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When imaging through layered media such as walls, the contents and thickness of the wall layers are generally not
known a priori. Furthermore, compensating for their effects can be computationally intensive, as this generally re-
quires modelling the transmission and reflection of complex fields through layered media. We propose a blind de-
convolution method that does not require knowledge of the wall layers by directly estimating a circularly symmetric
Green’s function that models the transmission through the wall layers, simultaneously addressing both problems. We
experimentally demonstrate this technique by measuring the reflection through a multilayered structure of building
materials at the K-band microwave frequencies, and using the blind deconvolution method to find the image of a
reflective object behind the layers. © 2017 Optical Society of America

OCIS codes: (100.1455) Blind deconvolution; (080.2710) Inhomogeneous optical media; (110.1758) Computational imaging.
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1. INTRODUCTION

When imaging an object through an inhomogeneous medium,
the medium often distorts the field passing through the medium,
reducing the fidelity of the resulting image. In some cases where
the structure of the medium is known, this structure can be in-
cluded in the model of the imaging system so that its effects may
be accounted for. However, in many practical situations, both the
object to be imaged and the structure of the intervening medium
are unknown. Unfortunately, the medium then adds confounding
variables so that the scattered field sampled by the sensor may no
longer be sufficient to determine both the medium and object
structures. Layered planar media, however, are relatively simple,
because these may be described by a one-dimensional function of
the medium composition with depth, and because planar struc-
tures are symmetric about the axis normal to the surface planes.
Therefore, the types of distortions that may be produced by pla-
nar media are highly restricted as compared to three-dimensional
media. Artificial structures such as building walls are often built as
layered structures, so that accounting for the propagation through
these layers is likely to remove much of the distortions produced
by the wall. We propose a blind deconvolution [1] method that
simultaneously infers the distortion to the fields produced by a
layered structure and the image of an object behind the structure.
This method is demonstrated for through-wall imaging (TWI) by
reconstructing the image of reflective metal targets behind several
types of walls from measured backscattered microwave radiation.

Layered structures, despite their simplicity, can produce a
number of complicated effects. These may be modeled elegantly
with scattering matrices [2,3], which simplify the propagation of
electromagnetic radiation through layers into a succession of

reflection and transmission events at each material boundary
and the propagation of the radiation between boundaries.
Complex effects can occur in layered structures, including inter-
ference effects and Newton’s rings, total internal reflection and
evanescent fields, and surface waves. Despite these complex
effects, the response of a layered medium to plane wave radiation
may be summarized as a function of the temporal frequency, the
incident angle to the surface, and whether the radiation is polar-
ized in the plane of incidence or perpendicular to it. As a layered
medium is completely rotationally symmetric around the axis
normal to the surface layers, so is its response to incoming radi-
ation. This strongly constrains the types of distortions that can
occur when propagating through layered media.

To preserve circular symmetry when irradiated by an antenna,
one might consider the field an electrically small radiation source
placed on one side of the layered media might produce on the
other side; in other words, the Green’s function of a layered
medium, as shown in Fig. 1. The Green’s function is translation-
ally invariant along the planes of the medium, and therefore
propagation through the layers is calculated as a convolution.
The Green’s function is rotationally symmetric around the
medium axis as well. However, only the perpendicular or parallel
polarizations are rotationally symmetric, and so a small source
that unequally excites the polarizations does not produce a rota-
tionally symmetric field. For a point source, the only three rota-
tionally symmetric polarization states with respect to the layered
structure are the linear polarization pointing along the symmetry
axis and the left and right circular polarizations in the plane
perpendicular to the symmetry axis. Unfortunately, all three of
these polarization states have disadvantages when measuring

2334-2536/17/121514-08 Journal © 2017 Optical Society of America

Research Article Vol. 4, No. 12 / December 2017 / Optica 1514

mailto:daniel.marks@duke.edu
mailto:daniel.marks@duke.edu
mailto:daniel.marks@duke.edu
https://doi.org/10.1364/OPTICA.4.001514
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.4.001514&domain=pdf&date_stamp=2017-12-05


the scattered signal from a layered structure in a reflection geom-
etry. The linearly polarized source along the symmetry axis does
not radiate at all in the direction along the symmetry axis. The
scattered field of the two circular polarizations reverses upon re-
flection, so that right-circular polarization becomes left-circular
polarization and vice versa, and therefore an antenna radiating
one polarization rejects the reflected orthogonal polarization.

