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RESEARCH

Genetic ´ environment interaction (G´E) affects trait heri-
tability and the relative rankings of phenotypes across 

environments; this introduces challenges when making breeding 
decisions. The effects of G´E on heritability may be due to scale 
effects such as changes in the size of quantitative trait loci (QTL) 
effects across environments or to differential genetic effects on envi-
ronmental variance. However, G´E can also modulate QTL effects, 
thus introducing changes in the relative rank of genotypes across 
environments (Dickerson, 1962; Cockerham, 1963). Falconer (1952) 
suggested modeling performance in two environments as two cor-
related traits; this allows modeling both scale effects and rerankings.
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ABSTRACT
The marker ´ environment interaction (M´E) 
genomic model can be used to generate pre-
dictions for untested individuals and identify 
genomic regions in which effects are stable 
across environments and others that show 
environmental specificity. The objectives of this 
study were (i) to extend the M´E model using pri-
ors that produce shrinkage and variable selec-
tion such as Bayesian ridge regression (BRR) 
and BayesB (BB), respectively, and (ii) to evalu-
ate the genomic prediction accuracy of M´E, 
single-environment, and across-environment 
models using a multiparental durum wheat (Triti-
cum turgidum L. spp. duram) population charac-
terized for grain yield (GY), grain volume weight 
(GVW), 1000-kernel weight (GWT), and heading 
date (HD) in four environments. Breeding value 
predictions were generated for two prediction 
problems: cross-validation problem 1 (CV1) and 
cross-validation problem 2 (CV2). In general, 
results showed that the M´E model performed 
better than the single-environment and across-
environment models, in terms of minimizing the 
model residual variance, for both CV1 and CV2. 
The improved data-fitting gain over the other 
models was more evident for GWT and HD (up 
to twofold differences) than to GY and GVW, 
which showed more complex genetic bases 
and smaller single-marker effects. Considering 
the Bayesian models used, BB showed better 
overall prediction accuracy than BRR. As proof-
of-concept for the M´E model, the major con-
trollers of HD—Ppd and FT on chromosomes 
2A, 2B, and 7A—showed stable effects across 
environments as well as environment-specific 
effects. For GY, besides the regions on chro-
mosomes 2B and 7A, additional chromosome 
regions with large marker effects were detected 
in all chromosome groups.

J. Crossa and J. Burgueño, Biometrics and Statistics Unit, International 
Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 
6-641, Mexico DF, 06600 Mexico; G. de los Campos, Epidemiology 
& Biostatistics and Statistics Deps., Michigan State Univ., 909 Fee 
Rd., East Lansing, MI 48824; R. Tuberosa and M. Maccaferri, Dep. 
of Agricultural Sciences, Univ. of Bologna, Viale Fanin 44, 40127, 
Bologna, Italy; P. Pérez-Rodríguez, Colegio de Postgraduados, Sta-
tistics and Computer Sciences, Montecillos, Edo. de Mexico, Mexico. 
Received 22 Apr. 2015. Accepted 28 July 2015. *Corresponding authors  
(perpdgo@gmail.com; j.crossa@cgiar.org).

Abbreviations: aBB, across-environment BayesB; aBRR, across-envi-
ronment Bayesian ridge regression; BB, BayesB; BRR, Bayesian ridge 
regression; CV1, cross-validation problem 1; CV2, cross-validation prob-
lem 2; GBLUP, genomic best linear unbiased prediction; GS, genomic 
selection; GVW, grain volume weight; GWT, 1000-kernel weight; GY, 
grain yield; G´E, genetic ´ environment interaction; HD, heading date; 
M´E, marker ´ environment interaction; NCCR, ‘Neodur’, ‘Clau-
dio’, ‘Colosseo’, and ‘Rascon/Tarro’; QTL, quantitative trait loci; RIL, 
recombinant inbred line; sBB, single-environment BayesB; sBRR, sin-
gle-environment Bayesian ridge regression; SNP, single-nucleotide poly-
morphism; TRN-TST, training–testing; TRN, training; TST, testing.

Published in Crop Sci. 56:2193–2209 (2016). 
doi: 10.2135/cropsci2015.04.0260 
 
© Crop Science Society of America | 5585 Guilford Rd., Madison, WI 53711 USA 
This is an open access article distributed under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published December 3, 2015



2194	 www.crops.org	 crop science, vol. 56, september–october 2016

Knowledge of the genetic basis of adaptation and its 
physiological and environmental causes is essential for 
understanding G´E, for interpreting the causal association 
between phenotype and genotypes at particular loci, and 
for enhancing the selection of superior and stable geno-
types. This issue is particularly relevant when considering 
highly contrasting environments and QTL performance 
(Collins et al., 2008; Maccaferri et al., 2008; Bennett et 
al., 2012; Bonneau et al., 2013; Heslot et al., 2014). A 
shortcoming of many of the statistical multienvironment 
models commonly used in plant breeding is that they deal 
with G´E implicitly, without explicitly modeling gene 
(marker) ´ environment interactions. Such an approach 
does not shed light on the underlying genetic architec-
ture of G´E. Examples of methods that deal with G´E 
implicitly without modeling M´E include the family of 
linear-by-linear models of Cornelius et al. (1996) as well 
as more modern methods such as the multivariate pedi-
gree- or marker-based models, where G´E is modeled 
using structured or unstructured covariance functions 
(e.g., Piepho, 1997, 1998; Smith et al., 2005; Crossa et al., 
2006; Burgueño et al., 2007, 2012; El-Soda et al., 2014). 
When genomic data are available, G´E can be modeled 
explicitly by means of M´E when marker effects can vary 
among environments or groups of environments and by 
recognizing that these effects may be correlated. This 
approach was first used with sparse marker data in QTL 
analysis (Moreau et al., 2004) and, in many cases, was 
based on a limited number of markers (Boer et al., 2007).

Genomic-enabled prediction models for genomic 
selection (GS) using all available markers were originally 
presented by Meuwissen et al. (2001). After this original 
study, several genomic prediction models were developed 
and applied in simulated and real plant breeding data (e.g., 
Bernardo and Yu, 2007; de los Campos et al., 2009, 2013; 
Crossa et al., 2010; Pérez-Rodríguez et al., 2012). In gen-
eral, these studies showed good prediction accuracies for 
GY and other traits evaluated by means of several random 
cross-validation partitions of the data. The first public 
study confirming these previous findings on genomic-
enabled prediction was that of Massman et al. (2013), who 
showed that genomic selection improved genetic gains per 
unit of time in one biparental temperate maize (Zea mays 
L.) population. Recently, Beyene et al. (2015) achieved 
important genetic gains in GY through genomic selec-
tion in eight tropical biparental CIMMYT maize popula-
tions; these authors evaluated cycles of genomic selection 
in severe drought environments in sub-Saharan Africa. 
These results have prompted other CIMMYT maize and 
bread wheat breeding programs to quickly adopt GS.

