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Precision agriculture relies on information sys-
tems to optimize agricultural production decisions by 
accounting for variability and uncertainties (Gebbers 

and Adamchuk, 2010). Based on the information provided, 
growers can make informed farming decisions (e.g., planting, 
harvesting, crop protection) and use farm resources wisely 
(Cooke et al., 2011; Lowenberg-DeBoer, 2015). Th is approach 
identifi es site-specifi c diff erences and adjusts management 
actions accordingly (Auernhammer, 2001; Schimmelpfennig 
and Ebel, 2011). Precision agriculture technology has been 
on the market since the 1990s, but questions remain about 
its profi tability and future (Griffi  n and Lowenberg-DeBoer, 
2005). Economic studies that assess the impacts of precision 
farming technologies can reveal the advantages and potential 
barriers to adoption, and can signifi cantly increase the adoption 
rate of precision farming technology (Vorotnikova et al., 2014).

Th e majority of precision agriculture studies focus on corn 
(Zea mays L.), soybean [Glycine max (L.) Merr.], and other 
major cereal crops, whereas vegetable crops have historically 
received less attention (Griffi  n and Lowenberg-DeBoer, 2005). 
Few studies examine the economic benefi t of precision agri-
culture for potato production. Potato is the fourth largest 
crop in the world, exceeded only by maize, wheat (Triticum 
aestivum L.), and rice (Oryza sativa L.) (FAO, 2009). Th e 
United States is among the world’s largest potato-producing 
countries (FAO, 2016), with $3.66 billion worth of potato sold 
and 425 thousand harvested hectares in 2014 (USDA, 2015). 
As technology for precision agriculture continues to evolve, 
new potential applications of precision agriculture are becom-
ing possible. Th ese include the integration of location-specifi c 
weather forecasts into plant disease models as part of crop 
protection strategies for the management of late blight disease 
on potato and tomato (Lycopersicon esculentum Mill.) crops 
(Small et al., 2015a). Th is research will examine the benefi ts 
provided by one of the weather-related precision agriculture 
technologies, named the BlightPro DSS, in managing late 
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aBstraCt
Precision agriculture has emerged as a revolutionary technology, 
which transforms farming related data into useful information 
for agricultural decision-making. Th is paper compares precision 
farming technology with calendar-based approach in schedul-
ing fungicide applications to manage potato (Solanum tuberosum
L.) late blight disease. Th ree fungicide scheduling strategies were 
evaluated: calendar-based strategy, BlightPro decision support sys-
tem based strategy (DSS-based strategy), and unsprayed control. 
Using results from 14 yr of computer simulation experiments for 
59 locations in the United States, we constructed distributions 
of net return to all costs excluding fungicide cost and application 
cost per 0.41 ha (net return per 0.41 ha) for the calendar-based and 
DSS-based strategies at each location. Th ese distributions were 
then compared using three risk management methods: stochastic 
dominance, stochastic dominance with respect to a function, and 
stochastic effi  ciency with respect to a function. Th e DSS-based 
strategy was identifi ed as the most eff ective approach to manage 
late blight in terms of disease suppression, net return per 0.41 ha, 
and risk-adjusted net return. Results indicate that the DSS-based 
strategy is the preferred method to schedule fungicide applications. 
Under high disease pressure circumstances, the economic benefi ts 
to potato growers of adopting the precision agriculture technol-
ogy ranged from US$30 to $573 per 0.41 ha. For risk neutral indi-
viduals, who are concerned about the diff erence between average net 
return per 0.41 ha, the benefi ts ranged from $30 to $305 per 0.41 ha. 
Except for growers raising the moderately resistant potato cultivars, 
more risk averse individuals tended to benefi t more from adopting the 
precision agriculture technology, with benefi ts ranging from $38 to 
$573 per 0.41 ha.
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Core ideas
•	 Th e benefi ts of adopting precision farming technology was investivated in 

scheduling fungicide applications to manage potato late blight.
•	 Th e precision farming technology is the preferred method to schedule 

fungicide applications in terms of disease suppression, net return per 
0.41 ha, and risk-adjusted net return.

•	 Th e increased adoption of the precision farming technology would help man-
age late blight, limit potential crop losses, and improve net returns.
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blight disease. Late blight disease, caused by the Phytophthora 
infestans (Mont.) de Bary, may be considered the most eco-
nomically damaging potato pathogen (Fry and Goodwin, 
1997b; Guenthner et al., 1999; Johnson, 2008; Niederhauser 
and Mills, 1953; Wale et al., 2008). Worldwide, a conservative 
estimate of the annual cost of the disease to potato production 
is US$6.7 billion in yield losses and costs of late blight manage-
ment measures (Haverkort et al., 2008). In the United States, 
the annual cost of late blight to potato production is estimated 
to be US$287.8 million, of which fungicide expenses constitute 
a substantial proportion of the cost (Guenthner et al., 2001). 
In practice, the traditional management of late blight depends 
highly on preventative fungicide applications on a regualr 
calendar basis (e.g., weekly) during the growing season.

The use of precision farming technology as a guidance to sched-
ule fungicide applications mitigates production risk, improves 
fungicide use efficiency, and can reduce the potential environ-
mental impact of fungicide usage in managing late blight (Small 
et al., 2015b). The BlightPro DSS recommends precise and timely 
use of fungicide in accordance with weather conditions, pathogen 
characteristics, host resistance, as well as fungicide characteristics 
and efficacy (Small et al., 2015a). It is a good example of how 
precision farming technology transforms weather data into acces-
sible information to help farmers make decisions. The efficacy 
of disease forecasting systems, such as Blitecast, for late blight 
disease management has been an important topic of previous 
plant pathology research (Fohner et al., 1984; Fry et al., 1983; 
Small et al., 2015b). Fohner et al. (1984) found that fungicide 
scheduling according to Blitecast did not suppress diseases any 
more effectively than the application of a calendar-based strategy. 
Subsequently, Blitecast has been integrated with other forecast-
ing systems and technologies into the BlightPro DSS (Small et 
al., 2015a). Small et al. (2015b) examined the benefits of adopting 
BlightPro DSS in terms of late blight disease suppression and 
fungicide usage efficiency. They concluded that the DSS-based 
strategy maintained or improved disease suppression and average 
fungicide use efficiency relative to the calendar-based strategy. 
However, these studies did not evaluate the economic effects of 
the BlightPro DSS on potato production costs, revenues, and 
risks associated with income volatility.

We advance the study conducted by Small et al. (2015b) and 
introduce risk analysis to evaluate the benefit of adopting preci-
sion agriculture in managing late blight. Net return to all costs 
excluding fungicide cost and application cost per 0.41 ha (net 
return per 0.41 ha) distributions are developed using 14 yr of 
historical weather data (2000–2013) from 59 locations (five 
states, include Massachusetts, Maine, North Carolina, North 
Dakota, New York, Wisconsin). Three categories of late blight 
resistant potato cultivars (susceptible, moderately susceptible, 
and moderately resistant) are evaluated under two late blight ini-
tiation scenarios: a worst case scenario and a randomly selected 
disease initiation scenario. The former scenario represents the 
earliest theoretically possible disease initiation, and the later 
scenario represents the potential variability in late blight initia-
tion over the course of a production season, for a field that starts 
the season disease-free. By comparing the BlightPro DSS-based 
strategy with a calendar-based disease management strategy, we 
evaluate the benefit of using BlightPro DSS on potato yield, cost, 
revenue, and risk-adjusted net return. Stochastic dominance 

(Hadar and Russell, 1969) and stochastic dominance with 
respect to a function (Meyer, 1977) are used to compare pair-
wise late blight management choices between a calendar-based 
strategy and the DSS-based strategy. Stochastic efficiency with 
respect to a function (Hardaker and Lien, 2010; Hardaker et al., 
2004; Meyer et al., 2009) is used to determine the risk adjusted 
value of BlightPro DSS. The overall objective of this paper is to 
identify the most risk-efficient fungicide scheduling strategy. 
More specifically, we evaluate the economic value of fungicide 
scheduling strategies, when taking producers’ risk aversion level 
into consideration.