A dipole linearly polarized along the layer planes does not pro-
duce a rotationally symmetric Green’s function, unlike an ideal iso-
tropic point source, as it projects unequally onto parallel and
perpendicular incident polarizations and does not radiate equally
into all angles around the symmetry axis. However, as the trans-
mission of the field near the axis is weakly dependent on the polari-
zation, the Green’s function is often nearly rotationally symmetric.
One may regard the true asymmetric Green’s function as the con-
volution of a “best fit” rotationally symmetric convolution kernel
and an asymmetric error kernel. Typically, most of the distortion is
due to the rotationally symmetric kernel, and therefore compensa-
tion for this rotationally symmetric component removes most of
the distortion. In particular, while the transmission and reflection
coefficients at each interface depend on the incident polarization
state, the propagating phase between the interfaces does not,
and often much of the distortion depends on the interference
effects between interfaces that is largely determined by the propa-
gation phase.

Given that a suitable rotationally symmetric approximation to
the layered medium Green’s function exists, by using deconvolu-
tion the object reflectivity may be estimated from the backscat-
tered signal at a point dipole antenna. Blind deconvolution
methods attempt to infer the convolution kernel directly from
measured data. If the convolution kernel, or Green’s function,
of the layered medium is inferred from the measurements, this
obviates the need to know the medium composition. Without
any constraints, the reconstruction of the object could be that
produced by deconvolution by the Green’s function of any plau-
sible layered medium. Many objects of interest are not transla-
tionally or rotationally invariant, and so the object can be
assumed to be the minimally symmetric solution, with all of

the symmetric broadening or blurring attributed to the layered
medium. A sparsity constraint is placed on the object to achieve
the minimally broadened solution. The algorithm selects a circu-
larly symmetric Green’s function so that the image of the object is
compact or confined by minimizing its sparsity. However, objects
with repetitive annular structure may have their structure incor-
rectly attributed to the Green’s function. For the kinds of objects
expected to be inside walls, such as metal pipes or conduit boxes,
these situations are not likely to occur.

There are numerous approaches to imaging through walls us-
ing microwave radiation. Blind deconvolution has been used to
find the [4,5] impulse response of multipath propagation through
a wall in the time domain to compensate for multiple reflections
in the wall. The effects of time delay variations between antenna
channels are reduced [6] by adjusting delays to maximize con-
structive interference between the signals from different channels.
Another method [7] uses ray tracing to identify the locations of
targets from multiple sensor data. The effects of ambiguities in
wall thickness and dielectric constant to the TWI problem have
been explored [8]. A nonlinear optimization process used with
time-reversal imaging [9] can find the permittivity and thickness
of a wall, optimizing an entropy criterion. An l1-based com-
pressed sensing optimization can also be used to identify targets
[10]. The performance of TWI using random or chaotic wave-
forms has been explored [11]. Another method identifies moving
targets using ultrawideband noise radar [12]. The effects of differ-
ent antennas to wideband pulses was explored with a X-band
TWI radar system [13]. A method of using two different standoff
distances from a wall to estimate ambiguities in the wall param-
eters is proposed [14]. Another method adapted from geophysical
processing uses several different transmitter and receiver separa-
tions and common midpoint processing to find the thickness and
dielectric constant of the wall layer [15]. A video-rate TWI system
was developed for imaging targets on an urban battlefield [16].

An inverse scattering method [17] is analyzed using the weak
scattering or first Born approximation with the Green’s function
given by a single layered medium. The locations of reflections
are ranged, compensating for the wall layer [18] to find the shape
of the target. Delay and sum beamforming were used to form 3D
images of targets behind a brick wall in simulation [19–21]. The
CLEAN and RELAX algorithms were used to identify individual
targets when the beamforming array had high sidelobes [22,23].
Using a differential signal that subtracts successive measurements
removes the effects of uniform areas of a target, including a wall,
allowing edge-like targets behind the targets to be enhanced [24].
Models of a target can be constructed using primitive elements such
as plates, dihedrals, and trihedrals, to form a geometric estimate of a
target shape [25]. A method using the uniform theory of diffraction
to compensate for multiple scattering effects in conjunction with
using scattering matrices to compensate for the layered medium of
the wall can produce high-quality reconstructions [26].

