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A system is proposed that combines textual and visual statistics
in a single index vector for content-based search of a WWW image
database. Textual statistics are captured in vector form using latent
semantic indexing based on text in the containing HTML docu-
ment. Visual statistics are captured in vector form using color and
orientation histograms. By using an integrated approach, it becomes
possible to take advantage of possible statistical couplings between
the content of the document (latent semantic content) and the con-
tents of images (visual statistics). The combined approach allows
improved performance in conducting content-based search. Search
performance experiments are reported for a database containing
350,000 images collected from the WWW. c© 1999 Academic Press
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1. INTRODUCTION
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available in a WWW index, it is difficult to guarantee that there
will be even one relevant image shown in the initial page. We
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The growing importance of the World Wide Web has led
the birth of a number of image search engines [18, 23, 46,
48]. The Web’s staggering scale puts severe limitations on
types of indexing algorithms that can be employed. Luckily, d
to the scale and unstructured nature of the WWW, even the
basic indexing tools are welcome. Existing image engines a
users to search for images via an SQL keyword interface [18
and/or via query by image example (QBE) [23, 46, 48].

In QBE, the system presents an initial page of representa
(or randomly selected) image thumbnails to the user [15].
user then marks one or more images as relevant to the se
The visual statistics for these images are then used in defi
a query. The user’s success in locating images in the data
depends in great part on which images appear within this in
group of thumbnails. Given the numerous and diverse ima
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call this thepage zero problem.
Other WWW image engines allow the user to form a que

in terms of SQL keywords [18, 48]. This alleviates the pa
zero problem, since the user can give text information that n
rows the scope of possible images displayed on page zero
build the image index, keywords are extracted heuristically fr
HTML documents containing each image, and/or from the i
age URL. It is assumed that textual cues extracted from
text near an image in the HTML document will provide clu
about that image’s semantic content. Unfortunately, it is d
ficult to include visual cues within an SQL framework. Th
results in systems that inherently force visual information in
textual form, or systems that treat textual and visual cues
jointly.

We present an approach that is a natural integration of
tual cues and visual cues. The proposed technique allows
textual information and visual information to be used togeth
in a vector space representation of the images without giv
any different and arbitrary importance to the different sour
of information. By truly unifying textual and visual statistics
one would in fact expect to get better results than either u
separately.

In our system text statistics are captured in vector form us
latent semantic indexing (LSI) [12, 29a]. The text associa
with an image, as it appears in the HTML document, is rep
sented by low-dimensional vectors that can be matched ag
user queries in the LSI “semantic” space. Visual statistics (e
color and orientedness) are also computed for each image.
LSI vector and visual statistics vector are then combined in
unified vector that can be used for content-based search o
resulting image database.

By using an integrated approach, we are able to take ad
tage of possible statistical couplings between the content of
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document (latent semantic content) and the contents of im
(image statistics). Furthermore, LSI implicitly addresses pr
lems with synonyms, word sense, lexical matching, and t
omission.

A quantitative evaluation of the retrieval performance of o
system, based on thetarget testing paradigm[11], is also re-
ported.

2. RELATED WORK

To date, there have been a number of query-by-image co
(QBIC) demos available via the web, e.g., Virage [25], IB
QBIC [15], Cypress [16], Photobook [40], VisualSeek [4
Jacob [29], and Mars [38]. Nearly all systems include so
form of color- and texture-based image similarity measures
addition, some systems provide search on image compos
[25], shape [15, 33, 40], faces [5, 40], and/or groupings of c
ored blobs [37]. None of these systems provides a Web se
engine in that each only operates on a local demo databas
few thousand images stored at the host web site. Howeve
algorithms developed in these and other QBIC systems s
as an excellent starting point for building WWW image sea
engines.

ImageRover is joined by others in the first wave of ima
search engines: AltaVista’s A/V Photo Finder [1], Yahoo’s I
age Surfer [52], Lycos media search tool [32], Corbis Picture
perience [2], WebSeer [18], WebSeek [48], ImageSearch [
and PicToSeek [23]. Two of these systems [2, 32] use o
standard textual information within a SQL framework and
not allow content-based search. The others allow some for
content-based search.

PicToSeek [23] indexes images collected from the WW
using purely visual information (no text cues). In particular,
variant color image features are extracted from the image
addition, the collected images are automatically cataloged
image analysis methods into various image styles and ty
JFIF–GIF, gray–color, photograph–synthetic, size, date of
ation, and color depth.

A similar system, WebSeek [48], performs semi-autom
classification of images into a taxonomy of categories, us
associated text and filename cues. Color histogram based
ilarity matching can then be used to find images with a sim
color content within a category or over the entire catalog.

In Yahoo’s Image Surfer [52], the images, collected from
Internet, are manually classified into categories. The user i
lowed to search for visually similar images inside the categ
The image similarity measure is based on color, texture,
structure.

ImageSearch [30] allows the user to specify the search
ample via an iconic sketch interface. The interface allows
user to position representative image icons to form the ex
ple image (e.g., human face, sky, sand stone, and grass). S

of the index is then conducted using trigrams derived from t
binary contour map of each image. A weighting framework
ENT-BASED WWW SEARCH 87
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then used in computing the similarity of image trigram featu
at multiple scales, based on Kullback relative information.