Originally, genomic-enabled prediction models and 
methods were developed and used without considering 
G´E. Burgueño et al. (2012) extended the GS model to 
accommodate G´E in a genomic best linear unbiased 

prediction (GBLUP) context. More recently, Heslot et al. 
(2014) and Jarquín et al. (2014) proposed GS models that 
incorporate both markers and environmental covariates 
in the G´E model, while López-Cruz et al. (2015) con-
sidered a GS model that incorporates M´E. These stud-
ies have demonstrated that incorporating G´E can lead 
to substantial increases in prediction accuracy relative to 
either within-environment analyses or an across-environ-
ment analysis that ignores G´E.

The M´E GS model presented by López-Cruz et al. 
(2015) can be employed not only for genomic-enabled 
prediction but also for identifying genomic regions in 
which the effects are stable across environments and other 
regions that are specific to certain environments and 
therefore responsible for G´E. Results of the M´E model 
proposed by López-Cruz et al. (2015) on three extensive 
bread wheat data sets showed that (i) the proportion of 
genomic variance explained by the main effect is a good 
estimator of the phenotypic correlation between envi-
ronments, and (ii) depending on the validation problem 
and on the correlation between environments, the M´E 
model can yield important gains in prediction accuracy 
over the single-environment and across-environment 
models. However, López-Cruz et al. (2015) did not use 
the M´E model for identifying chromosomic regions in 
genome-wide association analyses.

Standard multienvironment mixed-model approaches 
(e.g., Piepho, 1997, 1998; Smith et al., 2005; Crossa et 
al., 2006; Burgueño et al., 2007, 2012) rely on Gauss-
ian assumptions; when applied to genomic data, these 
approaches induce shrinkage (i.e., reduce marker effects) 
but not variable (marker) selection. One advantage of the 
M´E model is that it can be used with prior informa-
tion that induces shrinkage as well as priors that produce 
variable selection. The application presented by López-
Cruz et al. (2015) is based on a shrinkage method (a ridge-
regression type estimator). Here, we extend this approach 
to variable selection methods by means of the BB model, 
although the methodology can be extended also to include 
other members of the Bayesian alphabet (Gianola, 2013).

In durum wheat, Abdalla et al. (1997) and Trethowan 
et al. (2005) pointed out that targeted genetic progress 
could be achieved by subdividing global durum areas 
into more homogenous subregions, thus reducing G´E. 
Recent studies in durum wheat included extensive asso-
ciation mapping for agronomic traits for a reference popu-
lation evaluated under different water regimes (Maccaferri 
et al., 2011) and a high-density single-nucleotide poly-
morphism (SNP) map (Maccaferri et al., 2014; Milner et 
al., 2015). Although in recent years genomic prediction 
has been applied to bread wheat (de los Campos et al., 
2009, 2010; Crossa et al., 2010; González-Camacho et al., 
2012; Heslot et al., 2012; Pérez-Rodríguez et al., 2012; 
López-Cruz et al., 2015), to our best knowledge, no study 
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Genotypic Data
The final number of SNPs included in the NCCR linkage map 
was 7594. The markers were centered and standardized before 
being used in the GS models. The NCCR linkage map was esti-
mated using the program mpMap (Huang and George, 2011), 
an R package specifically written for analyzing multiparental 
populations. Maximum likelihood estimates of the recombina-
tion fraction (r) between each SNP pair were obtained using the 
mpestrf function with default parameter settings.

Phenotypic Data
Phenotypic evaluation of the NCCR population was performed 
during two growing seasons (2010–2011 and 2011–2012) in 
locations in the Po Valley representative of the target environ-
ments where durum wheat is grown: Cadriano (44°33¢ N 11° 
26¢ E) in the 2010–2011 growing season (Cad11) and the 2011–
2012 growing season (Cad12); Poggio Renatico (44°46¢ N 
11°30¢ E) in the 2010–2011 growing season (Pr11), and Argelato 
(44°34¢ N 11°20¢ E) in the 2011–2012 growing season (Arg12). 
The 338 RILs, the four parents, and the five control genotypes 
were evaluated in an a-lattice incomplete-block experimental 
design; a 19 by 19 a-lattice design with two replications was 
considered in each environment. The genotype least squares 
means were adjusted for a lattice, with incomplete blocks con-
sidered as random effects to recover interblock information.

The four traits included in this study were GY (Mg ha−1), 
HD (d), GWT (g 1000 kernels−1), and GVW (kg hL−1). The 
phenotypes of the four traits used for data analysis were the best 
linear unbiased estimates after recovering the incomplete block 
information (i.e., adjusting for the random incomplete block 
effect) in each environment and across environments.

Statistical Models
The M´E model extends the approach described in López-
Cruz et al. (2015) by incorporating priors that can induce 
variable selection and allowing for environment-specific error 
variances. We performed a combined analysis based on an 
M´E model from which within-environment analysis (also 
referred to as single-environment model or stratified analysis) 
and across-environment analysis can be derived and computed.

Marker ´ Environment Interaction  
Regression Model 
In an interaction model, the effect of the kth marker in the jth 
environment is modeled as the sum of a main effect (b0k) plus 
an interaction term bjk representing deviations from the main 
effect resulting from M´E. Thus, the marker effect model for 
the kth marker in the jth environment is bjk = b0k + bjk. With 
this, the regression equation for the ith line in the jth environ-
ment, yij, becomes

( )0
1

 
p

ij j ijk k jk ij
k

y x b b
=

= m + + +eå  

has been reported on (i) genomic prediction accuracy of 
traits measured in durum wheat, and (ii) the use of the 
M´E model with variable selection and with marker main 
effect and environment marker-specific effects.

The main objectives of this study were (i) to extend 
and demonstrate the use of the M´E model of López-
Cruz et al. (2015) but using priors that induce shrink-
age (BRR) as well as variable selection (BB) and (ii) to 
evaluate these GS models using a durum wheat population 
comprising a balanced, four-parental cross (identified as 
NCCR) (Milner et al., 2015) evaluated for HD, GVW, 
GWT, and GY in four environments. One problem we 
assessed was how to generate breeding-value predictions 
for additional lines for which phenotypic data were not 
available (cross-validation problem 1, or CV1); another 
problem was how to predict breeding values for lines 
observed in some environments but not in others (cross-
validation problem 2, or CV2). We also show how the 
M´E model, when implemented with priors that induce 
variable selection, can provide information on which 
genomic regions contribute the most to stability and to 
interaction effects. Furthermore, we applied the M´E 
model considering heterogeneity of within-environment 
error variance as an extension of the López-Cruz et al. 
(2015) model that was originally used assuming homoge-
neity of within-environment error variance.

MATERIALS AND METHODS
Genotypic and Phenotypic Data
Details of phenotypic and genotypic data as well as how the 
multiparental population was developed are given in Milner et 
al. (2015); a brief description is given below.