Materials and Methods
Decision Support System and Precision Fungicide 

Application for Potato Production
Late blight poses a special challenge for potato growers 

in humid (Olanya et al., 2007) and cool (16–21°C) climates 
(Krause et al., 1975; Wallin, 1962). For unprotected crops, late 
blight epidemics can cause significant crop losses and economic 
failure for potato growers (Fry and Goodwin, 1997b). If incor-
rectly managed, the disease has the potential to completely 
destroy the entire field within 2 to 3 wk after the appearance of 
visible symptoms (Johnson, 2008). Late blight can be dispersed 
aerially by wind currents or in splashing water droplets (Fry 
and Goodwin, 1997a), and can spread long distances through 
infected potato tubers, tomato seedlings, or tomato fruits (Fry 
and Goodwin, 1997b). Growers commonly utilize fungicides 
with protectant activity to manage late blight (Song et al., 
2003), applying these fungicides on a calendar-based, weekly 
schedule. However, calendar-based scheduling strategies have 
drawbacks (Vorotnikova et al., 2014). First, if weather condi-
tions are unfavorable for disease development, unnecessary 
applications are at best inefficient, wasting both chemicals and 
labor and entailing extra costs (Fohner et al., 1984; Fry, 1982). 
Second, the repeated use of certain fungicides can lead to the 
emergence of late blight strains that are resistant to these fun-
gicides (Deahl et al., 1991, Deahl et al., 1993, Fry et al., 1979, 
Goodwin et al., 1996). Third, the interaction among several 
factors influencing disease progress increases the complexity 
of late blight management (Small et al., 2015b). These fac-
tors include the influence of weather on the pathogen, level 
of potato cultivar resistance to late blight, fungicide residue 
on the crop, and potential pathogen resistance to fungicide. 
Finally, rising public concern regarding the potential health 
and environmental effects of pesticides is motivating judicious 
use of fungicide (Gustavsson et al., 2011). These drawbacks 
create an opportunity for a decision support system to provide 
scientific-based information to guide decision-making.

The BlightPro DSS is an an internet-based platform available 
at the USAblight website (http://usablight.org) (Small et al., 
2015a, 2015b). The BlightPro DSS was developed by Cornell 
University researchers to improve late blight disease suppres-
sion and fungicide use efficiency, by providing real-time support 
for late blight management (Small et al., 2015a). The BlightPro 
DSS provides free service for its users to manage late blight. 
The BlightPro DSS links several models (Andrade-Piedra et al., 
2005a; Fry et al., 1983, Krause et al., 1975) into a system that 
enables predictions of disease and fungicide dynamics based on 
location-specific weather conditions, host resistance, pathogen 

http://usablight.org
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inoculum, and fungicide usage. When conditions are favorable 
for late blight, an integrated alert system in the BlightPro DSS 
issues notifications about upcoming critical thresholds for fungi-
cide intervention via e-mail and/or text message.

Small et al. (2015b) examined the potential benefits of the 
BlightPro DSS in terms of disease supression and fungicide use 
efficiency. However, their study did not evaluate the economic 
effects of the DSS-based strategy on potato production costs, 
revenues, and risks in net return variability. Risk associated 
with income fluctuations are key determinants of the adop-
tion of new technology by growers. In this study, we compare 
the net return after adjusting for cost of applying fungicide 
between the DSS-based strategy and the calendar-based strat-
egy, while considering the risks associated with weather condi-
tions, yields, and input and output prices.

Data

Infection by late blight influences the photosynthesis pro-
cess of potato leaves and reduces the bulking rate of potato 
tuber, which results in potato yield loss. The higher the disease 
severity of late blight, the more impact on the photosynthetic 
process. Fungicide application impacts the disease progress 
by hindering the development of late blight disease on potato 
plants. The data related to number of fungicide applications 
and AUDPC (area under disease progress curve, which is 
a quantitative summary of disease severity over time) were 
generated and discussed in Small et al. (2015b). We have used 
the datasets generated in computer simulation experiments 
by Small et al. (2015b), and expanded the analysis to include 
potato yield loss percentage data based on the model developed 
by Shtienberg et al. (1990). Shtienberg et al. (1990) developed 
and parameterized a general model to estimate late blight 
induced yield loss for potato. The model estimates potato 
yield loss percentage due to foliar late blight. Shtienberg’s yield 
loss model has been extensively tested and has been shown to 
provide accurate yield loss predictions under different soil and 
weather conditions, and for various cultivars (Rakotonindraina 
et al., 2012; Shtienberg et al., 1990). Many researchers have used 
computer simulation models to evaluate farming practices, includ-
ing integrated pest management strategies for corn and pea (Pisum 
sativum L.) (Musser et al., 1981), multi-species insect management 
strategies for soybean (Boggess et al., 1985), and soybean aphid 
management using natural enemies (Zhang and Swinton, 2009).

The simulation experiments in our research used 14 yr of 
meteorological data (2000–2013), recorded from 59 locations 
in 6 potato-producing states, including 6 locations from Maine, 
5 locations from Massachusetts, 13 locations from New York, 
12 locations from North Carolina, 9 locations from North 
Dakota, and 14 locations from Wisconsin. Each year’s weather 
conditions at one certain location creates a unique potato 
growth environment. In total, 7711 potato growth environ-
ments were included in the simulation analyses after remov-
ing those years with more than 2% missing weather data. The 

simulation experiments were generated using three categories 
of late blight resistant potato cultivars, including susceptible 
cultivars, moderately susceptible cultivars, and moderately 
resistant cultivars. For the simulation analyses only one repre-
sentative cultivar was used for each category of disease resis-
tance. For the BlightPro DSS analyses each disease-resistance 
category includes several different potato cultivars.