AltaVista’s A/V Photo Finder [1] indexes images based
textual and visual cues. As a precomputation, index terms
extracted from the HTML document containing each image,
image features are extracted via Virage’s Image Engine [
During a query, the user first specifies words that describe
desired image. Photo Finder then retrieves thumbnails of
ages in the index that best match the initial keyword query.
any particular retrieved image, the user can ask Photo Find
display 24 other “visually similar” images. Unfortunately, the
visually similar images are retrieved ignoring the key wor
specified earlier in the query. Visual and textual cues can
be combined in guiding the query, nor is relevance feedb
possible.

In WebSeer [18] the information for finding images on t
WWW is obtained from two sources: the associated HTML t
and the image itself. The text it uses to describe an image is e
found in the HTML document containing the image. In partic
lar, the filename, the caption, the alternate text, the hyperli
and the HTML title are considered relevant. Information o
tained directly from the image is some statistics (width, heig
file size, type, etc.) and the number of faces present. These
sources of information are then integrated in a standard S
framework.

A different approach in the exploitation of textual and visu
information is taken in PICTION [49] (picture and caption
though not to images on the WWW. In this system the ima
caption is used as a cue to identify human faces in an accom
nying newspaper photograph. Even though this technique c
be successfully used to index magazine pictures, its applica
to HTML documents on the WWW is not straightforward.

If carefully extracted, keywords may help guide the searc
basic categories. Unfortunately, keywords may not accurate
completely describe image content. Cues about image con
must also come directly from the image, especially once the
wants to narrow the search within a basic category, e.g., ca
cars. The ImageRover approach is most similar in spirit to tha
WebSeer; however, ImageRover differs in that it allows searc
of Web images based directly on image content. ImageRov
overall system architecture and underlying algorithms will n
be described in detail.

3. APPROACH

The system we implemented uses precomputed features
each image collected from the Internet a vector characteriza
based on the visual content and on the surrounding text, is c
puted off line. The vectors are then used in the query phas
other words, the search for images on the WWW is conduc
as a simplek-nearest-neighbor problem search with relevan
feedback [46] in a local database.

he
is

In our current implementation the visual statistics computed
are a color histogram and an orientation histogram. Other image



F

f

d

t

c
o

,

alues

im-
y to

e
ly-

re-
e
rds

he
ent
gree

from
und
ed in

at
t

with
ng

e
ect
ears
r lo-

e the
t

sted
88 SCLARO

features that can be expressed in vector form can be easily a
to the system. The textual statistics are based on LSI [12]
consist of a fixed size vector per image.

To start a query the user inserts a few words related to
images he or she is looking for. The system projects the qu
document (i.e., the words given by the user) into the LSI sp
to obtain a vector representation of the query and to compute
k-nearest neighbors in the LSI subspace of the complete fea
space. This solves thepage zeroproblem as, in general, mos
of the images returned by the system are related by conte
what the user is looking for. The user can then steer the sys
toward the desired images by simply selecting the most r
vant images and iterating the query. These refinements o
query are performed in the complete feature space and the
ferent sources of information are mixed through our releva
feedback framework.

Basically, the way we combine the textual and the visual sta
tics is based on user feedback. Dissimilarity is expresse
a weighted combination of distances between subvectors.
main idea is to give more weight to the features that are con
tent across the example set chosen by the user.

3.1. Latent Semantic Indexing (LSI)

The context in which an image appears can be abstracted
the containing HTML document using the LSI method [12]. L
works by statistically associating related words to the sema
context of the given document. The idea is to project words
similar documents to an implicit underlying semantic structu
This structure is estimated by a truncated singular value dec
position (SVD). The latent semantic indexing procedure is
follows.

To begin with, each image’s associated HTML documen
parsed and a word frequency histogram is computed. The
uments in the database are not similar in length and struc
Also, all words in the same HTML document may not be equa
relevant to the document context. Hence, words appearing
specific HTML tags are given special importance by assign
them higher weight as compared to all other words in the do
ment.

The system assigns different weights to the words appea
in thetitle andheadersand in thealt fields of theimg tags along
with words emphasized with different fonts likeboldanditalics
(see Table 1). These weight values were chosen heuristi
according to their approximate likelihood of useful informati
that may be implied by the text. Selective weighting of wor
appearing between various HTML tags helps in emphasiz
the underlying information of that document. Related weight
schemes are proposed in [18, 43].

The weights given are computed by just counting a sin
occurrence of the word as many times as the correspon
weight value for which it qualifies in the table. For example

the word “satellite” appears between thetitle tags in the HTML
document once, then it is counted as 5.00 instead of 1.00.
F ET AL.
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TABLE 1
Word Weights Based on HTML Tags

HTML tags Weights

Alt field of IMG 6.00
Title 5.00
H1 4.00
H2 3.60
H3 3.35
H4 2.40
H5 2.30
H6 2.20
B 3.00
Em 2.70
I 2.70
Strong 2.50
〈No tag〉 1.00

subsequent occurrences of the word are counted as weight v
according to category in Table 1.