Development of the Multiparental  
NCCR Population
A balanced, four-way multiparental cross population was devel-
oped from four elite durum wheat cultivars (Neodur, Claudio, 
Colosseo, and Rascon/Tarro) that were chosen as diverse con-
tributors of different alleles of agronomic relevance. The cultivars 
were crossed pair-wise following the scheme ([Neodur ´ Clau-
dio] ´ [Colosseo ´ Rascon/Tarro], i.e., NCCR) to produce 
two-way F1 hybrids that were subsequently crossed to produce 
400 four-way F1 NCCR hybrids. These four-way F1 hybrids 
were advanced through single-seed descent and bulked in the F8 
generation. The final NCCR population includes 338 recombi-
nant inbred lines (RILs) (Milner et al., 2015). This population 
is representative of segregating populations commonly used in 
wheat breeding, where the three- and four-way cross scheme 
is increasingly adopted to generate wider genotypic variance in 
segregating populations as compared with the traditional bipa-
rental cross. Importantly, the balanced NCCR population shows 
almost no population structure (Milner et al., 2015), making it 
a much more suitable material for assessing the performance of 
M´E models than collections of diverse cultivars and breeding 
lines commonly used in association mapping studies.
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or, in matrix notation and assuming s environments,
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matrix of marker-centered and standardized genotypes for each 
of the s environments. In the ridge regression BLUP or GBLUP 
context, the vectors of main marker effects, M´E effects, and 
residual effects are all assumed to be normally distributed, 
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The model in Eq. [1] is described as an M´E ridge regression 
BLUP (or M´E GBLUP model).

López-Cruz et al. (2015) assume homoscedasticity of 
environmental residuals (i.e., equal variance for all the envi-
ronments), that is, ( )2~ ,N es0 Ie . In this study, we relax this 
assumption and use the heterogeneity of residual environ-
mental variances, such that ( )~ , nN Ä0 D Ie ,  where D = diag 
(

1 2

2 2 2, , ,
se e es s s ) with 

1

2 2,,
se es s  denoting the residual variance 

for environments 1,...,s, respectively, and In is an n-dimensional 
identity matrix.

Single-Environment Regression and Across-
Environment Regression Models
A single-environment (or within-environment) regression 
model can be obtained as a special case of the model in Eq. [1] 
by removing the main effects of markers, b0 = 0, such that
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This is equivalent to regressing phenotypes on markers in each 
environment, that is, fitting a GS model. Alternatively, a special 
case of Eq. [2] is the across-environment regression model that 
assumes constant marker effects across the environments, b1 = 
b2 = . . . = bs = b, such that,
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Models [1] to [3] were fitted by using Bayesian estimation meth-
ods. Next, we describe the prior distributions.

Prior Distributions
The intercepts were assigned flat priors, the error variances 
were assigned weakly informative, scaled, inverse Chi squared 
densities with five degrees of freedom, and the scale parameter 

was estimated from marker data for each dataset; for further 
details see Pérez-Rodríguez and de los Campos (2014) (see 
section B: Default Rules for Choosing Hyper-Parameters 
for Variance Parameters). Marker effects were assigned either 
Gaussian priors (BRR, equivalent to the GBLUP model) or 
a two-component mixture with a point of mass at zero and a 
t-slab (the so-called BB BayesB model, Meuwissen et al., 2001). 
The Gaussian prior induces shrinkage of estimates of effects; on 
the other hand, the mixture prior used in model BB can induce 
variable selection and shrinkage simultaneously. The variance 
of the marker effects in BRR, the proportion of nonnull effects 
in BB, and the scale of the t-slab were estimated from data, 
as implemented in the BGLR software (de los Campos and 
Pérez–Rodríguez, 2014).

Full Data Analyses
The models described above were first fitted to the full data 
set on a trait-by-trait basis. Analyses using the full data had 
two aims: (i) to derive estimates of variance components and 
(ii) to estimate markers effects for the genome-wide association 
analyses. Full data were used to estimate the posterior variance 
components resulting from residual effects, marker main effect, 
and environment-specific effects from the single-environment 
BRR (sBRR) model, the M´E BRR model, and the across-
environment BRR (aBRR) model for the four traits measured 
in four environments.

It should be pointed out that the information generated 
from the full data analyses was not used as prior information 
for the random cross-validation partition schemes (CV1 and 
CV2) employed for assessing the prediction accuracy of the 
different models.

Random Cross-Validations Partitions of the Data 
for Assessing Prediction Accuracy
Prediction accuracy was assessed using replicated training–test-
ing (TRN-TST). Within each TRN-TST partition, a set of 
lines comprising 80% of the records were selected and used as 
training models (TRN, 270 durum wheat lines); the remaining 
20% of the records (TST, 68 durum wheat lines) were used to 
assess prediction accuracy. For each of the 50 partitions, all the 
posterior variance components resulting from residual effects, 
marker main effect, environment-specific effects from the sin-
gle-environment, the M´E, and the across-environment BRR 
models for the four traits were re-estimated.

The pattern of missing values was generated using a 
cross-validation scheme that mimics two prediction problems 
commonly encountered in plant breeding (Burgueño et al., 
2012). The first prediction problem in cross-validation (CV1) 
predicts 20% of the unobserved durum wheat lines that were 
not evaluated in any of the four environments (validation set, 
TST); this CV1 mimics the situation were newly developed 
durum wheat lines that have never been observed in any of 
the environments must be predicted (in each of those environ-
ments). For CV1, the TRN and TST populations were randomly 
assigned: 80% to TRN and 20% to TST. The second predic-
tion problem in cross-validation (CV2) assumes that 20% of the 
durum wheat lines were evaluated in some environments but 
not in others. The CV2 prediction problem is similar to the one 
plant breeders face when using a sparse field design evaluation 
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for HD, environments Arg12 and Cad12 were much later 
than environments Cad11 and Prn11 (Fig. 1d). Sample 
phenotypic correlations among the four environments for 
the four traits are given in Table 1. Most of the pair-wise 
environments had a positive and, in some cases, high corre-
lation, especially for HD and GWT. The exceptions were 
those cases where the correlation of environments was 
equal or very close to zero, for example, GY for environ-
ment pairs Cad12-Cad11 (0.0578), Cad12-Arg12 (0.1708), 
and Pr11-Cad12 (0.0246), and GVW for environment 
pairs Cad11-Arg12 (0.0188), Cad11-Cad12 (−0.0190), 
Pr11-Cad11 (−0.0540), and Pr11-Cad12 (0.1626). In all 
environments, GY and GVW had markedly lower herita-
bility (from 0.2578 to 0.3413 and from 0.2146 to 0.4684, 
respectively) than GWT and HD (from 0.5672 to 0.6575).

Variance Component Estimates
Estimates of residual and genomic variance components 
for the single-environment, M´E, and across-environ-
ment models (derived from BRR and BB and the different 
traits and environments) are based on full data analyses 
and presented in the following sections. Marker main 
effects and environment marker-specific effects are also 
based on full data analyses.

where some lines are evaluated in some environments but not 
in others. In CV2, some durum wheat lines are predicted in 
environments that were not phenotypically evaluated.

We used 50 random partitions of the TRN-TST design 
described above; for each TRN-TST design, models were fitted 
to the training data set and prediction accuracy was assessed 
by computing Pearson’s product–moment correlation between 
predictions and observed phenotypes in the testing data set 
within environments and across environments. Thus, 50 cor-
relations were computed for each model and trait, and the mean 
and standard deviations of these 50 correlations are reported.