Two disease initiation scenarios were investigated for each 
disease-resistance category and each potato growth environment: 
(i) a worst case scenario representing the earliest theoretically 
possible disease initiation, which could start from infected potato 
tubers planted in the current season or from infected volunteer 
potatoes sprouting in the field; and (ii) a randomly-selected dis-
ease initiation scenario which represents the potential variability 
in late blight initiation over the course of a production season, 
for a field that starts the season disease-free. This scenario is a 
closer representation of reality, where a crop becomes infected by 
inoculum from external sources (e.g., infected farms/vegetable 
gardens) in the surrounding environment. Three methods of 
fungicide scheduling throughout the production season are com-
pared, including a calendar-based (7-d spray schedule), DSS-based 
(BlightPro DSS-recommended spray schedule), and unsprayed 
control (no fungicide application). In total, 13,878 simulations 
(771 environments × three disease-resistance categories × three 
methods of fungicide scheduling × two scenarios) were generated 
to compare DSS-based with the calendar-based strategy. Figure 1 
illustrates the difference between the DSS-based strategy and the 
calendar-based strategy. The calendar-based strategy involved with 
routine fungicide applications every 7 d. Weekly sprays were initi-
ated 35 d after planting and continued until the end of the season. 
In contrast, the DSS-based strategy was influenced by the resis-
tance of the potato cultivar, the favorability of the weather for late 
blight progress, and the influence of prevailing weather on fun-
gicide residue on potato crops (Small et al., 2015a). For the DSS-
based strategy, sprays were initiated when 18 Blitecast severity 
values (Krause et al., 1975) had accumulated since median emer-
gence and plants were at least 0.15 to 0.20 m in height (for field 
experiments). Subsequent applications were scheduled according 
to Simcast (Fry et al., 1983), based on the effect of weather on the 
pathogen (accumulation of blight units) and on fungicide weath-
ering (accumulation of fungicide units).

A representation of the data generating process is shown in 
Fig. 2. The LATEBLIGHT 2004 disease model integrated with 
fungicide sub-models (Andrade-Piedra et al., 2005a) was used 
in conjunction with a potato yield loss model (Shtienberg et al., 
1990) to evaluate the efficacy of fungicide scheduling methods. 
These models have been widely tested and validated to simulate 
late blight disease progress (Andrade-Piedra et al., 2005b) and 
the yield loss percentage caused by the disease (Rakotonindraina 
et al., 2012). The calendar-based, DSS-based, and unsprayed 
control schedules were incorporated into the LATEBLIGHT 
2004 disease model (Andrade-Piedra et al., 2005b) to determine 
the disease severity and the percentage of defoliation. For a com-
prehensive description of the data generating process see Small 
et al. (2015b). The potato yield loss percentage for the calendar-
based, DSS-based, and unsprayed control strategies were 
obtained by incorporating the percentage of defoliation from the 
LATEBLIGHT 2004 disease model into the potato yield loss 
model (Shtienberg et al., 1990).

1 Small et al. (2015b) identify 768 environments. The discrepancy 
between the numbers is due to the difference in handling of three 
environments. In these three environments, the late blight epidemic 
started around the end of the season (<6 d from the end of the season). 
In this paper, these environments were included in the analysis, and it 
was assumed that the yield was not impacted by the disease.
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The following common parameters were used (Small et al., 
2015b). The length of the season was 110 d (Table 1). Late 
blight was initiated with 0.001% disease severity (one lesion per 
10 plants). A protectant fungicide with active ingredient chlo-
rothalonil was applied at a rate of 1.34 kg a.i./ha (equivalent to 
1.5 pints per acre) for each application. Our study was limited 
to locations in rainfed production regions and temperate cli-
mates where the cold winter eliminates host plants between 
growing seasons (Small et al., 2015b). All diseases other than 
late blight, and the effects of pests, weeds, nutrients, and heat 
or frost shock were not modeled and assumed not to influence 
this study. Growers are also assumed to be able to initiate fun-
gicide applications according to the DSS-based strategy. We 
did not attempt to estimate the loss due to tuber infections. 
Only yield loss at harvest was considered.

Net Return per 0.41 Hectare

To estimate the economic benefits of switching to the DSS-
based strategy, we compared each of the 59 locations’ distribu-
tions of the net return to all costs excluding fungicide cost and 
application cost per 0.41 ha (net return per 0.41 ha) within a 
14-yr period for three fungicide application scheduling strate-
gies, including calendar-based, DSS-based, and unsprayed 
control as a base comparision. Potato yield is first calculated 
to estimate net return per 0.41 ha. Potato yield per 0.41 ha 
was estimated using historical state-level average potato yield 
data obtained from the Potatoes Annual Summary (USDA, 
various issues) adjusted by potato yield loss percentage from the 

Fig. 1. Difference between the calendar-based strategy and the BlightPro decision support system (DSS)-based strategy. The Blitecast 
system reports daily severity values, which are calculated using relative humidity and temperature data as inputs (Krause et al., 1975). 
The Simcast system reports Blight Units and Fungicide Units, which are calculated using relative humidity and temperature, as well as 
precipitation/irrigation data as inputs (Fry et al., 1983). Nc stands for the number of applications for the calendar-based strategy per 
season per 0.41 ha and  NDSS stands for the number of applications for the DSS-based strategy per season per 0.41 ha. Note: This figure 
is a conceptual extension of Fig. 2 in Vorotnikova et al. (2014).

Fig. 2. Data generating process for 59 locations from 2000 to 
2013. The simulation experiments were generated for three 
categories of disease-resistance to late blight: susceptible 
cultivars, moderately susceptible cultivars, and moderately 
resistant cultivars. Two scenarios were examined for each 
disease-resistance category: worst case scenario and the 
randomly selected disease initiation scenario.

Table 1. Potato growth period.
State Plant date Emergence date Harvest date

North Carolina 26 March 10 April 27 July 
Other states 15 May 30 May 15 September 
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computer simulation results. Specifically, the potato yield per 
0.41 ha is calculated for each production season y, each state s, 
and each location  l as follows:

= ×

-

, ,

,

Potato yield average potato yield
yield loss percentage

(1 )
100

l y s y

l y
� [1]

The fungicide cost per 0.41 ha for each application in 2013 
is $8.63. We applied at a rate of 1.34 kg a.i./ha  (equivalent to 
1.5 pints per acre) for each application. Fungicide price was 
obtained from a local agricultural chemical distributor on Long 
Island by Dr. M. T. McGrath in April 2013 (M.T. McGrath, 
personal communication, 29 Dec. 2013). Application cost 
($6.58/0.41 ha/application) comes from Lazarus (2013), the 
total cost per 0.41 ha of a self-propelled boom sprayer, and 
includes fuel, lubricants, repairs and maintenance, labor, power, 
implement depreciation (depreciation is both time-related and 
use-related) and overhead costs (interest, insurance, and hous-
ing). We assumed that the fungicide cost and application cost 
were the same for all 59 locations. United States Department 
of Agriculture Prices Paid Indices (agricultural chemical and 
machinery indices) were used to adjust the fungicide price and 
application cost in 2013 to nominal prices in previous years. In 
turn, cost of fungicide applications were calculated as a product of 
fungicide application cost and number of fungicide applications:

Cost of fungicide applicationsl,y = (fungicide costy  
      + application costy) × no. of applicationsl,y � [2]

Historical state-level potato price data was obtained from 
the Potatoes Annual Summary (USDA, various issues). Ideally, 
yield and price data for each potato cultivar should be used 
when calculating yield and revenue. The potato processing cost 
related to different quality of potato tuber should also be con-
sidered in calculations. Due to limitations relating to availabil-
ity of public data, we assumed average yield and price to be the 
same among potato cultivars in each of the disease-resistance 
categories. Revenue per 0.41 ha was calculated for each produc-
tion season and each location as a product of yield and price:

Revenuel,y = potato prices,y × potato yieldl,y � [3]

For each production season and each location, net return 
to all costs excluding fungicide cost and application cost per 
0.41 ha (net return per 0.41 ha) was equal to cost of fungicide 
applications (Eq. [2]) subtracted from revenue (Eq. [3]): 

Net return per 0.41 hal,y = revenuel,y  
     – cost of fungicide applicationsl,y � [4]

There was no additional cost associated with using the DSS-
based strategy in the analysis. Currently, the BlightPro DSS 
provides a free service for its users. An integrated alert system 
in the BlightPro DSS issues notifications to its user about 
upcoming critical thresholds for intervention (fungicide appli-
cation) via e-mail and/or text message to limit the time cost of 
the users using the system.