We note that unlike most TWI radars, the radar presented here
does not use temporal ranging to separate the scattering of an object
and a wall, and instead relies on a short wavelength to obtain res-
olution. To separate objects 10 mm apart in range, a bandwidth of
approximately 10 GHz is needed. Therefore, a radar, for example,
at 20 GHz would span 15 to 25 GHz. Radar transceivers with this
bandwidth can be quite costly and difficult to manufacture and
utilize more spectrum than regulatory agencies are likely to permit,
as most have a fractional bandwidth less than 10%, and the

Fig. 1. Experimental setup, which consists of transmit and receive di-
pole antennas translated by a two-axis translation stage. A vector network
analyzer generates the radio frequency signal and samples the backscat-
tered signal from the wall being scanned. The Green’s function due to the
wall layers is nearly circularly symmetric.
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penetration of the radiation would be reduced if the center fre-
quency was increased. A longer wavelength is useful but produces
correspondingly lower-resolution images, so the choice of fre-
quency is a compromise between resolution and penetration as
frequency increases. This method is specifically designed for
narrow-bandwidth use that is a more likely scenario for practical
commercial TWI instruments that may be approved by telecom-
munications regulatory agencies, for example, to operate in the
industrial, scientific, and medical (ISM) band between 24 and
24.25 GHz. While the limitation of using a narrow bandwidth
makes TWImore challenging, a narrowband solution is more likely
to have a wider impact as a practical instrument.

The field produced in a layered medium due to a point source
outside the medium is summarized in Section 2, showing that a
nearly circularly symmetric convolution kernel is produced by the
layered medium. The blind deconvolution method is described in
Section 3. The algorithm is applied to both simulated and mea-
sured data from a wall phantom in Section 4. The results are sum-
marized in Section 5.

2. GREEN’S FUNCTION IN A LAYERED MEDIUM

The excitation of a layered medium by a point source is derived in
detail in [2], and it is briefly summarized here. A point source is
polarized in the plane along the wall with a polarization state
ϵx x̂ � ϵy ŷ. The field Einc incident on the wall can be represented
using the Weyl plane wave expansion of a point source,

Einc�x; y� �
iE0

2πk0

Z
∞

−∞

Z
∞

−∞

dkxdky
kz

exp�i�kxx � kyy���ϵ⊥ � ϵ∥�

kz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k

2
x − k2y

q

ϵ⊥ � �ϵxk2y − ϵykxky�x̂ � �ϵyk2x − ϵxkxky�ŷ
k2x � k2y

ϵ∥ �
�ϵxk2x � ϵykxky�k2z x̂ � �ϵxkxky � ϵyk2y �k2z ŷ − �ϵxkx � ϵyky�kz�k2x � k2y �ẑ

�kxkz�2 � �kykz�2 � �k2x � k2y �2
; (1)

where the field has been expressed as a sum of the parallel to the
plane of incidence ϵ∥ and the field perpendicular to it ϵ⊥.
Assuming the medium before and after the layers is the same
so that k0 is the same, the transmitted field after the layers
Etrans can be calculated by multiplying by the appropriate trans-
mission coefficient,

Etrans�x; y� �
iE0

2πk0

Z
∞

−∞

Z
∞

−∞

dkxdky
kz

exp�i�kxx � kyy��

× �τ⊥�kx; ky; k0�ϵ⊥ � τ∥�kx; ky; k0�ϵ∥�: (2)

To determine the transmission coefficients, the method of scatter-
ing matrices is used. There are N layers with dielectric constants
ϵ1 to ϵN , each layer having a thicknesses d 1 to dN . The impedance

of each layer n is given by Z⊥
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ϵn

k20ϵn−k
2
x−k2y

r ffiffiffiffiffiffi
μ0
ϵ0ϵn

q
or

Z ∥
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ϵn−k

2
x−k2y

k20ϵn

r ffiffiffiffiffiffi
μ0
ϵ0ϵn

q
, depending on whether or not the

polarization is parallel to or perpendicular to the plane of incidence.
The transmission matrix of the entire stack of layers is given by�
T 11 T 12

T 21 T 22

�

�
YN
n�1

Zn � Zn�1

2Zn�1

�
exp�iknd n� Γn exp�−ikndn�

Γn exp�ikndn� exp�−ikndn�

�

Γn � �Zn�1 − Zn�∕�Zn�1 � Zn�; ΓN � 0

kn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ϵn − k

2
x − k2y

q
: (3)

The product of the matrices is right-to-left so that the layer closest
to the source is applied first. The transmission coefficient is then
given by τ�kx; ky; k0� � T 11 − T 12T 21∕T 22.