In addition, words appearing before and after a particular
age are also assigned a weight based upon their proximit
the image. The weighting value is computed asρ · e−2.0 · pos/dist,
whereposis the position of the word with respect to the imag
anddist is the maximum number of words considered in app
ing such weighting. In the current implementation, thedist is
10 and 20 for words appearing before and after the image
spectively. The constantρ= 5.0, so that the words nearest to th
images get weighted slightly less than and equal to the wo
appearing in thealt field of that image and thetitle of the Web
page, respectively.

The choice of this weighting function was dictated by t
assumption that words close to an image in the HTML docum
are related to the image itself. We also assumed that the de
of relatedness decreases exponentially with the distance
the image. This may not always be the case; however, we fo
these assumptions reasonable in most Web pages we visit
an informal survey of WWW sites.

As a result of this weighting scheme, images appearing
different locations in an HTML document will have differen
LSI indices. Each image in the Web page is now associated
its unique context within a document by selectively weighti
words based on proximity to the image.

A term× image matrixA is created; the elementai j repre-
sents the frequency of termi in the document containing imag
j with a weight based on its status and position with resp
to the image. Retrieval may become biased if a term app
several times or never appears in a document. Hence furthe
cal and global weights may be applied to increase/decreas
importance of a term in and among documents. The elemenai j

is expressed as the product of the local (L(i, j )) and the global
weight (G(i )). Several weighting schemes have been sugge
All
in the literature. Based on the performance reported in [14], the
log-entropyscheme was chosen. According to this weighting
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scheme, the local and the global weights are given as

a′i j = L(i, j )× G(i ) (1)

L(i, j ) = log(ai j + 1) (2)

G(i ) = 1−
∑

k

pik log(pik)

log(ndocs)
(3)

pik = t fik
/∑

k

t fik, (4)

wheret fik is the pure term frequency for termi in HTML docu-
mentk not weighted according to any scheme, andndocsis the
number of documents used in the training set.

The matrixA′ = [a′i j ] is then factored intoU, 6,V matrices
using the singular value decomposition

A′ = U6VT , (5)

whereU TU =VT V = I , 6= diag(σ1, . . . , σn), andσi > 0 for
1≤ i ≤ r , σ j = 0 for j ≥ r + 1.

The columns ofU andV are referred to as the left and rig
singular vectors, respectively, and the diagonal elements6
are the singular values ofA. The firstr columns of the orthogona
matricesU andV define the orthonormal eigenvectors asso
ated with ther nonzero eigenvalues ofAAT and AT A, respec-
tively. For further details about the SVD and the informat
conveyed by the matrices, readers are directed to [7].

The SVD decomposes the original term-image relations
into a set of linearly independent vectors. The dimension of
problem is reduced by choosing thek most significant dimen
sions from the factor space which are then used for estima
the original index vectors. Thus SVD derives a set of unco
lated indexing factors, whereby each image is represented
vector in thek-space

x̄LSI = qTUk6
−1
k , (6)

whereq is the word frequency histogram for the image with t
appropriate weight applied. The resulting LSI vectorx̄LSI pro-
vides the context associated with an image and is combined
its computed visual feature vectors and stored in the data
index.

3.2. Visual Statistics

Several color spaces, histogram techniques, and simil
metrics have been proposed (see for example [15, 39, 47,
Due to the lack of a common testbed and the high degre
subjectivity involved in image retrieval tasks, it is still uncle
which technique most closely mimics human perception [2
Similarly, the use of texture content [15, 17, 31, 42, 51] for i
age retrieval has still some unanswered questions. Finally,

though the Brodatz [10] data set has been used extensivel
comparing different techniques for texture indexing, it is n
ENT-BASED WWW SEARCH 89
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clear that one can draw any definitive conclusion about t
efficacy for indexing general imagery on the WWW.

The visual statistics we use to describe an image are the
histogram and dominant orientation histogram. The statistic
computed over the whole image and five overlapping reg
[46]. The technique provides a reasonable compromise betw
computational complexity and descriptive power. In any ca
the choice of the optimal image statistics is beyond the cur
scope of the ImageRover system. The ImageRover archite
is general enough to allow inclusion of any image descrip
that can be expressed in vector form. This allows easy exten
of the system when future, improved representations bec
available.

3.2.1. Color. Color distributions are calculated as follow
Image color histograms are computed in the CIEL∗u∗v∗ color
space [27], which has been shown by Gargu and Kasturi [2
correspond closely to the human perception of color. To tra
form a point fromRG B to L∗u∗v∗ color space, it is first trans
formed into CIEXY Zspace. In our implementation we use t
conversion matrix for CIE Illuminant C (overcast sky at noo
TheL∗u∗v∗ values are then calculated as

L∗ =
25 · (100· Y

Y0

)1/3− 16 if Y
Y0
≥ 0.008856

903.3 Y
Y0

otherwise
(7)

u∗ = 13L∗(u′ − u′0) (8)

v∗ = 13L∗(v′ − v′0) (9)

u′ = 4X

X + 15Y + 3Z
(10)

v′ = 9Y

X + 15Y + 3Z
, (11)

where the reference values are (X0,Y0, Z0)= (0.981, 1.000,
1.182) and (u′0, v

′
0)= (0.2010, 0.4609), for white under CIE

Illuminant C.
For each of the subimages, the color distribution is then ca

lated using the histogram method [26]. Each histogram quan
the color space into 64 (4 for each axis) bins. Each histogra
normalized to have unit sum and then blurred.

