimensional vect
ance matrixZ is block diagonal and the diagonal elemeBts Xyis=[X1 X2 - - - Xn] .
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3.3. Integration of Textual and Visual Statistics 3.4. Relevance Feedback

The global feature vector, representing the content of the im-In query by example it is difficult to determine the appropri-
age, is a composite of several subvectors: dimensionally redueg¢el combination of similarity measures for a particular searct
color histograms and orientation histograms for each of six ové@irectly prompting users for weightings is problematic, since it
lapping image regions [46] and the LSI descriptor as describetway require that users grasp the technical details of the underl
above. Different techniques have been proposed to combine dify representation. One way around this is to allow the users t
ferent features in a global similarity measure [3, 11, 28, 34, 36;ovide example images; this keeps nettlesome image conte
38, 44]. In some of these techniques the user has to state expmrameters hidden from the user. ImageRover employs a nov
itly the relevance of each feature, in others the system infers #ygoroach to this relevance feedback problem.
feature weights based on relevance feedback information. Relevance feedback enables the user to iteratively refine

We used a linear combination of normalized Minkowsky disjuery via the specification of relevant items [45]. By including
tances. One reason for choosing this approach is its inhertire user in the loop, better search performance can be achieve
compatibility with optimizations to spatial indexing technique3ypically, the system returns a set of possible matches, and tl
[4, 46]. Another reason is that a weighted combination afser gives feedback by marking items as relevant or not relevar
Minkowski distances satisfies the axioms for a metric spad@iven user-specified relevantimages, the system must then inf
The weights of the linear combination and the order of eagthat combination of measures should be used.

Minkowsky metric are inferred by the system via the relevance Coxetal.[11] proposed a Bayesian relevance feedback frame
feedback technique described in next section. work for image retrieval. For every image in the database the

As the global distance is a linear combination of distancesmpute the probability of it being a relevant image given the
between the subvectors, normalization is needed to make thesmplete history of the query (i.e., the images displayed an
distances comparable. To analyze the statistical propertiestted corresponding user actions). Experimental results for thi
these distances we randomly selected 50,000 pairs of imatgshnique are given on a small database and the high number
from our test database. For all pairs of images, the distandesations required to find an image makes this technique inac
between their index vectorg,(y) were computed using eachequate for use on a very large database.
of the Minkowsky distance measures. We considered separatelfRui et al.[44] proposed a method to formulate image queries
the distances between subvectaxs ¥;). We then examined in the same framework used for text retrieval. In practice eac
the distributions of these distances for each metric and for easdmponent of the image feature is considered like the terr
subvector. As these distance distributions appeared to be appregight in the classicahformation retrievalformulation. They
imately normally distributed we decided to normalize using r@port quantitative evaluation on a very small texture databas
Gaussian model, along the lines of [28, 38, 44]. and show that on that data set relevance feedback improves

In practice, for each featuieand for each Minkowsky dis- trieval performance.
tance metricL, we computed the mean() and the variance  In [36] the authors formulate the relevance feedback prob
o)) on the 50,000 random couples of vectors randomly selecteth as a probability density estimation. Based on the user feet
from our database. L&t andY denote image index vectors in aback (positive and negative) they present an algorithm to es
database arx] andy; denote subvectors corresponding to a patimate feature densities. In this way they infer which feature:
ticular feature. We define the normalizég, distance between are of interest to the user. Their technique has been evaluat
two subvectors, on Columbia [35] and VisTex databases and has been shov

to perform slightly better than standard relevance feedback a
Lin(%i, i) — ) proaches adapted fromformation retrieval
B () E—— A>’ 17 Other techniques [8] have also been proposed recently to d
termine the optimal similarity metrics to use.

where as stated before the means and the variances are comqu}%i” system employs a relevance feedback algorithm that s,

based on the probability distribution of the images contained i _approprlate,_n Minkawskd d_|stanc_e m_etncs on the_ fIy_. '!'he
the database, algorithm determines the relative weightings of the individual

features based on feedback images. This weighting thus vari
W _ o i) o depending upon the particular selections of the user.
tm = E[Lm(i, yi)l; o’ =Varflm(xi.¥i)l.  (18)  assume that the user has specified aseftrelevantimages.
The appropriate value af for thei th subvector should minimize
andA is the shift we give to the normalized Gaussian to mimighe mean distance between the relevantimages. The order of t
the original distribution. In our experiment we set=3. distance metric is determined as
Note that the expected valyel) can be computed off line
over an entire database or a statistically significant subset of it.
Moreover, if the database is reasonably large, we do not need to
recompute this factor when new images are added to the archive.