Risk Aversion
The risk of late blight infection creates uncertainties for deci-

sion makers. Recognizing this, we incorporated the uncertainty 
caused by income volatility due to late blight infection and the 
producers’ risk attitudes into the decision-making framework. 
Alternative decisions can be ranked with individual risk atti-
tudes (Schumann, 2011). Producers with different degrees of 
risk-aversion are likely to have different preferences for alterna-
tive strategies (Monjardino et al., 2015). In this paper, we com-
pare mutually exclusive decisions faced by potato growers for 
alternative fungicide spray strategies (i.e., the calendar-based 
strategy or the DSS-based strategy).

We used stochastic dominance and stochastic efficiency 
with respect to a function (SERF) procedures to rank the 
entire probability distribution functions of net return per 0.41 
ha for each location and alternative fungicide spray strategy. 
Stochastic dominance methods (Hadar and Russell, 1969; 
Hanoch and Levy, 1969; Meyer, 1977; Rothschild and Stiglitz, 
1970) were used to identify the most risk efficient strategy 
between the DSS-based and calendar-based strategies. These 
methods compare the cumulative distribution functions of the 
net return per 0.41 ha for decision makers with different risk 
aversion levels. Stochastic efficiency with respect to a function 
(Hardaker and Lien, 2010; Hardaker et al., 2004; Meyer et al., 
2009) was used to compute the certainty equivalents (CEs) of 
the net return per 0.41 ha for each spray strategy. Stochastic 
efficiency with respect to a function evaluated the economic 
benefits of adopting BlightPro DSS under different risk aver-
sion assumptions.

The Simulation and Econometrics to Analyze Risk 
(SIMETAR) software was used to conduct the stochastic 
dominance and SERF analysis. The stochastic dominance and 
SERF analysis were done separately for each location to com-
pare the net return per 0.41 ha distributions between DSS-
based strategy and calendar-based strategy. The same analyses 
were repeated and conducted 354 times by using 354 Excel files 
(59 locations × 3 disease-resistance categories × 2 scenarios). 
Each excel file summarizes the distributions of net return per 
0.41 ha for DSS-based and calendar-based strategies for a spe-
cific location, category, and scenario.

Stochastic Dominance
Stochastic dominance approaches use the cumulative distri-

bution functions to identify the risk efficient set of risky alter-
natives in a manner consistent with expected utility theory. 
Stochastic dominance (Hadar and Russell, 1969; Hanoch 
and Levy, 1969; Quirk and Saposnik, 1962; Rothschild and 
Stiglitz, 1970) is a method used to find necessary and sufficient 
conditions for cumulative distribution  F (x) to be preferred or 
indifferent to cumulative distribution G (x) by all agents in a 
particular group (Meyer, 1977). Stochastic dominance makes 
general assumptions and places limited restrictions on the 
utility function. As a result of these underlying assumptions, 
stochastic dominance can be characteristic of a wide range of 
individuals and utility functions (Hadar and Russell, 1969; 
Quirk and Saposnik, 1962). These approaches can be used to 
predict decision makers’ preferences between given pairs of 
uncertain alternatives without having any knowledge of the 
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decision makers’ utility function (Hadar and Russell, 1969; 
Harris and Mapp, 1986).

Hadar and Russell (1969) developed the concept of first-
degree stochastic dominance (FSD) and second-degree sto-
chastic dominance (SSD). In essence, FSD holds when one 
cumulative distribution lies entirely above the other (Hadar 
and Russell, 1969). First-degree stochastic dominance allows us 
to compare the choices faced by all decision makers who have 
positive marginal utility (Hadar and Russell, 1969). There is no 
restriction on decision makers’ preferences other than assum-
ing the utility function is increasing and twice differentiable 
(Hadar and Russell, 1969), which implies decision makers 
prefer more wealth to less. Second-degree stochastic dominance 
holds when the area under one cumulative distribution is equal 
to, or larger than that under the other cumulative distribution 
(Hadar and Russell, 1969). Second-degree stochastic dominance 
requires a concave utility function or a non-increasing marginal 
utility function, which means decision makers are risk averse 
(Hadar and Russell, 1969). Holding average income constant, risk 
averse decision makers prefer lower variance and less downside risk.

Developed by Meyer (1977), stochastic dominance with 
respect to a function (SDRF) ranks uncertain choices on the 
basis of the lower and upper bounds of decision makers’ abso-
lute risk aversion levels (Harris and Mapp, 1986; King and 
Robison, 1981). In other words, SDRF establishes necessary 
and sufficient conditions for the cumulative distribution func-
tion of F (y)  to be preferred to the cumulative distribution 
function of G (y) by all individuals whose absolute risk aver-
sion functions lie between lower r1(y) and upper bounds r2(y) 
(Harris and Mapp, 1986). Stochastic dominance with respect 
to a function has been implemented by many empirical studies 
(Barham et al., 2011; Cochran et al., 1985; Greene et al., 1985; 
Harris and Mapp, 1986; King and Robison, 1981; de la Llata 
et al., 1999; Musser et al., 1981; Parcell and Langemeier, 1997; 
Ritchie et al., 2004; Zacharias and Grube, 1984). It is a practi-
cal tool to help farmers better understand their risk preferences 
and choices under price, yield, or weather uncertainty (King 
and Robison, 1981). The major advantage of SDRF is that it 
imposes no restrictions on the width of the relevant absolute 
risk aversion interval (King and Robison, 1981). It allows the 
lower and upper bounds on absolute risk aversion interval to 
vary among studies (King and Robison, 1981). First- and sec-
ond-degree stochastic dominance can be viewed as special cases 
of SDRF (King and Robison, 1981).

Stochastic dominance with respect to a function analysis 
requires information pertaining to absolute risk aversion coef-
ficients. According to Raskin and Cochran (1986), this infor-
mation can be obtained by transforming relative risk aversion 
coefficients to absolute risk aversion coefficients. Relative risk 
aversion levels used in this study include slightly risk averse 

(0–1.0), moderately risk averse (1.0–5.0), and strongly risk averse 
(5.0–10.0) (Hardaker et al., 2015). The risk attitudes from Hardaker 
et al. (2015) were transformed for each location  l as follows:

ra,l = rr/wl � [5]

where  ra,l stands for absolute risk aversion2 for a specific loca-
tion, rr  stands for relative risk aversion, and wl stands for the 
average net return per 0.41 ha for each location of both DSS-
based and calendar-based strategies.