3.2.2. Texture orientation. The texture orientation distribu
tion is calculated using steerable pyramids [19, 24]. For
application, a steerable pyramid of four levels was found to
sufficient. If the input image is color, then it is first converted
grayscale before pyramid computation. At each pyramid le
texture direction and strength at each pixel is calculated u
the outputs of sevenX–Y separable, steerable quadrature p
basis filters.

The separable basis set and interpolation functions for
second derivative of a Gaussian were implemented directly u

y in
ot
the nine-tap formulation provided in Appendix H (Tables IV and
VI) of [19]. The resulting basis is composed of threeG2 filters
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to steer the second derivative of a Gaussian and fourH2 filters to
steer the Hilbert transform of the second derivative of a Gaus

At each level in the pyramid, the output of these filters
combined to obtain a first-order approximation to the Fou
series for oriented energyEG2H2 as a function of angleθ ,

EG2H2 = C1+ C2 cos(2θ )+ C3 sin(2θ ), (12)

where the termsC1, C2, C3 are as prescribed in [19], Appendix
Dominant orientation angleθd and the orientation strengthm

at a given pixel are calculated via the formulae

θd = 1

2
arg[C2,C3] (13)

Sθd =
√

C2
2 + C2

3. (14)

Orientation histograms are then computed for each level in
pyramid. Each orientation histogram is quantized over [−π

2 ,
π
2 ].

In the current implementation, there are 16 histogram bins,
the number of bins allocated for direction information sto
per subimage is 64 (4 levels· 16 bins/level). Each histogram
then normalized to have unit sum. Once computed, the histo
must be circularly blurred to obviate aliasing effects and to al
for “fuzzy” matching of histograms during image search [41

In practice, there must be a lower bound placed on the acce
orientation strength allowed to contribute to the distribution.
the ImageRover implementation, all the points with the stren
magnitude less than 0.005 are discarded and not counted
overall direction histogram.

The orientation measure employed in ImageRover dif
from that proposed by Gorkani and Picard [24]. While both s
tems utilize steerable pyramids to determine orientation s
gths at multiple scales, there is a difference in how histogr
are compared. In the system of Gorkani and Picard, histog
peaks are first extracted and then image similarity is comp
in terms of peak-to-peak distances. In practice, histogram p
can be difficult to extract and match reliably. In our system,
tograms are compared directly via histogram distance, the
avoiding problems with direct peak extraction and matching

3.2.3. Dimensionality reduction.For each image digeste
there aren visual statistics vectors computed. In the curr
implementationn= 2× 6 as we use two image analysis modu
(color and texture) and compute the statistics over six im
regions (the whole image plus five regions [46]). These vis
statistics vectors can be combined to form an aggregate v
statistics vectorXvis.

In ImageRover, it is assumed that the probability distribut
of the visual statistics vectors is Gaussian and that then subvec-
tors are independent. This may only provide a fair approxima
to the true distribution of image statistics; however, the assu
tion simplifies computation considerably and can alleviate

empty spaceproblem [13]. Under such assumptions, the cova
ance matrixΣ is block diagonal and the diagonal elementsΣi
F ET AL.
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are the covariances of the subvectorsxi . Similarly the meanµx

is composed by the meansµxi of the subvectorsxi . Restated in
equation form:

Xvis =


x1

x2
...

xn

 ; µx =


µx1

µx2

...
µxn

 ; Σ =


Σ1 0

Σ2

...
0 Σn

 .
(15)

Note that theΣi andµxi can be precomputed on a large trai
ing set of images selected at random from the full databas
practice, we have found that a training set of 50,000 ima
taken at random from the full image database is sufficien
characterize the distribution. Assuming a diverse training
there is no need to recompute them when new images are a
to the system.

Given Σi andµxi , it is then possible to reduce the dime
sionality for each subspace via principal components anal
(PCA) [13, 20]. For thei th subspace, we compute the eigenv
ues and eigenvectors of the subspace covariance matrixΣi . The
resulting eigenvalues and eigenvectors are sorted in decre
order by eigenvalue. The eigenvectorsφ j describe the principa
axes of the distribution and are stored as columns in the P
transform matrixΦi . The associated eigenvaluesλ j describe
the variances along each principal axes and are stored in
diagonal matrixΛi .

The transform matrixΦi decouples the degrees of freedo
in the subspace. Once it is decoupled, it is possible to com
a truncated feature space that accounts for most of the co
ance of the distribution. Although all eigenvectors are neede
represent the distribution exactly, only a small number of v
tors are generally needed to encode samples in the distribu
within a specified tolerance. In practice, the firstk eigenvectors
are used, such thatk is chosen to represent the variance in t
dataset within some error thresholdτ . In our experiments set
ting t = 0.1 (10% error) resulted in a dimensionality reducti
of over 85%.

Once eigenvalues and eigenvectors are computed, it is p
ble to compute a truncated basis that accounts for most o
covariance of the distribution and then project each vectoxi

onto the new basis to obtain̄xi ,

x̄i = 3−1/2
i ΦT

i

(
xi − µxi

)
, (16)

where the columns ofΦi are the principal eigenvectors of th
distribution and the diagonal matrix3i is composed of the cor
responding eigenvalues.