Software
The models described above were implemented using the R 
package (R Development Core Team, 2014) Bayesian Gen-
eralized Linear Regression (BGLR; de los Campos and 
Pérez-Rodríguez, 2015), release 1.0.4, available at CRAN, 
http://cran.r-project.org/web/packages/BGLR/index.html, 
which supports heterogeneous variances in the model residuals.

RESULTS
Statistics Descriptive of the Data
Box plots of traits GY, GVW, GWT, and HD in each 
of the environments are depicted in Fig. 1. For GY, the 
four environments showed similar potential (average GY 
ranging between 5.5 and 6.0 Mg ha−1; Fig. 1a); however, 

Figure 1. Box plot of adjusted means for (a) grain yield (GY, Mg ha−1), (b) grain volume weight (GVW, kg hL−1), (c) 1000-kernel weight (GWT, 
g 1000 kernels−1), and (d) days to heading (HD, d) in four environments (Arg12, Cad11, Cad12, and Pr11).
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Residual Variances
Estimates (estimated posterior means) of the residual vari-
ance parameters from the M´E, single-environment 
(sBRR, sBB) and across-environment (aBRR, aBB) 
models derived from BRR and BB are given in Table 2 
and Table 3, respectively; general patterns and trends are 
depicted in Fig. 2 for model BRR and Fig. 3 for model 
BB for the four traits in each environment. For all traits 
and environments, the estimated residual variances for 
the M´E model derived from the BRR and BB models 
were always smaller than those derived from the single-
environment and across-environment BRR and BB 
models. These results indicate the M´E model derived 
from BRR or BB fits the data better than models that 
(i) force the marker effects to be constant across environ-
ments and (ii) single-environment models. The patterns 
of residual variance for the single-environment, M´E, 
and across-environment models derived from BRR and 
BB are very similar and do not indicate that overall BRR 
gives a better fit than BB, or vice versa. For all models and 
environments, residual variances are much smaller for the 
simpler traits GWT and HD than for the more complex 
(and less heritable) traits such as GY and GVW.

Genomic Variances
In the genomic variance components derived from BRR, 
the single-environment model estimates separate marker 
variances for each environment, whereas, in the BRR 
across environments, just one marker variance (the same 
for all environments) is estimated. In the M´E BRR 
interaction model, a marker main effect and a marker-
specific effect for each environment are estimated. In the 
M´E BB interaction model, marker effects are given in 
terms of the probability or proportion of markers with 

effects different from zero (nonnull) that are estimated for 
each of the components of the marker effects (i.e., main 
effect and environment marker specific effect) (see Table 2 
for BRR and Table 3 for BB).

As previously mentioned, in the M´E BRR interac-
tion model, the total genomic variance is portioned into 
the marker main effects and the environmental marker-
specific effect. Figure 4 depicts the percentages of the 
main and specific marker effects for each trait and envi-
ronment. For GY, the marker main effects explained ~55 
to 62% of the total genomic variance in all environments, 
whereas the specific marker variance in each environment 
was ~38 to 45% (Fig. 4a). For GVW, the marker main 
effect explained ~30 to 41%, whereas the markers that had 
specific variance effects in each environment accounted 
for 59 to 70% (Fig. 4b). For less complex traits (GWT and 
HD), the marker main effect explained most of the total 
genomic variance (>90%) with a small marker environ-
mental specific variance for all environments (Figs. 4c, d). 
Note that the marker variance component of the main 
effect for HD was 2.3388 with a SD 0.1649 (Table 2 for 
BRR), indicating the uncertainty of this variance compo-
nent estimate. This is likely due to the great variance of 
HD among the four environments (see the box plot in Fig. 
1d), which inflates .

The estimated proportion of markers with nonnull 
effects given by the BB model varies depending on the 
trait and the model. Overall, the across-environments 
BB model (aBB) had a lower proportion of markers with 
nonnull effect than the M´E BB model (Table 3), and 
fewer nonnull markers were found for trait HD than GY 
and GVW. For example, model aBB gave proportions of 
13.34, 28.57, 34.82, and 39.35% of markers with non-
null effects for HD, GWT, GVW, and GY, respectively, 

Table 1. Phenotypic correlations among four environments (Arg12, Cad11, Cad12, and Pr11) for grain yield (GY), grain volume 
weight (GVW), 1000-kernel weight (GWT), and days to heading (HD). Heritability (H2) of the four traits in each of the four environ-
ments (standard deviation in parentheses).

Environment

Lower diagonal GY, upper diagonal GVW

Arg12 Cad11 Cad12 Pr11

Arg12 – 0.0188 0.3422 0.1128

Cad11 0.3420 – −0.0190 −0.0540

Cad12 0.1708 0.0578 – 0.1626

Pr11 0.3009 0.4748 0.0246 –

Lower diagonal GWT, upper diagonal HD
Arg12 – 0.7744 0.7702 0.7851

Cad11 0.8513 – 0.8302 0.9272

Cad12 0.8003 0.7608 – 0.8109

Pr11 0.8795 0.8603 0.7596 –

Heritability
GY GVW GWT HD

Arg12 0.3413 (0.0636) 0.3262 (0.0651) 0.6575 (0.0551) 0.4696 (0.0713)

Cad11 0.2820 (0.0548) 0.2146 (0.0453) 0.6143 (0.0589) 0.6700 (0.0654)

Cad12 0.2578 (0.0530) 0.4684 (0.0744) 0.5672 (0.0629) 0.6038 (0.0676)

Prn11 0.3253 (0.0647) 0.2218 (0.0455) 0.6384 (0.0572) 0.5890 (0.0714)
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whereas the M´E BB model gave, for the marker main 
effect, proportions of 40.74, 48.50, 53.12, and 51.15% of 
markers with nonnull effect for traits HD, GWT, GVW, 
and GY, respectively.

Marker Main Effects and Environment-
Specific Effects
The M´E BB model induces variable (marker) selection and 
thus offers the possibility of examining the response patterns 
of the marker main effects and environment-specific marker 
effects. For trait HD, the marker main effect showed spe-
cific regions of chromosomes 2A, 2B, and 7A, with large 
marker main effects (Fig. 5a). Based on the gene-tagging 
SNPs used to construct the map and perform the synteny 
analysis, these regions correspond to main effects at candi-
dates PPD-A1, PPD-B1 and TaFTA, respectively (Milner 
et al., 2015). For environment-specific marker effects, the 
M´E BB model evidenced one marker in chromosome 2A 
that had a prominent role in environment Cad11 (Fig. 5b). 
Chromosome position (in cM), absolute value of the marker 
effects in days for trait HD for the marker main effect and 

specific environmental effect for the markers with the high-
est effects outlined in Fig. 5 are given in Supplemental Table 
S1 (see http://hdl.handle.net/11529/10233).