Stochastic Efficiency

According to Hardaker et al. (2004), SERF uses CEs to rank 
risky alternatives for a specified risk aversion level. The CE of a 
risky alternative is the guaranteed amount of money at which 
a decision maker would be willing to accept, instead of taking 
the risky alternative (Williams et al., 2014). Thus, risky alterna-
tives with higher CEs are preferred to those with lower CEs 
(Hardaker and Lien, 2010; Hardaker et al., 2004; Meyer et al., 
2009). For a risk averse decision maker, the CE is less than the 
expected value of the risky alternative. To calculate CE, the 
utility function needs to be specified. Schumann et al. (2004) 
compared six different utility functions and conclude that the 
overall efficient set can be similar across different utility func-
tions. In this analysis, the power utility function3 was used. 
The power utility function has been widely used for modeling 
risk aversion (Wakker, 2008). The power utility function is 
often referred to as the constant relative risk aversion utility 
function. In addition to constant relative risk aversion, this 
utility function exhibits decreasing absolute risk aversion as an 
individual’s wealth increases, which is a commonly assumed 
risk preference characteristic. Relative risk aversion levels (rr) 
used to generate the stochastic efficiency results ranged from 0 
(risk neutral) to 10 (strongly risk averse) (Hardaker et al., 2015).

Given a risk aversion level, the utility weighted risk premium 
(RP) can be calculated using CEs of DSS-based and calendar-
based strategies as follows.

RPDSS,Calendar,
rr

 = CEDSS, rr
 – CECalendar, rr

 � [6]

A positive RP means that if the potato growers are informed 
about the availability of the DSS-based strategy, they would 
prefer to switch to this precision agriculture technology. The 
RP reflects the minimum amount of money ($/0.41 ha) that 
would have to be paid to a potato grower to make them con-
tinue using calendar-based strategy instead of switching to the 
DSS-based strategy. The RP could also be viewed as the value 
of the information provided by BlightPro DSS for potato grow-
ers. Stochastic efficiency with respect to a function methods 
can be adopted to a wide range of individual decision making 
processes. It has been applied to evaluate various alternative 
decisions, such as beef farms’ insurance policies (Williams et 
al., 2014), and sustainability of crop farming systems (Lien et 
al., 2007).

3 The functional form of the power utility is as follows:
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for rr ≠ 1; U (x) = ln (x) for rr = 1, where rr is the relative risk aversion 
coefficient, and x is income or wealth.

2 Given a twice-differentiable Bernoulli utility function U, Arrow-
Pratt measures of absolute risk aversion coefficient ra is defined as
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where x is income or wealth.



568	 Agronomy Journa l   •   Volume 109, Issue 2  •   2017

Results and Discussion
Fungicide Applications and Disease Rating

The summary statistics for the number of fungicide appli-
cations and AUDPC for the worst case scenario and the 
randomly selected disease initiation scenario are provided 
in Tables 2 and 3, respectively. For the susceptible cultivars, 
BlightPro DSS recommended a higher number of fungicide 
applications than the calendar-based strategy, but also exhib-
ited higher levels of disease suppression. For the moderately 
susceptible cultivars, BlightPro DSS recommended fewer fun-
gicide applications and had higher disease suppression, which 
suggested that BlightPro DSS improved the efficiency of fun-
gicide usage and allowed for more effective disease suppression. 
As expected for moderately resistant cultivars, the calendar-
based strategy achieved high levels of disease suppression but 
with lower fungicide use efficiency, relative to the DSS-based 
strategy (Small et al., 2015b).

The BlightPro DSS issues notifications about fungicide 
application based on favorable weather conditions. The two 
scenarios (Tables 2 and 3) were investigated using the same 
weather data. The difference between the two scenarios relates 
to the assumption pertaining to the starting date of the disease. 
As a result, the BlightPro DSS recommended fungicide appli-
cation schedules for both scenarios were the same. The average 
number of fungicide applications for the DSS-based strategy 
decreased, when the disease-resistance level increased. The aver-
age number of fungicide applications for the DSS-based strat-
egy was 14, 9, and 7 applications, for the susceptible cultivars, 
the moderately susceptible cultivars, and the moderately resis-
tant cultivars, respectively. The DSS-based strategy resulted in 
a 23% increase, a 15% decrease, and a 35% decrease in average 

number of fungicide applications relative to the calendar-based 
strategy (11 sprays) for the susceptible cultivars, the moderately 
susceptible cultivars, and the moderately resistant cultivars, 
respectively. The favorability of prevailing weather for late 
blight also influenced the number of recommended sprays by 
BlightPro DSS (Small et al., 2015b). Higher application rates 
were associated with years where more favorable disease devel-
opment environments were observed (Small et al., 2015b). In 
addition, variation in the average number of fungicide applica-
tions among states were observed. For susceptible cultivars, the 
average number of fungicide applications ranged from 11 to 16 
applications per season among the six states. The average num-
ber of fungicide applications ranged from 8 to 11, and 6 to 8 for 
moderately susceptible cultivars and moderately resistant cul-
tivars, respectively. Massachusetts and Maine had the highest 
average number of fungicide applications, and North Dakota 
had the lowest average number of fungicide applications for all 
three categories of cultivars.

For the worst case scenario (Table 2), the average AUDPC 
for the unsprayed control was 4662 for the susceptible culti-
vars, 4359 for the moderately susceptible cultivars, and 2428 
for the moderately resistant cultivars. The use of fungicide 
reduced late blight disease severity dramatically. The average 
AUDPC for the DSS-based strategy was 319 for susceptible 
cultivars, 926 for moderately susceptible cultivars, and 144 for 
moderately resistant cultivars. The average AUDPC for the 
calendar-based strategy was 2061 for susceptible cultivars, 1357 
for moderately susceptible cultivars, and 89 for moderately 
resistant cultivars. The DSS-based method decreased the aver-
age level of disease as well as the variance in disease severity for 
susceptible cultivars and moderately susceptible cultivars.

Table 2. Summary statistics for potato revenue, late blight disease rating, and fungicide applications for the worst case scenario. The num-
ber of observations is 771.

Item
Control Calendar DSS

Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max.
Susceptible cultivars
   No. of fungicide applications 0 0 0 0 11 0 11 11 13.6 3.3 1 21
   AUDPC† 4662 1865 0 7365 2061 1872 0 7335 319 567 0 3965
   Yield loss percentage 39.5 20.9 0.0 79.4 12.7 15.8 0.0 72.5 0.5 1.8 0.0 23.5
   Potato yield, cwt/0.41 ha 176.6 81.8 62.0 459.9 255.3 87.4 79.0 459.9 291.3 81.7 148.6 459.9
   Cost of fungicide applications, $/0.41 ha 0 0 0 0 134 19 111 167 165 46 13 287
   Net return per 0.41 ha, $/0.41 ha 1638 928 363 5184 2194 985 348 5043 2492 1000 806 5171

Moderately susceptible cultivars
   No. of fungicide applications 0 0 0 0 11 0 11 11 9.4 2.4 1 15
   AUDPC 4359 1777 0 7196 1357 1531 0 6536 926 984 0 4534
   Yield loss percentage 33.8 19.2 0.0 73.4 7.3 11.0 0.0 57.0 1.8 3.6 0.0 28.2
   Potato yield, cwt/0.41 ha 193.1 80.2 72.3 459.9 271.8 84.8 96.2 459.9 287.4 81.4 150.7 459.9
   Cost of fungicide applications, $/0.41 ha 0 0 0 0 134 19 111 167 114 33 13 205
   Net return per 0.41 ha, $/0.41 ha 1786 921 423 5184 2343 986 448 5043 2507 992 746 5171