Using Eq. (2) with the appropriate transmission coefficients,
the radiation produced by the point source transmitted through
the dielectric stack may be calculated. However, for a backscatter
imaging configuration, both the transmitted signal and the re-
ceived signal use this radiation pattern. If the susceptibility of
the target is given by a function χ�x; y�, the measured backscat-
tered power at the antenna is given by

W �x 0; y 0� � i2π2

η0k

Z
∞

−∞

Z
∞

−∞
P�x − x 0; y − y 0�χ�x; y�dxdy

with P�x; y� � Etrans�x; y�TEtrans�x; y�; (4)

with the dot product of the field with itself ETE is a point spread
function (PSF) P�x; y�. This monostatic PSF is a good approxi-
mation of a bistatic system PSF with a short baseline as well.

3. BLIND DECONVOLUTION OF THE PSF

The measured backscattered power is related to the object suscep-
tibility through a convolution with a nearly circularly symmetric
PSF. Because this PSF is not known a priori, the blind deconvo-
lution method presented here attempts to infer the PSF from the
data. We note that in the Fourier domain, the convolution of
Eq. (4) can be written as W̃ �kx; ky� � P̃�kx; ky�χ̃�kx; ky� with
W̃ �kx; ky�, P̃�kx; ky�, and χ̃�kx; ky� being the Fourier transforms
of W �x; y�, P�x; y�, and χ�x; y�, respectively. If the PSF was
known, the susceptibility could be estimated using a Weiner filter.
Likewise, if the object χ�x; y� was known, the PSF could be esti-
mated from the object using a Weiner filter as well. In the absence
of any constraints, any two functions P�x; y� and χ�x; y� that
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satisfy the relationship W̃ �kx; ky� � P̃�kx; ky�χ̃�kx; ky� are a sol-
ution. However, if P�x; y� is circularly symmetric, then P̃�kx; ky�
is as well, so that plausible solutions for χ�x; y� correspond to
those that, after deconvolving the data W �x; y� by χ�x; y�, pro-
duce a circular symmetric P�x; y�. Note that other common con-
straints to the PSF, such as enforcing positivity, do not apply
as the PSF is complex-valued. There is still a space of one-
dimensional functions P�x; y� that all produce plausible χ�x; y�,
so additional constraints are needed.

An additional ambiguity is that because the magnitudes
jW̃ �kx; ky�j � jP̃�kx; ky�∥χ̃�kx; ky�j, if the data is bandlimited,
it is not discernible whether the object is bandlimited by convo-
lution by the PSF or if the object itself is bandlimited. The trivial
example of this is to assume the PSF is a delta function, and there-
fore χ�x; y� ∝ W �x; y�. As many objects of interest are likely to
have sharp edges or relatively few features, this may be used as a
constraint. To enforce objects that have sharp edges or few fea-
tures, a sparsity constraint [27,28] is applied to χ�x; y� [29].
A typical approach to constraining the sparsity is to minimize
the l1 norm of the function,

kχk1 �
Z

∞

−∞

Z
∞

−∞
jχ�x; y�jdxdy: (5)

The l1 norm is a convex approximation to the true l0 norm that
is a count of the nonzero elements of a vector, and may be opti-
mized using basis pursuit methods [30]. Soft-thresholding
[31,32] increases the sparsity of a vector by decreasing the mag-
nitudes of a vector by a fixed amount, setting the negative mag-
nitudes to zero;

χT �x; y� �
χ�x; y�
jχ�x; y�j

�jχ�x; y�j − α� � jjχ�x; y�j − αj
2

; (6)

where χT �x; y� is the soft-thresholded χ�x; y�, and α is an amount
by which to decrease the magnitude. Because χT �x; y� � 0 for all
values of x and y such that jχ�x; y�j < α, χT �x; y� is more sparse
than χ�x; y�. As the soft-thresholding operation introduces edges
into χT �x; y� where jχ�x; y�j < α, this tends to sharpen edges
smoothed by blurring of the PSF, concentrating the images of
points towards the center of the points.