Em(xi ’ yl) = max<07 (I)
Om

m; = arg miny{). (19)
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where

77r(1|q) = E[I:m(pl s Qi)]: P, Q €S, (20)

andL (X, y) is the normalized Minkowski metric as defined in
previous section.

Queries by multiple examples are implemented in the follow-
ing way. First, the average query vector is computedSoA
k-nearest neighbor search of the image index then utilizes the
weighted distance metric

S(X’Y) = iwitmi (Xi,Yi)’ (21)
i=1

where thew; arerelevance weights

1

e (22)
€+ ngw)

wi =

The constant is included to prevent a particular characteristic
or a particular region from giving too strong a bias to the query.
The resulting relevance feedback mechanism allows the user
to perform queries by example based on more than one sample
image. The user can collect the images he or she finds during

TABLE 2
Starting Points for Web Robot
Image Collection

Looksmart.com category

Automotive

Automotive : Motorcycles
Hobbies : Modelmaking

Shopping

Reference & Education : Nature
Reference & Education : Magazines
Sport: Soccer

Sport: Fishing

Sport : Baseball

World : Travel : Guides

World : Entertainment : Celebrities

Yahoo category

Science : Astronomy : Pictures

Science : Biology : Zoology : Animals : Pictures
Recreation : Aviation : Pictures

Arts : Visual Arts : Photography : Underwater

Arts : Visual Arts : Photography : Photographers
Arts : Visual Arts : Photography : Nature and Wildlife
Recreation : Travel : Pictures

Computers and Internet : Multimedia : Pictures
Recreation : Sports : News and Media : Magazines
Companies : Arts and Crafts : Galleries

News and Media : Television : Cable : Networks : US

the search, refining the result at each iteration. The main idea
consists of giving more importance to the elements of the feature
vectors with the lowest variances. These elements very likelyThe currentimplementation of the system is not optimized fc
represent the main features the user is interested in. Experimefgged. The query server and the Web server run on an SGI Ori
results have confirmed this behavior. 200 with 4 R10000 180 MHz processors and 1 GB RAM. Afte

Another advantage of our formulation is that it is not dedimensionality reduction the visual features are reduced to
pendent on the particular features employed in representing #ggtor of dimension around 200, so fewer than 500 floating poil
visual content of images. We can reasonably expect that fhiémbers (about 2 Kbyte) per image are required and keeping
system will remain efficient as more image analysis modul&mory 100,000 images requires approximately 200 Mbyte. A
are included, because the computational complexity will sca the data can be kept in memory, a brute force search of tl
linearly with the number of features employed. k-nearest neighbors takes around 3 s. In the case of the page 2
we have to compute the LSI vector corresponding to the ke
words provided by the user. This is a simple vector by matri
product, and, even though the dimension is high, it takes le

We implemented a fully functional system to test our agh@n1s.
proach. For the experiments described in this paper, our databgie
contained approximately 350,000 unique and valid images. Two
images are considered unique if they have different URLs. AnThe user interacts with the system through a web browst
image is valid if both its width and height are greater thahhe user specifies a set of keywords; this set of keywords can
64 pixels; images not satisfying this heuristic were discarded.donsidered as a text document. An LSl index is computed for tl
practice some of the documents and the images are duplicatelesvords and used to match nearest neighbors in the subsp
sometimes the same document or the same image appears @il LS| vectors in our image database. Thipége zero
a different URL due to name aliasing. Once the user finds and marks one or more images to gui

To have a significant sampling of the images present on ttie search, the user can initiate a query with a click on the seat
WWW a list of links related to diverse topics was needed. Foutton. Similar images (the number of returned images is a us
the experiments reported in this paper, we selected the pagkesen value) are then retrieved and shown to the user in «
reported in Table 2 as the starting point for our Web robots. é&easing similarity order. The user can then select other releve
demo version of the resulting ImageRover index is available dmages to guide the next search and/or deselect one or more
line at http://www.cs.bu.edu/groups/ivc/ImageRover. the query images and iterate the query. There is no limit either

4. SYSTEM IMPLEMENTATION

User Interface
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Kewwords: mountain bike race

Select relevant images to guide search.