For GY (a complex trait), the patterns of marker main 
effects and environment-specific effects are not as clearly 
depicted as those for HD (a much less complex trait). The 
marker main effect detected by the M´E BB model evi-
denced important regions of chromosomes 2A, 2B, 3A, 5A, 
5B, and 7A (Fig. 6a); these regions are also related to PPD-B1 
and TaFTA effects as well as to the regions of chromosomes 
3A, 5A, and 5B. Markers with environment-specific effects 
were found on chromosomes 1B, 4B, and 7A in Arg12 (Fig. 
6b), on chromosomes 2A, 3A, 5A, and 5B in Cad11 (Fig. 
6c), in a region on chromosome 2B in Cad12 (Fig. 6d), 
and in several regions of most chromosomes in environ-
ment Prn11 (Fig. 6e). Chromosome position (in cM) and 
the markers with the highest absolute value (in Mg ha−1) for 
trait GY outlined in Fig. 6 are given in Supplemental Table 
S2 (see http://hdl.handle.net/11529/10233).

Table 2. Estimated posterior variance components as a result of residual, marker main effect, and environment-specific effects 
(and their posterior standard deviations, SD) from the single-environment Bayesian ridge regression model (sBRR), the marker 
´ environment interaction Bayesian ridge regression model (M´E BRR), and the across-environment Bayesian ridge regres-
sion model (aBRR) for grain yield (GY), grain volume weight (GVW), 1000-kernel weight (GWT), and days to heading (HD) mea-
sured in four environments (Arg12, Cad11, Cad12, and Pr11).

Environment

GY GVW GWT HD

Estimate SD Estimate SD Estimate SD Estimate SD

Single-environment Bayesian ridge regression (sBRR)

Residual Arg12 0.7133 0.0743 0.7343 0.0766 0.3124 0.0393 0.5670 0.0664

Cad11 0.7708 0.0733 0.8623 0.0769 0.3461 0.0419 0.3903 0.0582

Cad12 0.8036 0.0763 0.5754 0.0689 0.4132 0.0491 0.4434 0.0589

Pr11 0.7384 0.0770 0.8439 0.0764 0.3368 0.0417 0.4636 0.0624

Marker Arg12 0.3722 0.0841 0.3582 0.0852 0.6088 0.1007 0.5089 0.109

Cad11 0.3042 0.0686 0.2363 0.0554 0.5595 0.0974 0.8091 0.148

Cad12 0.2804 0.0657 0.5146 0.1147 0.5495 0.1018 0.6880 0.1326

Pr11 0.3585 0.0850 0.2410 0.0549 0.6038 0.1027 0.6770 0.1362

M ´ E interaction Bayesian ridge regression (M´E BRR)

Residual Arg12 0.6403 0.0629 0.7123 0.0688 0.1195 0.0132 0.2312 0.0237

Cad11 0.6624 0.0666 0.8468 0.0815 0.1561 0.0185 0.0918 0.0116

Cad12 0.7738 0.0771 0.5796 0.0668 0.2406 0.0254 0.1686 0.0190

Pr11 0.6400 0.0646 0.8166 0.0720 0.1456 0.0165 0.1050 0.0126

Marker 
environment 
main effect and 
specific effect

Main effect 0.2853 0.0753 0.1273 0.0457 1.4130 0.1564 2.3388 0.1649

Arg12 0.1780 0.0471 0.1820 0.0511 0.0703 0.0127 0.0881 0.0182

Cad11 0.1963 0.0459 0.2635 0.0716 0.1064 0.0200 0.0803 0.0135

Cad12 0.2422 0.0727 0.2936 0.1046 0.1133 0.0280 0.1096 0.0261

Pr11 0.2071 0.0704 0.2008 0.0635 0.0931 0.0211 0.0814 0.0173

Across-environment Bayesian ridge regression (aBRR)

Residual Arg12 0.7517 0.0660 0.7827 0.0674 0.1392 0.0138 0.2725 0.0244

Cad11 0.7404 0.0643 1.0626 0.0882 0.2063 0.0197 0.1148 0.0130

Cad12 1.0012 0.0874 0.7347 0.0670 0.3080 0.0269 0.2471 0.0227

Pr11 0.7127 0.0634 0.9082 0.0732 0.1757 0.0171 0.1236 0.0127

Marker Main effect 0.3123 0.0590 0.1918 0.0380 1.3635 0.1193 2.3045 0.2408
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Prediction Accuracy of the Single-
Environment and Marker ´ Environment 
Interaction Bayesian Ridge Regression  
and the BayesB Models
For this section, analyses using 50 random cross-valida-
tion partitions of the data in TRN and TST sets were 
performed with the aim of assessing prediction accuracy 
of the various models. Prediction accuracies of the sin-
gle-environment, M´E, and across-environments models 
derived from models BRR and BB in each of the four 
environments for two traits, GY and HD, in the two 
cross-validation schemes, CV1 and CV2, are shown in 
Figs. 7a–b (GY) and Figs. 7c–d (HD).

For GY, all correlations in CV1 (Fig. 7a) are lower 
(<0.3) than in CV2 (Fig. 7b) (<0.45) for all environments 
and models. In CV2, models M´E BB, M´E BRR, aBB, 
and aBRR had higher prediction accuracy than the sin-
gle-environment (sBB and sBRR) in all environments, 
except for Cad12 (Fig. 7b). Also, for GY in CV2, predic-
tion accuracy of M´E BB was higher than that of M´E 
BRR in all environments except Cad12, which had a cor-
relation for CV2 similar to those achieved in CV1. The 

smallest correlations were obtained by sBB and sBRR 
models for CV1 and CV2 in all environments, except 
environment Cad12, which showed the smallest corre-
lations for all models, especially for aBB and aBRR in 
CV1 and CV2. Prediction accuracy patterns for GY in 
CV1 (Fig. 7a) show models M´E BB and BB with similar 
accuracies in all four environments and slightly superior 
to other models in all the environments. Supplemental 
Table S3 (see http://hdl.handle.net/11529/10233) shows 
the correlations between observed and predicted values 
for M´E, single-environment, and across-environment 
models derived from BB and BRR models for cross-val-
idations CV1 and CV2 for all traits in all environments.

For trait HD, all predictions in CV1 (Fig. 7c) (<0.75) 
are lower than in CV2 (Fig. 7d) (<0.95) for all environ-
ments and models. However, general prediction accuracy 
patterns are clearer in HD than in GY. For CV1, the best 
predicted model was sBB, followed by M´E BB and aBB. 
For CV1, models aBRR and sBRR were consistently the 
worst for all traits and environments. In general, prediction 
accuracies of BB were always better than BRR, reaching 
predictions of up to 0.7 for CV1. For CV2 (Fig. 7d), the best 

Table 3. Estimated posterior residual variance components (and their posterior standard deviations, SD) and the estimated 
posterior probability of markers with nonnull effects from the single-environment model BayesB model (sBB), the marker ´ 
environment interaction BayesB model (M´E BB), and the across-environment BayesB model (aBB) for four traits: grain yield 
(GY), grain volume weight (GVW), 1000-kernel weight (GWT), and days to heading (HD) measured in four environments (Arg12, 
Cad11, Cad12, and Pr11).