A further trivial constraint is that one may multiply χ�x; y� by a
constant and divide P�x; y� by the same constant and obtain
another solution. To resolve this ambiguity, the l2 norm of
the PSF is normalized to one,Z

∞

−∞

Z
∞

−∞
jP�x; y�j2dxdy � 1: (7)

There are then three constraints of this blind deconvolution
problem: that the PSF is circularly symmetric, that the object
is sparse, and that the point spread function has unit l2-norm.
These can be combined in an iterative algorithm for blind decon-
volution that performs three minimization steps. The flowchart
for this algorithm is shown in Fig. 2. The algorithm starts with the
original image data as given by W �x; y� and an initial estimate of
the object χ�0��x; y� � W �x; y�. The cycle of the algorithm starts
at the center upper block of Fig. 2, with each block labeled with
its step number, and the steps are as follows:

1. The current image estimate χ�n��x; y� is soft-thresholded
to form a new image χ�n�T �x; y� with reduced l1-norm as given
in Eq. (6).

2. The 2D Fourier transform of χ�n�T �x; y� is calculated to
yield χ̃�n�T �kx; ky�,

χ̃�n�T �kx; ky� �
Z

∞

−∞

Z
∞

−∞
χ�n�T �x; y� exp�i�kxx � kyy��dxdy: (8)

3. The Fourier transform of the PSF is estimated using the
Weiner filter, which minimizes the squared error of the PSF with
a l2 regularization,

P̃�n��kx; ky� �
W̃ �kx; ky�χ̃�n�T �kx; ky��

jχ̃�n�T �kx; ky�j2 � λkχ̃�n�T �kx; ky�k22
kχ̃�n�T �kx; ky�k22 �

Z
∞

−∞

Z
∞

−∞
jχ̃�n�T �kx; ky�j2dkxdky: (9)

The regularization constant λ is proportional to the l2-norm of
χ̃�n�T �x; y� so that the PSF does not contain frequencies for which
the object does not have sufficient magnitude.

4. The l2-norm of the PSF is normalized to one to enforce
the condition of Eq. (7),

P 0�n��x; y� � P�n��x; y�
kP�n�k2

: (10)

5. To enforce that the PSF is circularly symmetric, it is aver-
aged in the angular direction. Two angularly averaged functions
are formed, with the circularly symmetric PSF being a combina-
tion of the two,

P�n�
M �r� �

�
1

2π

Z
π

−π
jP 0�n��r cos θ; r sin θ�j1∕2dθ

�
2

P�n�
ϕ �r� � 1

2π

Z
π

−π
P 0�n��r cos θ; r sin θ�dθ

P�n�
A �r� � P�n�

M �r� P�n�
ϕ �r�

jP�n�
ϕ �r�j

: (11)

P�n�
M �r� is the average of the magnitude of the PSF in the angular

direction. The average is weighted so that smaller values of mag-
nitude influence the average more by taking the square root of the
magnitude. P�n�

ϕ �r� is the simple average that is used to infer the
phase. These two are combined together to find the angularly
averaged PSF P�n�

A �r�. If P�n�
ϕ �r� is used to infer both the magni-

tude and phase, the magnitude is often underestimated due to
cancellation of phases.

Fig. 2. Flowchart of the described blind deconvolution algorithm.
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6. The Weiner filter is used to infer a new estimate of the
object from the PSF, which minimizes the squared-error of the
object with l2 regularization,

χ̃�n�1��kx; ky� �
W̃ �kx; ky�P̃�n�

A �kx; ky��
jP̃�n�

A �kx; ky�j2 � λ
: (12)

7. The inverse Fourier transform of χ̃�n�1��kx; ky� is taken to
obtain the object estimate χ�n�1��kx; ky�,
χ�n�1��x; y�

� 1

�2π�2
Z

∞

−∞

Z
∞

−∞
χ̃�n�1��kx; ky� exp�−i�kxx� kyy��dkxdky: (13)