Note that, once3i , Φi , andµxi have been computed on
training set, there is no need to recompute them when new im
are added to the system. The transformation (16) is compute
each image during the initialization of the system and the re

ri-is stored in the archive as a much lower dimensional vector
X̄vis= [x̄1 x̄2 · · · x̄n]T .
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3.3. Integration of Textual and Visual Statistics

The global feature vector, representing the content of the
age, is a composite of several subvectors: dimensionally red
color histograms and orientation histograms for each of six o
lapping image regions [46] and the LSI descriptor as descr
above. Different techniques have been proposed to combin
ferent features in a global similarity measure [3, 11, 28, 34
38, 44]. In some of these techniques the user has to state e
itly the relevance of each feature, in others the system infer
feature weights based on relevance feedback information.

We used a linear combination of normalized Minkowsky d
tances. One reason for choosing this approach is its inh
compatibility with optimizations to spatial indexing techniqu
[4, 46]. Another reason is that a weighted combination
Minkowski distances satisfies the axioms for a metric sp
The weights of the linear combination and the order of e
Minkowsky metric are inferred by the system via the releva
feedback technique described in next section.

As the global distance is a linear combination of distan
between the subvectors, normalization is needed to make
distances comparable. To analyze the statistical properti
these distances we randomly selected 50,000 pairs of im
from our test database. For all pairs of images, the dista
between their index vectors (x, y) were computed using ea
of the Minkowsky distance measures. We considered sepa
the distances between subvectors (xi , yi ). We then examine
the distributions of these distances for each metric and for
subvector. As these distance distributions appeared to be ap
imately normally distributed we decided to normalize usin
Gaussian model, along the lines of [28, 38, 44].

In practice, for each featurei and for each Minkowsky dis
tance metricLm we computed the meanµ(i )

m and the varianc
σ (i )

m on the 50,000 random couples of vectors randomly sele
from our database. LetX andY denote image index vectors in
database andxi andyi denote subvectors corresponding to a p
ticular feature. We define the normalizedLm distance betwee
two subvectors,

L̃m(xi , yi ) = max

(
0,

Lm(xi , yi )− µ(i )
m

σ
(i )
m

+1
)
, (17)

where as stated before the means and the variances are com
based on the probability distribution of the images containe
the database,

µ(i )
m = E[Lm(xi , yi )]; σ (i )

m = Var[Lm(xi , yi )], (18)

and1 is the shift we give to the normalized Gaussian to mi
the original distribution. In our experiment we set1= 3.

Note that the expected valueµ(i )
m can be computed off lin

over an entire database or a statistically significant subset

Moreover, if the database is reasonably large, we do not nee
recompute this factor when new images are added to the arch
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3.4. Relevance Feedback

In query by example it is difficult to determine the appropr
ate combination of similarity measures for a particular sear
Directly prompting users for weightings is problematic, since
may require that users grasp the technical details of the unde
ing representation. One way around this is to allow the user
provide example images; this keeps nettlesome image con
parameters hidden from the user. ImageRover employs a n
approach to this relevance feedback problem.

Relevance feedback enables the user to iteratively refin
query via the specification of relevant items [45]. By includin
the user in the loop, better search performance can be achie
Typically, the system returns a set of possible matches, and
user gives feedback by marking items as relevant or not relev
Given user-specified relevant images, the system must then i
what combination of measures should be used.

Coxet al.[11] proposed a Bayesian relevance feedback fram
work for image retrieval. For every image in the database th
compute the probability of it being a relevant image given t
complete history of the query (i.e., the images displayed a
the corresponding user actions). Experimental results for t
technique are given on a small database and the high numb
iterations required to find an image makes this technique in
equate for use on a very large database.

Rui et al.[44] proposed a method to formulate image queri
in the same framework used for text retrieval. In practice ea
component of the image feature is considered like the te
weight in the classicalinformation retrievalformulation. They
report quantitative evaluation on a very small texture datab
and show that on that data set relevance feedback improve
trieval performance.

In [36] the authors formulate the relevance feedback pro
lem as a probability density estimation. Based on the user fe
back (positive and negative) they present an algorithm to
timate feature densities. In this way they infer which featur
are of interest to the user. Their technique has been evalu
on Columbia [35] and VisTex databases and has been sh
to perform slightly better than standard relevance feedback
proaches adapted frominformation retrieval.

Other techniques [8] have also been proposed recently to
termine the optimal similarity metrics to use.

Our system employs a relevance feedback algorithm that
lects appropriateLm Minkowski distance metrics on the fly. The
algorithm determines the relative weightings of the individu
features based on feedback images. This weighting thus va
depending upon the particular selections of the user.

Assume that the user has specified a setSof relevantimages.
The appropriate value ofm for thei th subvector should minimize
the mean distance between the relevant images. The order o
distance metric is determined as
d to
ive.

mi = arg min
m
η(i )

m , (19)
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where

η(i )
m = E[ L̃m(pi , qi )], P,Q ∈ S, (20)

and L̃m(x, y) is the normalized Minkowski metric as defined
previous section.