‘Images found

55788

FIG. 1. Examplepage zermf ImageRover query given key words “mountain bike race.”

the number of feedback iterations or on the number of exampignce achieved through the combined use of visual and textu

images employed. features. To evaluate quantitatively our system,ttlrget test
paradigm[11] was used. This technique evaluates how good
4.2. Example Search system is at finding a specific image in the database.etak

11] have pointed out that if a system performs well itaeget
k

Figures 1._3 show an example search in our systerr:. I:'gursearchit is reasonable to think that it performs well also for the
shows the first 15 matches in response to the query “mountain

bike race.” This is page zero. It is evident that several kinds prore usefulcategory searchi.e., looking not for a particular

) - Image but for some class of images, though this has not bee
images are related to the same key words. By providing relevance .
roven experimentally.

feedback, the user can now narrow the search to imagesthatsﬁare
not only the same key words but also similar visual properties. )
Figure 2 is a set of images found by the system using the refel- EXperimental Setup
vance feedback. The top two images are the images selected biyhe system we used for the experiments was initially traine
the user: images of cyclists racing together. The next three rowh a randomly selected subset of the collected data containir
contain the retrieved 15 nearest neighbors. Images are displage®08 images. The eigendecompositions for the LS| vector
in similarity rank order, right to left, top to bottom. In this par-and the visual features were performed only once and new im
ticular example, ImageRover ranked other racing photograpdiges were inserted into the system only as a projection into tt
as closest to the user-provided examples. The other returned jgttuced feature space. Since the training set was selected so't
ages not only share similar text cues, but also share similar catolas representative of the documents available on the Wel
and texture distributions. and since the size of the training set was considerable, it seer
Similarly, Fig. 3 shows the output of the system given the samgasonable to assume that retraining the system is not require
page zero, but different relevance feedback from the user. In thisr instances where training is required, standard technique
example, the user selected images of mountain bikes. The systenupdating SVD-based indexing schemes have been reports
then retrieved images that were relevant to the user’s query. iAg9].
can be seen, the use of visual features and relevance feedbagifter the training step, we indexed a set of 10,000 image:
is very useful in removing the ambiguity that is almost alwaygisjoint with the training set and stored them in the database. ,

present when using key words to retrieve images. subset of 100 images in the database were selected (randomly’
be retrieved. Two subjects were asked to find each of the imag
5. EXPERIMENTAL EVALUATION using our system, one at atime. The subjects used for the test

two of the authors. This implies that the performance reporte
The system has been tested with human subjects. The exjgeprobably representative of what can be achieved by an expe
iments were intended to evaluate the effectiveness of perfaser.
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FIG. 2. Example of search using relevance feedback. The top two images aetetventimages selected by the user. The others are the response of the syst

Tmages selected

= e —
CIo§cIoNGI0N
85599 83601 86485
Select relevant images to guide search,
Tmages found
o b
‘I concCn
73275 :
1593
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1 e
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32400 TP
97380

FIG.3. Example of search using relevance feedback. The top three images mletaatimages selected by the user. The others are the response of the syst
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The SUbjECtS were first presented with one of the 100 image ‘i Retrieval Performancs with respect to the size of OB (LSI Dim = 256)
d|sp_layed ina vv_lndow_ on the compu_ter screen. While the tar [—o L5t an Visum Flevance Fesdiack
get image remained visible, the subjects could then formulat: | | #—<  LSIRelevance Feedback

. . . — Visual Relevance Feedback
a query of the WWW image database via the user interface 8 | [e——=  LsiPage zero only
described above. This process was repeated for all 100 imag:
in the test set. %"

In practice, for each image, the subjects independently type 5
in a few keywords relevant to the targetimage to obtain a startin
set of 100 images (page zero). In the current experiments ths *|
subjects have used four keywords on average per search. TI§.” a0l
subjects could then further refine the search through iterationg
of the relevance feedback mechanism. At each iteration, th
system displayed the 100 top matches forthe query. The resultir -
images were shown to the subject downsampled (the bigge:
dimension of the downsampled image was 128 and the othe
was such that the aspect ratio was unchanged) and ordered o R e R
the base of the matching score (decreasing left to right and the “ Numboer of images n the OB “ % 10°
top to bottom). ) ) ) )

A search was considered successful if the subjects could §%bggepercentage of test images retrieved vs number of images in th
the target image displayed in the top 100. A search was consid- ’
ered unsuccessful if the subject could not get the target image
displayed in the top 100 within four iterations of relevance feed- 1he jowest curve on the graph shows the percentage ofimag
back. This limit on the number of feedback iterations was chosg{y subjects retrieved in page zero. The other curves show tl
to reflect the amount of time a typical user would be willing teformance when users were allowed to use relevance fee
devoteinfinding animage. The time the subject spentto consiglgfok  To determine the major contributor in performance im
the top 100 results was on average less than 30 s. provement, experimental trials were conducted in which the
system employed visual statistics only, LSI only, and LSI anc
visual statistics combined in relevance feedback. As can be see

To measure how the system scales with the number of ii¢levance feedback using combined features offers a significa
ages archived, the experiments were repeated at various databagiermance improvement over using either of the features se
sizes: 10,000, 30,000, 50,000, and 100,000 images, respectivaigtely.