The regularization constant λ is started at a larger value and is
decreased as the iterations proceed. A small regularization con-
stant λ is needed so that the algorithm does not overly smooth
the object and reject high frequencies, but has the disadvantage
of sharpening edges that may occur because of diffraction effects
that erroneously reconstruct an out-of-focus image with sharp
edges. A large regularization constant is effective but removes
the high frequencies of the object, reducing the resolution. By
starting with a high regularization constant, the gross features
are first identified and then sharpened as the regularization con-
stant is decreased with each iteration. Because the algorithm is
three successive minimization steps, a l1 minimization to increase
the sparsity of the object, a squared-error minimization to find the
PSF, and a second squared-error minimization to estimate the
object, the order of operations can strongly determine the rate
of convergence, and adjusting the regularization constant during
the iterations is a convenient way to accelerate convergence.
Because the original spatial frequency data is applied at both
squared-error minimization steps, the reconstructed object
remains consistent with the data.

4. DEMONSTRATION OF TWI

To demonstrate TWI using the blind deconvolution algorithm, a
radar scanner was constructed consisting of two linearly polarized
short dipole antennas 4 cm apart, a diagram of which is shown in
Fig. 1. These interrogated the object at frequencies between 17
and 26 GHz; however, only one frequency was used in the recon-
structed image. A vector network analyzer transmitted 17 dBm of
power from one dipole and sampled the power and relative phase
of the backscattered signal at the other dipole. These two dipoles
were placed on a two-axis translation stage, and the backscattered
signal sampled at 5 mm intervals over a rectangular area. While
the system is translationally symmetric except for the object, the
dipoles are separated slightly in the X direction are linearly po-
larized, slightly breaking the circular symmetry of the PSF.
Nevertheless, satisfactory results were obtained.

Because one of the applications envisioned for TWI is the non-
destructive imaging of the infrastructure inside the walls of build-
ings, the objects and layered media being tested are intended to be
realistic examples for this application. Realistic walls, however, de-
viate from an ideal layered dielectric structure in several ways.
Walls are not perfectly flat or planar, the layers may be skewed
relative to each other, and most importantly, the materials are
inhomogeneous. There can often be significant scattering from
inside the layers as well as the object behind the layers, and
the algorithm may focus on the internal scattering of the wall
layers rather than the object. This may be an advantage when
the internal scattering features of the wall are of interest; however,

in many cases these scatters are clutter. As we shall see, certain ma-
terials have more internal scattering than others; for example, ply-
wood has significant internal scattering, likely due to the alternating
orientations of the plies. Other materials such as gypsum plaster-
board or cement board tend to be somewhat more homogeneous.

For an ideal layered medium, the reflection from the layers
would be the same at any translational position of the antennas
relative to the layers, and so subtracting off the average reflected
signal as a function of position would remove the reflection of
the layers from the data. Because many realistic walls are of non-
uniform thickness or spacing, the reflection from the wall slowly
varies along the translation directions. Because this reflection signal
is often much stronger than the object signal, the algorithm focuses
on the reflections from the wall rather than the object behind the
wall. To remove these reflections that slowly vary with position, a
high-pass filter is applied to the data W �x; y� to find WH �x; y�,

W̃ �kx;ky��
Z

∞

−∞

Z
∞

−∞
W �x;y�exp�i�kxx�kyy��dxdy

W̃ H �kx;ky��W̃ �kx;ky�
�
1−exp

�
−
h2

2
�k2x�k2y �

��

WH �x;y��
1

�2π�2
Z

∞

−∞

Z
∞

−∞
W̃ H �x;y�exp�−i�kxx�kyy��dkxdky;

(14)

where h is the feature size above which the features should be re-
moved. This high-pass filtering is a generalization subtracting off of
the average that accounts for some wall thickness nonuniformity.

Because the data is taken only over a finite area, the function
W �x; y� has finite support, and as the finite support is presented
as hard edges in the data, the algorithm is likely to form an image
of the hard edges of the support rather than the edges of the ob-
ject. It is necessary to taper the magnitude of WH �x; y� towards
the edge of its support to prevent this. To taper the function
inside the support, if the support of W �x; y� is confined to
−LX∕2 ≤ x ≤ LX ∕2 and −LY ∕2 ≤ Y ≤ LY ∕2, the tapered
version WT �x; y� of WH �x; y� is

WT �x; y� � WH �x; y� cos
�
πx
LX

�
cos

�
πy
LY

�
: (15)

Both the Gaussian filter of Eq. (14) and the cosine window of
Eq. (15) were selected because these are smooth and therefore
are unlikely to introduce ringing into the PSF or the image.