Component
Environ-

ment

GY GVW GWT HD

Estimate SD Estimate SD Estimate SD Estimate SD

Single-environment BayesB (sBB)

Residual Arg12 0.7228 0.0703 0.7658 0.0734 0.3228 0.0354 0.4796 0.0492

Cad11 0.8001 0.0715 0.9162 0.0754 0.3414 0.0369 0.3172 0.0352

Cad12 0.8460 0.0743 0.5614 0.0619 0.4146 0.044 0.3952 0.0445

Pr11 0.7759 0.0744 0.8834 0.0756 0.3336 0.0374 0.3784 0.0381

Probability Arg12 0.4903 0.1518 0.5162 0.1483 0.4394 0.1663 0.1341 0.0491

Cad11 0.4930 0.1406 0.5038 0.1472 0.4601 0.1676 0.1612 0.0619

Cad12 0.5112 0.1407 0.5165 0.1425 0.4372 0.1655 0.1457 0.0546

Pr11 0.5110 0.1476 0.4953 0.1509 0.4492 0.1723 0.1534 0.0579

M ´ E interaction BayesB (M´E BB)
Residual Arg12 0.6314 0.0651 0.7138 0.0695 0.1255 0.0139 0.2247 0.0209

Cad11 0.6827 0.0617 0.8994 0.0799 0.1787 0.018 0.0843 0.0095

Cad12 0.7672 0.0771 0.5570 0.0642 0.2654 0.0279 0.1674 0.0184

Pr11 0.6764 0.0604 0.8737 0.0727 0.1608 0.0161 0.1037 0.011

Probability Main effect 0.5115 0.1182 0.5312 0.1134 0.4850 0.1089 0.4074 0.1215

Arg12 0.4038 0.1094 0.4517 0.0979 0.2587 0.0959 0.3549 0.1377

Cad11 0.5037 0.1056 0.5146 0.0913 0.5245 0.1012 0.4396 0.0861

Cad12 0.5178 0.0929 0.4849 0.1045 0.4779 0.1117 0.4660 0.1183

Pr11 0.5077 0.0958 0.5143 0.0937 0.5106 0.0904 0.4889 0.1067

Across-environment BayesB (aBB)

Residual Arg12 0.7428 0.0666 0.7801 0.0698 0.1390 0.0140 0.2768 0.0250

Cad11 0.7289 0.0636 1.0597 0.0911 0.2058 0.0195 0.1129 0.0124

Cad12 1.0076 0.0838 0.7309 0.0662 0.3118 0.0267 0.2541 0.0227

Pr11 0.7042 0.0644 0.9057 0.0784 0.1742 0.0173 0.1256 0.0134

Probability All 0.3935 0.1237 0.3482 0.0959 0.2857 0.0886 0.1334 0.0385
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Figure 3. Histograms of the residual variance components and their error bars (standard deviation) of three models: marker ́  environment 
interaction BayesB (M´E BB), across-environment BayesB (aBB), and single-environment BayesB (sBB) for four traits (a) grain yield (GY), 
(b) grain volume weight (GVW), (c) 1000-kernel weight (GWT), and (d) days to heading (HD) evaluated in four environments (Arg12, Cad11, 
Cad12, and Pr11).

Figure 2. Histograms of the residual variance components and their error bars (standard deviation) of three models: marker ́  environment 
interaction Bayesian ridge regression (M´E BRR), across-environment Bayesian ridge regression (aBRR), and single-environment 
Bayesian ridge regression (sBRR) for four traits, (a) grain yield (GY), (b) grain volume weight (GVW), (c) 1000-kernel weight (GWT), and (d) 
days to heading (HD) evaluated in four environments (Arg12, Cad11, Cad12, and Pr11).
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predictive model for all traits and environments was M´E 
BB, closely followed by M´E BRR, aBB and aBRR, 
reaching predictions of up to 0.93. The worst models for 
CV2 were always sBRR and sBB. In summary, results 
show high correlations between observed and predicted 
values for HD and intermediate-to-low prediction accu-
racies for GY. Prediction accuracies for traits GVW and 
GWT are depicted in Supplemental Figs. S1a–b (GVW) 
and Supplemental Figs. S2a–b (GWT), respectively (see 
http://hdl.handle.net/11529/10233). Trait GVW shows 
intermediate-to-low patterns of prediction accuracy simi-
lar to GY, and trait GWT shows high prediction accura-
cies similar to trait HD.

Results in terms of average prediction accuracy over 
environments are reported in Table 4. For CV1, the M´E 
BB and BRR models had better prediction accuracy 
than the single- and across-environment BB and BRR 
models for traits GY and GVW and similar accuracy to 
the across-environment BB and BRR models for traits 
HD and GWT. However, for BB-HD and BRR-GWT, 

the single-environment model was better than the other 
models. In contrast, for CV2, the average superiority in 
terms of prediction accuracy of the M´E BB and BRR 
models over the other two models is clear for all traits. 
Note that the prediction accuracy of sBRR and sBB 
models was low for HD and GWT (CV2). For CV2, pre-
diction accuracy of the M´E BB model was higher than 
those of the sBB and aBB models, which had correlations 
ranging from 0.2657 for GVW to 0.8753 for GWT com-
pared with correlations of 0.2300 for GVW and 0.6934 for 
GWT for the sBB model (Table 4).

Another way to represent the prediction accu-
racy patterns of the different models is to plot the cor-
relations from the M´E model on the vertical axis vs. 
correlations from the single-environment model on the 
horizontal axis, and then the M´E model on the vertical 
axis vs. the across-environment model on the horizon-
tal axis (Fig. 8). The model–trait combinations above the 
45° line represent the average correlations of the method 
whose predictive correlation is given on the vertical axis. 

Figure 4. Bar plot of the percentage of the total genomic variance explained by the marker main effect (red) and the environment-specific 
effect (blue) variance components from the marker ´ environment interaction Bayesian ridge regression model (BRR) for four traits: (a) 
grain yield (GY), (b) grain volume weight (GVW), (c) 1000-kernel weight (GWT), and (d) days to heading (HD) evaluated in four environments 
(Arg12, Cad11, Cad12, and Pr11).
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The M´E model outperformed the model whose corre-
lation is given on the horizontal axis for the CV1 and 
CV2 cross-validation schemes. As previously described 
for CV1, the prediction accuracy of the M´E model was 
very similar to that of the single-environment (except for 
BB-GWT, BRR-GWT, and BB-HD that were slightly 
better for the single-environment model than for the 
M´E model) and across-environment models (Fig. 8a,b). 
For CV2, the M´E model had better accuracy than the 
single-environment model (Fig. 8c) and was similar to 
the across-environment model. Finally, Supplemental Fig. 

S3a–f (see http://hdl.handle.net/11529/10233) depict, in a 
horizontal box plot, the average prediction accuracy over 
environments for CV1 and CV2 and all four traits for the 
M´E BB and BRR models (Supplemental Fig. S3a d), 
sBB and BRR models (Supplemental Fig. S3c, f ), and aBB 
and BRR models (Supplemental Fig. S3b, e).