Moderately resistant cultivars
   No. of fungicide applications 0 0 0 0 11 0 11 11 7.1 1.7 1 11
   AUDPC 2428 1618 0 5509 89 275 0 2513 144 273 0 1799
   Yield loss percentage 9.3 10.2 0.0 43.4 0.3 0.8 0.0 8.5 0.1 0.3 0.0 6.0
   Potato yield, cwt/0.41 ha 265.2 80.8 121.0 459.9 292.1 81.9 166.1 459.9 292.5 81.8 169.8 459.9
   Cost of fungicide applications, $/0.41 ha 0 0 0 0 134 19 111 167 86 24 13 152
   Net return per 0.41 ha, $/0.41 ha 2434 1008 708 5184 2531 1010 857 5043 2582 1013 916 5171
† AUDPC is area under disease progress curve, which is a quantitative summary of disease severity over time.
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For the randomly selected disease initiation scenario 
(Table 3), the average AUDPC for the unsprayed control was 
1865 for susceptible cultivars, 1632 for moderately suscep-
tible cultivars, and 758 for the moderately resistant cultivars. 
Fungicide applications reduced these numbers dramatically. 
The average AUDPC for the DSS-based strategy was 79 for 
susceptible cultivars, 245 for moderately susceptible cultivars, 
and 36 for moderately resistant cultivars. The average AUDPC 
for the calendar-based strategy was 457 for susceptible culti-
vars, 264 for moderately susceptible cultivars, and 14 for the 
moderately resistant cultivars.

Yield

Using the potato yield loss model (Shtienberg et al., 1990), 
we were able to evaluate the impact of the BlightPro DSS on 
potato yield and advance the research conducted by Small et 
al. (2015b). Tables 2 and 3 present the summary statistics for 
average potato yield loss percentage and average potato yield 
for the unsprayed control and two fungicide application strate-
gies. The DSS-based strategy achieved higher average yield than 
calendar-based strategy for susceptible cultivars and moderately 
susceptible cultivars. For moderately resistant cultivars, average 
yield was very similar for both strategies.

For the worst case scenario (Table 2), fungicide applications 
reduced the average potato yield loss percentage of suscep-
tible cultivars from 39.5% for the unsprayed control to 12.7% 
for the calendar-based strategy and 0.5% for the DSS-based 
strategy. This was equivalent to an increase in the average 
potato yield from 176.6 cwt/0.41 ha (unsprayed control) to 
255.3 cwt/0.41 ha (calendar-based) and 291.3 cwt/0.41 ha 

(DSS-based). The average yield loss percentage for the mod-
erately susceptible cultivars were reduced from 33.8% for the 
unsprayed control to 7.3% for the calendar-based strategy and 
1.8% for the DSS-based strategy. Consequently, average potato 
yield for the moderately susceptible cultivars increased from 
193.1 cwt/0.41 ha (unsprayed control) to 271.8 cwt/0.41 ha 
(calendar-based) and 287.4 cwt/0.41 ha (DSS-based). For the 
moderately resistant cultivars, average yield loss percentage 
was 9.3% for the unsprayed control, and 0.3 and 0.1% for the 
calendar-based and DSS-based strategies, respectively. Average 
potato yield for the moderately resistant cultivars increased from 
265.2 cwt/0.41 ha (unsprayed control) to 292.1 cwt/0.41 ha 
(calendar-based) and 292.5 cwt/0.41 ha (DSS-based).

The trends in results with respect to potato yields for the 
randomly selected disease initiation scenario (Table 3) are 
very similar to those for the worst case scenario. Fungicide 
applications reduced average potato yield loss percentage of 
susceptible cultivars from 10.5% for the unsprayed control to 
2.2% for the calendar-based stategy and 0.1% for the DSS-
based strategy. This was equivalent to an increase in the aver-
age potato yield from 261.9 cwt/0.41 ha (unsprayed control) 
to 286.2 cwt/0.41 ha (calendar-based) and 292.5 cwt/0.41 ha 
(DSS-based). The average yield loss percentage for the mod-
erately susceptible cultivars was reduced from 8.2% for the 
unsprayed control to 1.2% for the calendar-based strategy and 
0.4% for the DSS-based strategy. Consequently, average potato 
yield for the moderately susceptible cultivars increased from 
268.6 cwt/0.41 ha (unsprayed control) to 289.2 cwt/0.41 ha 
(calendar-based) and 291.6 cwt/0.41 ha (DSS-based). For the 
moderately resistant cultivars, average yield loss percentage was 

Table 3. Summary statistics for potato revenue, late blight disease rating, and fungicide applications for the randomly selected disease ini-
tiation scenario. The number of observations is 771.

Item
Control Calendar DSS†

Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max.
Susceptible cultivars
   No. of fungicide applications 0 0 0 0 11 0 11 11 13.6 3.3 1 21
   AUDPC‡ 1865 2029 0 6869 457 1126 0 6739 79 276 0 2613
   Yield loss percentage 10.5 17.9 0.0 69.8 2.2 8.3 0.0 63.3 0.1 0.6 0.0 10.9
   Potato yield, cwt/0.41 ha 261.9 91.0 67.3 460.0 286.2 84.1 88.2 460.0 292.5 81.8 167.3 460.0
   Cost of fungicide applications, $/0.41 ha 0 0 0 0 134 19 111 167 165 46 13 287
   Net return per 0.41 ha, $/0.41 ha 2392 1039 394 5184 2475 1005 379 5043 2504 1005 825 5171

Moderately susceptible cultivars
   No. of fungicide applications 0 0 0 0 11 0 11 11 9.4 2.4 1 15
   AUDPC 1632 1902 0 6532 264 800 0 6124 245 569 0 4013
   Yield loss percentage 8.2 15.4 0.0 64.6 1.2 5.4 0.0 48.9 0.4 1.9 0.0 27.8
   Potato yield, cwt/0.41 ha 268.6 88.3 78.2 460.0 289.2 82.6 112.8 460.0 291.6 81.8 161.7 460.0
   Cost of fungicide applications, $/0.41 ha 0 0 0 0 134 19 111 167 114 33 13 205
   Net return per 0.41 ha, $/0.41 ha 2454 1031 457 5184 2504 1005 590 5043 2547 1008 847 5171

Moderately resistant cultivars
   No. of fungicide applications 0 0 0 0 11 0 11 11 7.1 1.7 1 11
   AUDPC 758 1230 0 4968 14 102 0 1517 36 146 0 1754
   Yield loss percentage 1.8 5.5 0.0 38.9 0.1 0.3 0.0 5.6 0.03 0.2 0.0 4.1
   Potato yield, cwt/0.41 ha 287.5 82.7 127.1 460.0 292.6 81.8 169.8 460.0 292.7 81.8 169.7 460.0
   Cost of fungicide applications, $/0.41 ha 0 0 0 0 134 19 111 167 86 24 13 152
   Net return per 0.41 ha, $/0.41 ha 2625 1020 832 5184 2536 1011 894 5043 2584 1014 919 5171
† DSS is decision support system.
‡ AUDPC is area under disease progress curve, which is a quantitative summary of disease severity over time.
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1.8% for the unsprayed control, 0.1% for the calendar-based 
strategy, and 0.03% for the DSS-based strategy. Average potato 
yield for the moderately resistant cultivars increased from 
287.5 cwt/0.41 ha (unsprayed control) to 292.6 cwt/0.41 ha 
(calendar-based) and 292.7 cwt/0.41 ha (DSS-based).