Queries by multiple examples are implemented in the foll
ing way. First, the average query vector is computed forS. A
k-nearest neighbor search of the image index then utilizes
weighted distance metric

δ(X,Y) =
n∑

i=1

wi L̃mi (xi , yi ), (21)

where thewi arerelevance weights,

wi = 1

ε + η(i )
m

. (22)

The constantε is included to prevent a particular characteris
or a particular region from giving too strong a bias to the qu

The resulting relevance feedback mechanism allows the
to perform queries by example based on more than one sa
image. The user can collect the images he or she finds d
the search, refining the result at each iteration. The main
consists of giving more importance to the elements of the fea
vectors with the lowest variances. These elements very li
represent the main features the user is interested in. Experim
results have confirmed this behavior.

Another advantage of our formulation is that it is not d
pendent on the particular features employed in representin
visual content of images. We can reasonably expect tha
system will remain efficient as more image analysis mod
are included, because the computational complexity will s
linearly with the number of features employed.

4. SYSTEM IMPLEMENTATION

We implemented a fully functional system to test our
proach. For the experiments described in this paper, our data
contained approximately 350,000 unique and valid images.
images are considered unique if they have different URLs
image is valid if both its width and height are greater th
64 pixels; images not satisfying this heuristic were discarde
practice some of the documents and the images are duplica
sometimes the same document or the same image appear
a different URL due to name aliasing.

To have a significant sampling of the images present on
WWW a list of links related to diverse topics was needed.
the experiments reported in this paper, we selected the p
reported in Table 2 as the starting point for our Web robots

demo version of the resulting ImageRover index is available
line at http://www.cs.bu.edu/groups/ivc/ImageRover.
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TABLE 2
Starting Points for Web Robot

Image Collection

Looksmart.com category

Automotive
Automotive : Motorcycles
Hobbies : Modelmaking
Shopping
Reference & Education : Nature
Reference & Education : Magazines
Sport : Soccer
Sport : Fishing
Sport : Baseball
World : Travel : Guides
World : Entertainment : Celebrities

Yahoo category

Science : Astronomy : Pictures
Science : Biology : Zoology : Animals : Pictures
Recreation : Aviation : Pictures
Arts : Visual Arts : Photography : Underwater
Arts : Visual Arts : Photography : Photographers
Arts : Visual Arts : Photography : Nature and Wildlife
Recreation : Travel : Pictures
Computers and Internet : Multimedia : Pictures
Recreation : Sports : News and Media : Magazines
Companies : Arts and Crafts : Galleries
News and Media : Television : Cable : Networks : US

The current implementation of the system is not optimized
speed. The query server and the Web server run on an SGI O
200 with 4 R10000 180 MHz processors and 1 GB RAM. Af
dimensionality reduction the visual features are reduced
vector of dimension around 200, so fewer than 500 floating p
numbers (about 2 Kbyte) per image are required and keepin
memory 100,000 images requires approximately 200 Mbyte
all the data can be kept in memory, a brute force search o
k-nearest neighbors takes around 3 s. In the case of the pag
we have to compute the LSI vector corresponding to the
words provided by the user. This is a simple vector by ma
product, and, even though the dimension is high, it takes
than 1 s.

4.1. User Interface

The user interacts with the system through a web brow
The user specifies a set of keywords; this set of keywords ca
considered as a text document. An LSI index is computed fo
keywords and used to match nearest neighbors in the subs
of all LSI vectors in our image database. This ispage zero.

Once the user finds and marks one or more images to g
the search, the user can initiate a query with a click on the se
button. Similar images (the number of returned images is a
chosen value) are then retrieved and shown to the user in
creasing similarity order. The user can then select other rele

onimages to guide the next search and/or deselect one or more of
the query images and iterate the query. There is no limit either on
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FIG. 1. Examplepage zeroof ImageRov

the number of feedback iterations or on the number of exa
images employed.

4.2. Example Search

Figures 1–3 show an example search in our system. Fig
shows the first 15 matches in response to the query “mou
bike race.” This is page zero. It is evident that several kind
images are related to the same key words. By providing relev
feedback, the user can now narrow the search to images tha
not only the same key words but also similar visual proper

Figure 2 is a set of images found by the system using the
vance feedback. The top two images are the images selec
the user: images of cyclists racing together. The next three
contain the retrieved 15 nearest neighbors. Images are disp
in similarity rank order, right to left, top to bottom. In this p
ticular example, ImageRover ranked other racing photogr
as closest to the user-provided examples. The other returne
ages not only share similar text cues, but also share similar
and texture distributions.

Similarly, Fig. 3 shows the output of the system given the s
page zero, but different relevance feedback from the user. I
example, the user selected images of mountain bikes. The s
then retrieved images that were relevant to the user’s quer
can be seen, the use of visual features and relevance fee
is very useful in removing the ambiguity that is almost alw
present when using key words to retrieve images.