To evaluate search performance with respect to the types of

feature vectors employed, multiple trials were conducted 3. Sensitivity to LSI Dimension

which textual only, visual only, and combined textual and visual |, 4 separate set of trials with a different test set, the sensiti
features were included into the indexing vector. In each set iR’ to LSI dimension was tested for a database of 10,000 image
trials, the subjects were asked to find the same randomly seleciedy levelsdim(L SI) = 64, 128, 256, 384, 512, 768. The tests
subset of 100 images. To avoid biasing of the subjects, duéjgre done by searching for 50 random images. Again as in tr
an increased familiarity with the data set, we asked them to YSRvious case, 18 images could not be described by key word
the same keywords for generating page zero during each trighegy|ts of this experiment are shown in Fig. 5. The graph show

The average percentage of target images that subjects Wesg, subjects’ success rates improved when a higher LSI dime
able tosuccessfully retrieve, is shownin Fig. 4. The graph depigts 1, \vas employed. The steepest improvement in performan
the percentage of images found as a function of the numbg@ts 4chieved with LSI dimension of 256. After that, perfor-
of images contained in the test database. Note that the resptg,ce increased more slowly with increasing LSI dimension
included in the graphs also include the images which are rgiis is consistent with results reported in [14], where it was ob.
related to the surrounding text and hence carry no valuable L3 ed that as LSI dimension increases the performance cur

information. Out of the 100 images used in the test set, th§[gttens out and then actually drops off slightly (due to noise).
were 44 such images. Assuming that such images are common

on the Web, the results are expressed as the total number of

images selected for search. The percentage of images that the 6. DISCUSSION

subjects were able to retrieve decreases as the number of images

increases but is still reasonable considering the database sizét.is evident from our experiments that based on text feature
With a database size of 10,000, the retrieval success rate vatily, itis sometimes possible for subjects to find the targetimag
combined cues was around 35%, degrading to about 18% asithgage zero. If the targetimage did not appear in page zero, the
database size increased to 100,000. the subjects were almost twice as likely to find that image whe

5.2. Sensitivity to Database Size
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Retrieval performance with respeat to LS! dimension (DB size = 10,000} _ the user is looking for “a man wearing a space suit,” the visu

7 777 7| features are not very likely to help as different space suits a
different environments can lead to totally different visual chatr
acteristics. The use of additional and more sophisticated vist
features could definitely increase the number of cases where
visual cues can help in the query refinement. We leave this f
future work.

In the experiments, it was also observed that the average nu
ber of relevance feedback steps required to steer the system
a1 | ward the wanted image was independent of the database <
P and LS| dimensions used. Whenever an image was successfl
retrieved via relevance feedback, it was found in 1.9 feedbax
iterations on average. This means that if the user cannot find t
¥ | wanted image in a few steps he or she may not be able to fi
the image at alll.

i . i ; : : : . . : In both experiments, the retrieval for database size of 10,0(
o0 a0 <00 060 700 eo e o jmages and 256 LS| dimension was consistently around 3
40%. This further confirms the consistency of retrieval perfor

FIG.5. Search performance with respect to LSI dimension. Relevance feqiance of our system independent of the set of images chos
back was determined using combined visual and textual cues. for search

Percantage of images retrisved
2 w s a @ ~ @ © =]
L= a =] o L= o =] =) =]
T T T T T T
¥
1
1
3
1 1 1 1

a
T
1
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We performed an analysis to characterize why subjects we
E\gble to retrieve certain images from the index. We observe
that often, the inability to find a particular image is due to a lac

In most of the queries, the combined textual and visual refin@l correlation between the image content and the surroundil

ments gave improved performance over visual only or text L e'gt'ﬁ bannersvc\;rzpemflclolﬁj(os. I:]V\;as alﬁofpundrt]har:mscir‘
only. However, in some cases, the visual features can confg&ges, there are Web pages Tike pholo galieries which cont

the system and negatively affect the performance of the systeﬁﬂv,eral Images andfor very little text. Finally, in some case
For example, if the user is looking for an image of “a maijubjects were simply unable to form a page zero query, becat

drinking” the visual features we use (color and orientation hid.was difficult to describe the content of a particular test imag

tograms) are of no help in the query refinement process as diﬁ\é’r‘zh words. Examples of such images are shown in Fig. 6.