Net Return per 0.41 Hectare

Summary statistics for the cost of fungicide applications, and 
the potato net return per 0.41 ha are also shown in Tables 2 
and 3. For both the worst case and randomly selected disease 
initiation scenarios, the cost of fungicide applications for the DSS-
based strategy decreases with increasing disease-resistance level.

For the susceptible cultivars, the number of fungicide appli-
cations and thus the fungicide application cost was higher 
for the DSS-based strategy than it was for the calendar-based 
strategy. However, there was a strong payoff from the extra 
fungicide applications. Both the potato yield and net return per 
0.41 ha was relatively higher for the DSS-based strategy when 
compared to the calendar-based strategy.

For the moderately susceptible and moderately resistant cul-
tivars, the number of fungicide applications and the fungicide 
application cost was lower for the DSS-based strategy than it 
was for the calendar-based strategy. For the moderately suscep-
tible cultivars, the more timely fungicide applications associ-
ated with the DSS-based strategy improved potato yields. This 
increase in potato yield, along with the cost savings associated 
with fewer fungicide applications for the DSS-based strategy, 
resulted in a relatively higher net return per 0.41 ha. For the 
moderately resistant cultivars, the relatively higher net return 
per 0.41 ha associated with the DSS-based strategy resulted 
from fungicide application cost savings rather than higher 
potato yields.

Stochastic Dominance Results

The results of the stochastic dominance analysis are pre-
sented in Tables 4 and 5 for the calendar-based and DSS-based 
strategies. These tables summarize the percentage of locations 
that appeared in each of the three possible efficient sets among 
the 59 locations: calendar-based, DSS-based, or both. For sto-
chastic dominance analysis, the preferred or dominant strategy 
was defined to be in the efficient set. To illustrate this, for a 
certain location, if the DSS-based strategy dominates the cal-
endar-based strategy, DSS is in the efficient set for this location, 
and vice versa for the calendar-based strategy. If neither strat-
egy dominates the other, then both strategies were in the risk 
efficient set for that location. In summary, DSS-based strategy 
was the preferred fungicide application strategy for numerous 
locations. The results showed that less risk averse growers were 
more willing to adopt the precision farming technology, and 
growers who grew more late blight resistant potato cultivars 
would be more willing to adopt.

For the worst case scenario, the BlightPro DSS was strongly 
preferred for all three disease-resistance categories based on 
FSD, SSD, and SDRF. For both the susceptible and moder-
ately resistant cultivars, stochastic dominance with respect to 
a function showed that the DSS-based strategy was preferred 
over the calendar-based strategy in all 59 locations for all risk 
aversion levels. For the moderately susceptible cultivar, 98.3% 
of the 59 locations preferred the DSS-based strategy over the 

Table 4. Percentage of locations in risk efficient set for the worst 
case scenario.

Item Calendar DSS† Both
––––––––––  Unit % ––––––––––

Susceptible cultivars
   FSD 0.0 44.1 55.9
   SSD 0.0 94.9 5.1
   SDRF
      Slightly risk averse 0.0 100.0 0.0
      Moderately risk averse 0.0 100.0 0.0
      Strongly risk averse 0.0 100.0 0.0
Moderately susceptible cultivars
   FSD 0.0 50.8 49.2
   SSD 0.0 94.9 5.1
   SDRF
      Slightly risk averse 0.0 98.3 1.7
      Moderately risk averse 1.7 98.3 0.0
      Strongly risk averse 1.7 98.3 0.0
Moderately resistant cultivars
   FSD 0.0 93.2 6.8
   SSD 0.0 98.3 1.7
   SDRF
      Slightly risk averse 0.0 100.0 0.0
      Moderately risk averse 0.0 100.0 0.0
      Strongly risk averse 0.0 100.0 0.0
† DSS is decision support system. FSD stands for first-degree stochas-
tic dominance. SSD stands for second-degree stochastic dominance. 
SDRF stands for stochastic dominance with respect to a function.

Table 5. Percentage of locations in risk efficient set for the ran-
domly selected disease initiation scenario.†

Item Calendar DSS Both
––––––––––  Unit % ––––––––––

Susceptible cultivars
   FSD‡ 1.7 1.7 96.6
   SSD 32.2 32.2 35.6
   SDRF
      Slightly risk averse 39.0 59.3 1.7
      Moderately risk averse 39.0 49.2 11.9
      Strongly risk averse 50.8 39.0 10.2
Moderately susceptible cultivars
   FSD 0.0 22.0 78.0
   SSD 1.7 54.2 44.1
   SDRF
      Slightly risk averse 5.1 93.2 1.7
      Moderately risk averse 6.8 84.7 8.5
      Strongly risk averse 15.3 74.6 10.2
Moderately resistant cultivars
   FSD 0.0 94.9 5.1
   SSD 0.0 100.0 0.0
   SDRF
      Slightly risk averse 0.0 100.0 0.0
      Moderately risk averse 0.0 100.0 0.0
      Strongly risk averse 0.0 100.0 0.0
† Due to rounding, for some cases the sum of the efficient sets for 
calendar, decision support system (DSS), and both columns are not 
equal to 100.0%.
‡ FSD stands for first-degree stochastic dominance. SSD stands for 
second-degree stochastic dominance. SDRF stands for stochastic domi-
nance with respect to a function.
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calendar-based strategy. For one location, in Wisconsin, the 
dominated preference switched from being indifferent between 
the two spray strategies to the calendar-based strategy as the 
risk aversion level increased.

For the randomly selected disease initiation scenario, DSS-
based strategy was still preferred over the calendar-based strat-
egy for a large proportion of the locations. For the slightly risk 
averse growers, a higher percentage of the locations preferred 
the DSS-based strategy over the calendar-based strategy. 59.3% 
of the 59 locations preferred the DSS-based strategy for the 
susceptible cultivars, 93.2% of the 59 locations preferred the 
DSS-based strategy for the moderately susceptible cultivars, 
and all of the 59 locations preferred the DSS-based strategy for 
the moderately resistant cultivars. Maine, New York, North 
Dakota, and Wisconsin had the highest percentage of locations 
for which the DSS-based strategy was preferred for the suscep-
tible cultivars.

For the moderately risk averse growers, DSS-based strategy 
was still preferred over the calendar-based strategy for a large 
proportion of the locations. 49.2% of the 59 locations preferred 
the DSS-based strategy for the susceptible cultivars, 84.7% 
of the 59 locations preferred the DSS-based strategy for the 
moderately susceptible cultivars, and all of the 59 locations 
preferred the DSS-based strategy for the moderately resistant 
cultivars. Maine and North Dakota had the highest percentage 
of locations for which the DSS-based strategy was preferred for 
the susceptible cultivars.