5. EXPERIMENTAL EVALUATION
been tested with human subjects. The e
ded to evaluate the effectiveness of pe
r query given key words “mountain bike race.”

ple

re 1
tain
of
nce

share
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r-
phs
d im-
olor

me
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mance achieved through the combined use of visual and tex
features. To evaluate quantitatively our system, thetarget test
paradigm[11] was used. This technique evaluates how good
system is at finding a specific image in the database. Coxet al.
[11] have pointed out that if a system performs well in atarget
searchit is reasonable to think that it performs well also for th
more usefulcategory search, i.e., looking not for a particular
image but for some class of images, though this has not b
proven experimentally.

5.1. Experimental Setup

The system we used for the experiments was initially train
with a randomly selected subset of the collected data contain
58,908 images. The eigendecompositions for the LSI vect
and the visual features were performed only once and new
ages were inserted into the system only as a projection into
reduced feature space. Since the training set was selected so
it was representative of the documents available on the W
and since the size of the training set was considerable, it se
reasonable to assume that retraining the system is not requ
For instances where training is required, standard techniq
for updating SVD-based indexing schemes have been repo
in [9].

After the training step, we indexed a set of 10,000 imag
disjoint with the training set and stored them in the database
subset of 100 images in the database were selected (randoml
be retrieved. Two subjects were asked to find each of the ima
using our system, one at a time. The subjects used for the tes
two of the authors. This implies that the performance report
xper-
rfor-

is probably representative of what can be achieved by an expert
user.
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FIG. 2. Example of search using relevance feedback. The top two images are therelevantimages selected by the user. The others are the response of the sy
FIG. 3. Example of search using relevance feedback. The top three images are therelevantimages selected by the user. The others are the response of the system.
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The subjects were first presented with one of the 100 ima
displayed in a window on the computer screen. While the
get image remained visible, the subjects could then formu
a query of the WWW image database via the user interfac
described above. This process was repeated for all 100 im
in the test set.

In practice, for each image, the subjects independently ty
in a few keywords relevant to the target image to obtain a star
set of 100 images (page zero). In the current experiments
subjects have used four keywords on average per search
subjects could then further refine the search through iterat
of the relevance feedback mechanism. At each iteration,
system displayed the 100 top matches for the query. The resu
images were shown to the subject downsampled (the big
dimension of the downsampled image was 128 and the o
was such that the aspect ratio was unchanged) and ordere
the base of the matching score (decreasing left to right and
top to bottom).

A search was considered successful if the subjects could
the target image displayed in the top 100. A search was con
ered unsuccessful if the subject could not get the target im
displayed in the top 100 within four iterations of relevance fe
back. This limit on the number of feedback iterations was cho
to reflect the amount of time a typical user would be willing
devote in finding an image. The time the subject spent to cons
the top 100 results was on average less than 30 s.

5.2. Sensitivity to Database Size

To measure how the system scales with the number of
ages archived, the experiments were repeated at various dat
sizes: 10,000, 30,000, 50,000, and 100,000 images, respect
To evaluate search performance with respect to the type
feature vectors employed, multiple trials were conducted
which textual only, visual only, and combined textual and vis
features were included into the indexing vector. In each se
trials, the subjects were asked to find the same randomly sele
subset of 100 images. To avoid biasing of the subjects, du
an increased familiarity with the data set, we asked them to
the same keywords for generating page zero during each tr

The average percentage of target images that subjects
able to successfully retrieve, is shown in Fig. 4. The graph dep
the percentage of images found as a function of the num
of images contained in the test database. Note that the re
included in the graphs also include the images which are
related to the surrounding text and hence carry no valuable
information. Out of the 100 images used in the test set, th
were 44 such images. Assuming that such images are com
on the Web, the results are expressed as the total numb
images selected for search. The percentage of images tha
subjects were able to retrieve decreases as the number of im
increases but is still reasonable considering the database
With a database size of 10,000, the retrieval success rate

combined cues was around 35%, degrading to about 18% a
database size increased to 100,000.
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FIG. 4. Percentage of test images retrieved vs number of images in
database.

The lowest curve on the graph shows the percentage of im
that subjects retrieved in page zero. The other curves show
performance when users were allowed to use relevance f
back. To determine the major contributor in performance
provement, experimental trials were conducted in which
system employed visual statistics only, LSI only, and LSI a
visual statistics combined in relevance feedback. As can be s
relevance feedback using combined features offers a signifi
performance improvement over using either of the features
arately.

5.3. Sensitivity to LSI Dimension

In a separate set of trials with a different test set, the sens
ity to LSI dimension was tested for a database of 10,000 ima
at six levels:dim(LSI)= 64, 128, 256, 384, 512, 768. The tes
were done by searching for 50 random images. Again as in
previous case, 18 images could not be described by key wo
Results of this experiment are shown in Fig. 5. The graph sh
how subjects’ success rates improved when a higher LSI dim
sion was employed. The steepest improvement in performa
was achieved with LSI dimension of 256. After that, perfo
mance increased more slowly with increasing LSI dimens
This is consistent with results reported in [14], where it was
served that as LSI dimension increases the performance c
flattens out and then actually drops off slightly (due to noise

6. DISCUSSION

It is evident from our experiments that based on text featu
only, it is sometimes possible for subjects to find the target im
s thein page zero. If the target image did not appear in page zero, then
the subjects were almost twice as likely to find that image when
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FIG. 5. Search performance with respect to LSI dimension. Relevance f
back was determined using combined visual and textual cues.

textual and visual features were combined in relevance feed
rather than used individually.