DISCUSSION
The durum wheat population used in this study is a bal-
anced NCCR population that shows null or negligible 
population structure effects (Milner et al., 2015), that is, the 

Figure 5. Absolute value of the estimated marker effects (y-axis) (| b̂k |) or heading days (HD) vs. chromosome marker position (x-axis) 
obtained from the marker ´ environment interaction BayesB (BB) model for the full data. (a) Marker main effect; (b) effect specific to 
environment Cad11.
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nonrandom assortment of genetic backgrounds in individu-
als of the target population, a factor that strongly affects the 
correct inference of genetic and marker effects on pheno-
type. Therefore, the NCCR population provides a more 
suitable material for assessing the performance of M´E 
models than the collections of diverse cultivars and breed-
ing lines commonly used in association mapping studies.

In this study, we extended the original model of 
López-Cruz et al. (2015), which assumes homogeneous 
error variance across environments, to a model that accom-
modates environment-specific variances. Another differ-
ence with respect to the López-Cruz et al. (2015) model 
is that we used a prior that induces differential shrink-
age of estimates and variable selection (de los Campos et 
al., 2013); this allows achieving good prediction accuracy 
while identifying sets of markers with effects that are 
stable across environments and others that are responsible 
for M´E and thus genotype ´ environment interaction.

The Association of Marker Main Effects  
and Environment-Specific Effects of the 
Marker ´ Environment Interaction Models  
in Durum Wheat Traits
In this study, we show that the M´E derived from the 
BayesB model can have the dual purpose of predicting 
the genomic performance of untested durum wheat lines 
in certain environments and assessing the association of 
chromosome regions with (i) marker main effects across 
environments and (ii) markers in chromosome regions 
that are affected by specific environmental conditions 
(M´E). The prior distribution assigned to BB induces 
marker shrinkage as well as marker selection.

For example, we found that regions of chromosomes 
2A, 2B, and 7A had important marker main effects for HD. 
These regions coincided with those harboring major pho-
toperiod and phenology regulators such as loci PPD and 
FT, as reported by Milner et al. (2015). Notably, the M´E 
model was able to point out specific marker effects in envi-
ronments such as the effect in chromosome 2A (PPD-A1) 

Figure 6. Absolute value of the estimated marker effects (y-axis) (| b̂k |) for grain yield (GY) vs. chromosome marker position (x-axis) 
obtained from the marker ´ environment interaction BayesB (BB) model for the full data. (a) Marker main effect; (b) marker effect specific 
to environment Arg 12; (c) marker effect specific to environment Cad11; (d) marker effect specific to environment Cad12; (e) marker effect 
specific to environment Prn11.
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that is favored in environment Cad11 and those markers in 
chromosomes 2A and 2B (PPD-A1 and PPD-B1) that are 
favored in Prn11 as well as the specific effect of chromo-
some 7A (TaFT-A) in Cad12. Interestingly, in addition to 

the strong and specific effects of chromosomes 2 and 7, the 
model revealed effects at chromosomes 3A, 4A, 4B, 5A, and 
5B, which have been shown to carry minor QTLs for HD 
in wheat, including durum wheat (Maccaferri et al., 2014).

Figure 7. Histograms of the average correlations (50 training–testing partitions) for grain yield (GY) in each of the four environments (Arg12, 
Cad11, Cad12, and Pr11) of models marker (M) ´ environment (E) interaction Bayesian ridge regression (M´E BRR), M ´ E interaction 
BayesB (M´E BB), single-environment Bayesian ridge regression (sBRR), single-environment BayesB (sBB), across-environment 
Bayesian ridge regression (aBRR), and across-environment BayesB (aBB) for (a) cross-validation CV1 and (b) cross-validation CV2. For 
trait days to heading (HD) (c) cross-validation CV1, and (d) cross-validation CV2.
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Detecting regions for a complex trait such as GY is 
more complicated because many more loci are involved in 
the expression of the trait, and M´E patterns are conse-
quently more complex. Nevertheless, the M´E BB model 
detected marker main effects in regions of chromosomes 
2B and 7A, again involving PPD-A1 and TaFT-A1, which 
also had important environment-specific GY marker 
effects in environments Arg12, Cad12, and Prn11. These 
two chromosome regions were detected as important by 
Milner et al. (2015) in their QTL study. However, as com-
pared with a standard QTL analysis (Milner et al., 2015), 
the models used in this approach were more efficient in 
identifying overall and environment-specific additional 
marker effects associated with GY.

Variance Components on Residual and 
Marker Main and Specific Effects
In general, results of this study agreed with those found 
by López-Cruz et al. (2015), where the M´E model fitted 
the data better than the across-environment and single-
environment models. It is also clear that the estimates 
of variance components from the M´E model indicated 
that the proportion of genomic variance explained by the 
main effect of markers is directly related to the (empirical 
sample) phenotypic correlation between environments. 
In this study, traits HD and GWT had positive and high 
sample phenotypic correlations among environments, 
whereas traits GY and GVW had small and close-to-zero 
correlations among several pairs of environments.

The across-environment models had relatively higher 
residual variance than the M´E model, indicating that 
forcing constant marker effects across the environments, 
b1 = b2 = . . . = bs = b, does not produce a better fit of 
this model. The residuals of the M´E BRR model tended 
to be more similar to those of the sBRR model, especially 

for traits GY and GVW (Fig. 2a, b). However, for traits 
GWT and HD, the opposite occurred, that is, residuals 
from the M´E model and the across-environment models 
were more similar and smaller than those from the single-
environment model, which showed large residual vari-
ances (Fig. 2c, d). Similar trends are found for the residu-
als of the BB model. Models fit the data better for less 
complex traits, HD and GWT, than the data from more 
complex traits such as GY and GVW.

Also, variance components resulting from marker 
main effects are much smaller in less complex traits (HD 
and GWT) than in GY and GVW. The opposite occurred 
for variance components of specific marker effects (in 
environments), where complex traits like GY and GVW 
show higher M´E than HD and GWT.

Prediction Accuracy of the Marker ´ 
Environment Model
The study of López-Cruz et al. (2015) in bread wheat 
demonstrated that for cross-validation 2 (CV2), the M´E 
model always showed higher prediction accuracy than the 
across-environment model, and higher than or the same 
prediction accuracy as the single-environment model. 
The M´E model is based on variance component estima-
tion of the marker main effects and environment-specific 
marker effects and, in terms of prediction accuracy, it per-
formed well in positively correlated environments. Based 
on this assumption, the M´E model will tend to have 
higher prediction accuracy for traits that have positive 
correlations between environments (HD and GWT) than 
for traits that have close to zero or negative correlations 
between environments (GY and GVW) (Table 1).