For strongly risk averse growers, DSS-based strategy was pre-
ferred over the calendar-based strategy for a vast majority of the 
locations. 39.0% of the 59 locations preferred the DSS-based 
strategy for the susceptible cultivars, 74.6% of the 59 locations 
preferred the DSS-based strategy for the moderately susceptible 
cultivars, and all of the 59 locations preferred the DSS-based 

Fig. 3. Certainty equivalent as a function of risk aversion for 
alternative strategies at one location in Wisconsin (susceptible 
cultivars and the randomly selected disease initiation scenario).

Fig. 4. Risk premium as a function of risk aversion for alternative 
strategies at one location in Wisconsin (susceptible cultivars and 
the randomly selected disease initiation scenario).

Table 6. Average certainty equivalent of net return per 0.41 ha 
for the worst case scenario.

Item†

Certainty 
equivalent

Risk 
premium

Calendar DSS‡

DSS 
over 

calendar
Susceptible cultivars
   r = 0 $2212 $2516 $305
   r = 1 $2082 $2422 $340
   r = 5 $1542 $2086 $544
   r = 10 $1273 $1846 $573
Moderately susceptible cultivars
   r = 0 $2363 $2530 $167
   r = 1 $2254 $2436 $182
   r = 5 $1812 $2104 $292
   r = 10 $1538 $1870 $333
Moderately resistant cultivars
   r = 0 $2554 $2605 $51
   r = 1 $2461 $2512 $51
   r = 5 $2129 $2179 $50
   r = 10 $1892 $1940 $48
† r is the relative risk aversion coefficient. A power utility function is 
assumed.
‡ DSS is decision support system.

Table 7. Average certainty equivalent of net return per 0.41 ha for 
the randomly selected disease initiation scenario.

Item†

Certainty 
equivalent

Risk 
premium

Calendar DSS‡

DSS 
over 

calendar
Susceptible cultivars
   r = 0 $2492 $2523 $30
   r = 1 $2391 $2429 $38
   r = 5 $2008 $2094 $86
   r = 10 $1763 $1853 $90
Moderately susceptible cultivars
   r = 0 $2521 $2565 $43
   r = 1 $2425 $2471 $46
   r = 5 $2068 $2139 $71
   r = 10 $1825 $1901 $76
Moderately resistant cultivars
   r = 0 $2555 $2602 $48
   r = 1 $2462 $2510 $47
   r = 5 $2135 $2179 $44
   r = 10 $1901 $1940 $39
† r is the relative risk aversion coefficient. A power utility function is 
assumed.
‡ DSS is decision support system.
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strategy for the moderately resistant cultivars. Maine and 
North Dakota had a higher percentage of the locations that 
prefer the DSS-based strategy for the susceptible cultivars.

Stochastic Efficiency Results

To find the value of the BlightPro DSS, we compared the 
average CEs and RPs of the DSS-based and calendar-based 
strategies using SERF analysis. Figures 3 and 4 illustrate an 
example of SERF analysis, which compared the CEs and RPs 
between the calendar-based and the DSS-based strategies. In this 
example, the DSS-based strategy was preferred for less risk averse 
individuals. As the risk aversion level increased, the calendar-
based strategy was preferred. The crossover point, the point for 
which preferences switched from the DSS-based strategy to the 
calendar-based strategy, occurred at a relative risk aversion level 
of approximately 4.6. The stochastic efficiency with respect to a 
function results varied among the 59 locations. Tables 6 and 7 
summarize the results for the average CE and RP of relative risk 
aversion level 0, 1, 5, and 10 for each disease-resistance categories 
at the 59 locations. Regardless of the risk aversion level and dis-
ease-resistance category, BlightPro DSS generated higher average 
CEs than that of the calendar-based strategy.

The value of information created by the BlightPro DSS varies 
by scenario, disease-resistance category of the potato cultivar, 
producer risk aversion level, and location. For the worst case 
scenario, the average risk premium ranged from $305 to $573 

per 0.41 ha for the susceptible cultivars, $167 to $333 per 
0.41 ha for the moderately susceptible cultivars, and $48 to $51 
per 0.41 ha for the moderately resistant cultivars. These values 
for the worst case scenario represents the value created by the 
BlightPro DSS if the disease starts at the earliest potential 
disease outbreak point, either through infected potato tubers 
planted in the current season, or through infected volunteer 
potato. The randomly selected disease initiation scenario is 
closer aligned with reality, where the initiation of the late 
blight epidemic depends on influx of inoculum from surround-
ing environment (e.g., infected neighbor farm) throughout 
the production season. The risk premiums were lower for the 
randomly selected disease initiation scenario. Average risk 
premiums ranged from $30 to $90 per 0.41 ha for susceptible 
cultivars, from $43 to $76 per 0.41 ha for moderately suscep-
tible cultivars, and from $39 to $48 per 0.41 ha for moderately 
resistant cultivars. It was also important to note that the ben-
efit of less risk averse growers was mostly smaller than that for 
more risk averse growers, except for moderately resistant culti-
vars. Also, for growers who produced more late blight resistant 
potatoes, the benefit was generally less than it was for growers 
who produced more susceptible cultivars. The value of adop-
tion also depended on the location of the farm as illustrated in 
Fig. 5 and 6. There was more variation among states for suscep-
tible cultivars and moderately susceptible cultivars than there 
was for moderately resistant cultivars.

Fig. 5. State average risk premiums ($/per 0.41 ha) for for the worst case scenario.
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Conclusions
This paper discusses how new technologies and practices 

are being harnessed to help potato growers manage risk,  and 
improve food production and profitability. Our study builds 
on the work conducted by Small et al. (2015b). By overlaying 
economic and risk analyses onto their results, we demonstrate 
the benefits of adopting precision agriculture. In particular, by 
using economic models along with plant pathology models, we 
were able to demonstrate the role of precision agriculture tech-
nology in improving disease management, yield, and net return 
given a range of possible weather and price risks. We identified 
the risk-efficient fungicide scheduling strategy by using sto-
chastic dominance methods. In addition, we also evaluated the 
economic benefit to scheduling fungicide applications with the 
precision agriculture technology using the stochastic efficiency 
with respect to a function method. The analysis in this article 
used the same average yield and seed cost among potato cultivars. 
Future analysis will explore the sensitivity of the results to varying 
yield and seed cost assumptions.

Overall, our study shows that precision agriculture technol-
ogy can improve input usage efficiency, boost productivity, and 
increase net return; while compensating the grower for the 
additional risk associated with net return variability. The DSS-
based strategy was identified as the most effective approach 
to manage late blight in terms of disease suppression, potato 
productivity, net return, and risk-adjusted net return. Results 

indicated that the DSS-based strategy was the preferred risk 
mitigating method to schedule fungicide applications. Less 
risk-averse growers and growers with susceptible potato culti-
vars are more willing to adopt the precision agriculture technol-
ogy. Under high disease pressure circumstances, the economic 
benefits to potato growers who adopt the precision agriculture 
technology ranged from $30 to $573 per 0.41 ha.

By quantifying the benefits associated with adopting the 
BlightPro decision support system (DSS) strategy to improve 
late blight management for potato production, our research 
has important implications for technology adoption and future 
work. Knowing the value of the information provided by the 
BlightPro DSS can help improve the adoption rate of this pre-
cision agriculture technology, as well as help plant pathologists 
make further improvements to the potato production systems. 
Increased adoption of the BlightPro DSS would help manage 
late blight, limit potential crop losses, and improve the net 
return of potato growers.
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