In most of the queries, the combined textual and visual refi
ments gave improved performance over visual only or tex
only. However, in some cases, the visual features can con
the system and negatively affect the performance of the sys

For example, if the user is looking for an image of “a m
drinking” the visual features we use (color and orientation h
tograms) are of no help in the query refinement process as d
ent images of men drinking can have totally different color a
orientation histograms. In these cases, the textual informa
is more likely to encode the relevant information and the vis
features can accidentally confuse the system; e.g., if the ex
ple images happen to have very similar orientation histogra
in one of the subregions, this feature will be erroneously c
sidered by the system as the feature that the user is intere
in. Perhaps this problem can be addressed through the u
blob-based search methods [6] coupled with face detection
recognition.

In contrast, let us assume that the user is looking for “a m
playing soccer.” In this case the visual features are very likel
encode relevant information (we expect a green smooth b
ground at least in the corner subregions) and they are very u
in the query refinement step. Note that in both cases we w
interested in “actions,” but only in one of the cases can vis
features help during the refinement step.

Similarly when looking for “things” often the visual feature
can improve the retrieval performance, but sometimes they
of no help and confuse the system. For example, consider a
searching for a picture of “the surface of Mars.” Using textu
features, the user easily gets images of the surface and o

whole planet. Using visual features, it is very simple to steer
system toward the images the user is interested in. In contra
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the user is looking for “a man wearing a space suit,” the vis
features are not very likely to help as different space suits
different environments can lead to totally different visual ch
acteristics. The use of additional and more sophisticated v
features could definitely increase the number of cases wher
visual cues can help in the query refinement. We leave this
future work.

In the experiments, it was also observed that the average
ber of relevance feedback steps required to steer the syste
ward the wanted image was independent of the database
and LSI dimensions used. Whenever an image was succes
retrieved via relevance feedback, it was found in 1.9 feedb
iterations on average. This means that if the user cannot fin
wanted image in a few steps he or she may not be able to
the image at all.

In both experiments, the retrieval for database size of 10
images and 256 LSI dimension was consistently around
40%. This further confirms the consistency of retrieval per
mance of our system independent of the set of images ch
for search.

We performed an analysis to characterize why subjects w
unable to retrieve certain images from the index. We obse
that often, the inability to find a particular image is due to a la
of correlation between the image content and the surroun
text, e.g., banners or specific logos. It was also found that in s
cases, there are Web pages like photo galleries which co
several images and/or very little text. Finally, in some cas
subjects were simply unable to form a page zero query, bec
it was difficult to describe the content of a particular test ima
with words. Examples of such images are shown in Fig. 6.

Some failed searches using the system may also be attrib
to the presence of ambiguous words in the documents. It
observed that if words like “image,” “ photo,” etc. were given for
page zero, then the system retrieved several images from ph
galleries and did not provide any good starting images if the
was going to search for satellite images. Similar problems
also encountered if the document containing images does
contain any text.

We experimentally found that a 256-dimensional LSI vec
leads to good results for our data set, despite the breadth o
subject matter of documents included in the LSI training. T
optimal LSI dimension may also be obtained using an M
framework [53].

Figure 5 shows that the net increase in the retrieval pe
mance drops significantly after LSI dimension 256. The gra
the
st, ifFIG. 6. Examples of images that subjects could not describe with words.
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are still increasing but this increase may be compensated fo
using more key words. In experiments reported in [14], the
erage number of key words for a search on a database of ar
5000 documents was 10. Increase in the number of key wor
expected to overcome this problem by a stronger match. A
the dictionary used to create the word histograms isad hocand
was chosen according to the frequencies of various words
set of representative documents.

We expect that even in a very large database (with million
images) it will be possible to retrieve specific images in ma
cases using our technique. In other cases, the user will be ab
find several relevant images. Using all the features it is poss
to converge the search faster (1.9 steps as reported by ou
periments) as opposed to using individual features which m
require several steps before finding the actual image.

7. SUMMARY

We proposed a general framework for the indexing of ima
with associated text and implemented a prototype WWW
age search engine to evaluate the performance of our appr
We found that the maximum performance was achieved w
both visual and textual information were used in the releva
feedback framework. The experiments showed that when
textual and visual information are used in the refinement, res
are significantly better than those achievable using visual o
or textual only information.

In our experience, the use of LSI in generating page zero
certain advantages over the classical keyword vector me
[45] employed in most WWW text search engines and some
age search engines [1, 18, 48]. In particular, LSI implicitly a
dresses problems with synonyms, word sense, lexical match
and term omission. This is a distinct advantage over the keyw
vector approach, in that user-specified terms do not need t
an “exact match.” On the other hand, due to dimensionality
duction, LSI can sometimes lack the specificity provided by
keyword vector method.

For the sake of demonstrating our approach, we chose to
lize only two existing methods for encoding visual statistics. T
choice of the optimal image statistics is considered beyond
scope of this paper. Our purpose was instead to formulate
evaluate a technique to integrate textual and visual informa
for image retrieval. We suspect that the demonstrated powe
our unified approach can be easily extended to include m
powerful visual features in the future.
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