ent images of men drinking can have totally different color and ?r? me failed seafrcheslusmg the Sé/stgn:hmaé/ also be tattrlltbu
orientation histograms. In these cases, the textual informati € presence of ambiguous Y\{Pr S |r1 € documents. 1t w
served that if words likeithage” “ photqg” etc. were given for

is more likely to encode the relevant information and the visug then th ¢ trieved I p ho
features can accidentally confuse the system; e.g., if the exdfnJe zerothen the System retrieved severalimages from pho

ple images happen to have very similar orientation histograr%"em?.S and did not provide any g-ood Sta”'r!g Images ifthe us
in one of the subregions, this feature will be erroneously colf@s going to sear(;h for satellite Images. S_|m|l_ar problems a
sidered by the system as the feature that the user is intereﬁlé‘g gncountered if the document containing images does 1
in. Perhaps this problem can be addressed through the us&oﬂam any text,

blob-based search methods [6] coupled with face detection e}n e experimentally found that a 256-dime_nsiona| LS| vecto
recognition. eads to good results for our data set, despite the breadth of 1

In contrast, let us assume that the user is looking for “a méH?JeCtl Tglttzr of dqcuments Tcluged Ibrl the (Ij'S| t.ralnlngMTDhl
playing soccer.” In this case the visual features are very IikerErcP ima Imension may aiso be obtainéd using an

encode relevant information (we expect a green smooth ba l?-”f‘ewo”g [Sr?]' that th ti in the retrieval perf

ground at least in the corner subregions) and they are very usefl,,I:Igure shows that the net Increase In e retrieval perio

in the query refinement step. Note that in both cases we wépgnee drops significantly after LSI dimension 256. The grapf
)

features, the user easily gets images of the surface and of the

whole planet. Using visual features, it is very simple to steer the

interested in “actions,” but only in one of the cases can visual
system toward the images the user is interested in. In contrast,#iG. 6. Examples of images that subjects could not describe with words.

textual and visual features were combined in relevance feedb
rather than used individually.

features help during the refinement step.
Similarly when looking for “things” often the visual features

of no help and confuse the system. For example, consider a use
searching for a picture of “the surface of Mars.” Using textual
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are still increasing but this increase may be compensated for by.
using more key words. In experiments reported in [14], the av-
erage number of key words for a search on a database of arourdd
5000 documents was 10. Increase in the number of key words is
expected to overcome this problem by a stronger match. Also,
the dictionary used to create the word histogranalifocand o
was chosen according to the frequencies of various words in a
set of representative documents.

We expect that even in a very large database (with millions of.
images) it will be possible to retrieve specific images in many
cases using our technique. In other cases, the user will be able to
find several relevant images. Using all the features it is possiblg
to converge the search faster (1.9 steps as reported by our ex-
periments) as opposed to using individual features which may
require several steps before finding the actual image. 8.

7. SUMMARY

We proposed a general framework for the indexing of image<.
with associated text and implemented a prototype WWW im-
age search engine to evaluate the performance of our approach.
We found that the maximum performance was achieved whe-
both visual and textual information were used in the relevance
feedback framework. The experiments showed that when both
textual and visual information are used in the refinement, results
are significantly better than those achievable using visual only
or textual only information.

In our experience, the use of LSl in generating page zero has
certain advantages over the classical keyword vector methdd
[45] employed in most WWW text search engines and some im-
age search engines [1, 18, 48]. In particular, LSI implicitly ad34-
dresses problems with synonyms, word sense, lexical matching,
and term omission. This is a distinct advantage over the keywo}%'
vector approach, in that user-specified terms do not need to be
an “exact match.” On the other hand, due to dimensionality re-
duction, LSI can sometimes lack the specificity provided by thes.
keyword vector method.

For the sake of demonstrating our approach, we chose to uti-
lize only two existing methods for encoding visual statistics. The
choice of the optimal image statistics is considered beyond tre-
scope of this paper. Our purpose was instead to formulate and
evaluate a technique to integrate textual and visual informatiopg
for image retrieval. We suspect that the demonstrated power of
our unified approach can be easily extended to include more
powerful visual features in the future. 19.
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