In the M´E model, the marker effect has two compo-
nents: one is a result of overall marker effects across envi-
ronments and the other one resulting from marker effects 

Table 4. Mean correlation between observed and predicted values and their standard deviation (SD) across 50 training–test-
ing set partitions from the marker (M) ´ environment (E) interaction, single-environment, and across-environment Bayesian 
ridge regression (BRR) and BayesB (BB) models for four traits: grain yield (GY), grain volume weight (GVW), 1000-kernel weight 
(GWT), and days to heading (HD) across four environments for two cross-validation schemes (CV1 and CV2).

 BRR-GY BB-GY BRR-GVW BB-GVW BRR-HD BB-HD BRR-GWT BB-GWT

Cross-validation scheme CV1

M ´ E interaction 0.2710 0.2692 0.2447 0.2428 0.5310 0.5880 0.6431 0.6746

SD 0.0741 0.0734 0.0492 0.0475 0.0781 0.0646 0.0522 0.0499

Across environment 0.2204 0.2231 0.2050 0.2054 0.5306 0.5922 0.6440 0.6764

SD 0.0829 0.0825 0.0535 0.0528 0.0768 0.0661 0.0534 0.0490

Single environment 0.2515 0.2483 0.2414 0.2462 0.5074 0.6597 0.6646 0.6986

SD 0.0664 0.0650 0.0484 0.0484 0.0791 0.0547 0.0507 0.0452

Cross-validation scheme CV2

M ´ E interaction 0.3600 0.3813 0.2600 0.2657 0.8815 0.8970 0.8702 0.8753

SD 0.0444 0.0448 0.0452 0.0461 0.0206 0.0189 0.0097 0.0095

Across environment 0.3571 0.3586 0.2592 0.2591 0.8817 0.8796 0.8721 0.8718

SD 0.0417 0.0423 0.0451 0.0451 0.0198 0.0198 0.0096 0.0099

Single environment 0.2455 0.2452 0.2254 0.2300 0.4968 0.6528 0.6611 0.6934

SD 0.0534 0.0530 0.0470 0.0478 0.0289 0.0238 0.0234 0.0216
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in specific environments. When the proportion of vari-
ance explained by the marker main effect is relatively high 
(such as in traits HD and GWT) (Table 2; Fig. 4c,d), the 
number of effective markers with nonnull effects should 
be relatively small (Table 3). The M´E is not complex 
and this is reflected in both traits having high heritability; 
therefore, the M´E model has relatively high prediction 
accuracy in most environments (Table 4).

On the other hand, when the proportion of variance 
explained by the marker main effect is small (<3%) and the 
relative contribution of the specific marker effect is higher 
than that of the main effect, such as in GVW (Table 2), 
the M´E is complex and therefore the number of effec-
tive markers with nonnull effect in some environments 
will be large (Table 3). This is reflected in the trait having 

low heritability; the M´E model therefore has interme-
diate-to-low prediction accuracy in most environments. 
An intermediate case is trait GY, which has relatively high 
marker main effects as well as specific effects, and a rela-
tively high proportion of markers with nonnull effect in 
many environments.

In this study, we show that the M´E model is flex-
ible and can be used with different priors commonly used 
in genomic selection. In the durum wheat study reported 
herein, we used the M´E model with (i) the Gaussian 
prior of the BRR (or GBLUP) that induces shrinkage and 
(ii) a prior that combines properties of the M´E model 
(separates marker effects into main and environment-
specific effects), while inducing variable selection, such as 
the BB model that has peak mass at zero with the marker 

Figure 8. Plot of the average correlation (50 training–testing partitions) across four environments of the (a) marker (M) ´ environment (E) 
interaction Bayesian ridge regression (BRR) and Bayesian BayesB (BB) models vs. the single-environment BRR and BB models, and the 
(b) M ´ E interaction BRR and BBmodels vs. the across-environment BRR and BB models for four traits, grain yield (GY), grain volume 
weight (GVW), 1000-kernel weight (GWT), and heading days (HD), and for cross-validation CV1. For cross-validation CV2, (c) M ´ E 
interaction BRR and BB models vs. the single-environment BRR and BB models and the (d) M ´ E interaction BRR and BB models vs. 
the across-environment BRR and BB models for four traits: GY, GVW, GWT, and HD. The solid line represents Y = X, that is, both models 
have the same prediction ability. The prediction accuracy of the best models (above the solid line), M ´ E interaction BRR and BB, are 
shown. The superior predictions of the single-environment or across-environment BRR and BB are shown below the line.
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effects assumed to be equal to zero with probability p and 
assumed to be a draw from a t-distribution with prob-
ability (1 − p). This flexibility of the M´E model allows 
mapping stable casual loci across environments and iden-
tifying loci that are favored by specific environments, that 
is, mapping specific positive interactions between chro-
mosome regions and environments. For this data set, the 
BB model seems to accomplish both tasks, that is, it gives 
good prediction accuracy while identifying regions of 
chromosomes with important effects on phenotypic traits.

The effects of some markers are often known in 
advance. For example, in our study, major players for phe-
nology were known; thus, it was possible to include their 
markers in the regression models and modify the prior spec-
ification such that with a probability of one, these markers 
were included in the model. Further research is needed to 
add this feature to the M´E BB and BRR models.

CONCLUSIONS
In this study targeting durum wheat as a cereal crop, we 
used an M´E model that allows (i) assessing the genomic 
prediction accuracy for several traits having different 
degrees of genetic complexity and (ii) identifying chromo-
some regions associated with stable phenotypic effects across 
environments, as well as specific chromosome regions that 
harbor loci providing adaptation to specific environments. 
The interaction model used a Gaussian prior (BRR) or a 
BB prior. In terms of minimizing the model residual vari-
ance, the M´E model outperformed the more traditional 
single-environment and across-environment models. 
Traits HD and GWT, whose genetic control is based on 
well-identified loci with large effects, showed a relatively 
higher overall variance component of marker effect and 
a smaller environment-specific variance component than 
more complex traits such as GY and GVW. Additionally, 
HD and GWT had higher prediction accuracy than GY 
and GVW, as expected. In general, of the two tested prior 
models, the BB model gave higher prediction accuracy than 
the BRR model for most model-trait combinations. For 
cross-validation problem CV2, the M´E model derived 
from BRR or BB had better prediction accuracy than the 
single-environment or across-environment models. As 
expected, results of prediction accuracy for CV1 were not 
as clear as for CV2 and the M´E model was not always the 
best predictive model for all traits.

Regarding the identification of chromosome regions 
with stable effects across environments and those with effects 
specific to an environment, the M´E model clearly identi-
fied the presence of both types of effects in regions of chro-
mosomes 2A, 2B, 7A associated with the well-known PPD 
and FT loci. Additional regions with mainly environment-
specific signals were uncovered in chromosome groups 3, 4, 

and 5, known to harbor QTLs for HD in wheat. For a very 
complex trait such as GY, in addition to the side effects of 
PPD and FT loci, other chromosome regions with appre-
ciable marker effects were detected in chromosome groups 
1, 2, 3, 4, 5, and 7. Notably, markers in chromosomes 5A 
and 5B showed stable effects across environments and also 
in specific environments (Arg12 and Prn11).
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