As a first test of the algorithm, a simulation was performed. An
object was created based on the letters of “DUKE.” Each point in
the image was multiplied by a random unit-magnitude complex
number to produce a speckle effect in the object. The speckle
effect ensures that the object contains all spatial frequencies,
whereas an object with large areas of uniform susceptibility has
mostly low frequencies. Noise was added to the object so that
the signal-to-noise ratio was 20 dB. The object was imaged
through two layers of relative permittivity 2 and 3, both each
10 free-space wavelengths thick, with a gap of 3 wavelengths be-
tween the object and the interior layer. The algorithm was applied
to the field scattered by object through these layers, with the
l1-regularization shrinkage constant α of Eq. (6) being equal
to 0.2 times the magnitude data point. The regularization con-
stant λ was started at 0.2 and decreased to 0.01 over the course
of 60 iterations of the algorithm. The results are shown in
Fig. 3. The magnitude of the PSF and its Fourier transform
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the modulation transfer function (MTF) are shown in logarithmic
scale as (a) and (b), with black corresponding to 0 dB, or the
maximum value of the function, and white corresponding to
−30 dB. After applying the algorithm to the original data, the
estimated PSF and MTF are shown as parts (c) and (d). Finally,
the magnitude of the original data is shown as (e), with the object
shape clearly broadened by diffraction and propagation through
the layers, and (f ) shows the reconstructed object.

However, the simulation is an idealized case, which, while it
contains noise, does not contain the more realistic impediments
of scattering within the layers or nonplanar layers. As a first test of
a more realistic situation, a wall phantom was constructed to be
similar to electrical ductwork in residential construction, a photo-
graph of which is shown in Fig. 4. In all of the experimental dem-
onstrations, the total scanned area coincides with the axes shown
on the figures. A wall was constructed from common “two-by-
four” pine studs with gypsum plasterboard screwed onto the
studs. An electrical junction box was screwed onto a stud, and
holes were bored through the studs through which an electrical
conduit was routed. A Romex wire was routed from the electrical
box vertically as well. The wall was imaged through the gypsum
plasterboard, which was about 12 mm thick. The results are in
Fig. 5. Part (a) shows the magnitude of the original data, in which
the electrical junction box can be discerned as a blurry object as
well as the electrical conduit. After applying the algorithm, with α
being 0.05 times the maximummagnitude data point and λ varying
from 0.2 to 0.05 as the iterations proceed, the reconstruction of part

(b) results with the electrical box, conduit, and Romex wire clearly
discernible. In addition, a pine stud can be seen vertically on the
right side of the junction box; however, the reflection is compara-
tively weak from the wood because of its low density. This image is
reconstructed from the backscattered signal at a single frequency,
19.39 GHz.

A second object, consisting of the letters “DUKE” in alumi-
num foil taped to a stack of six layers of plywood each 3 mm
thick, is shown in Fig. 6. This was imaged in an identical manner
to the wall phantom. The reconstruction algorithm was applied to
the reflection data at 19.39 GHz with α equal to 0.2 times the
maximum magnitude data point and λ varying from 0.2 to 0.017.
The reconstruction of Fig. 7 shows that the algorithm was suc-
cessfully able to find the “DUKE” letters despite significant scat-
tering from the plywood layers. The border of the plywood can
also be seen in the image as well, but as the “DUKE” letters
produce somewhat stronger scattering, the sparsity constraint
optimizes the PSF to focus the letters.

Another challenging object, a cross-shaped target of two cop-
per foil strips, was taped onto the rear surface behind 80 mm of
wood consisting of two 20 mm thick particleboard layers and two
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Fig. 3. Simulated reconstruction of a target. The decibel scale is such
that 0 dB is black and −30 dB is white; (a) is the true PSF; (b) is the true
MTF; (c) is the estimated PSF; (d) is the estimated MTF; (e) is the mag-
nitude of the synthetic data; and (f ) is the reconstruction of the data.

(a) (b)

Fig. 4. Wall phantom with electrical ductwork intended to be similar
to that used in residential construction. Photograph (a) shows the elec-
trical conduit, junction box, two-by-four pine stud, and a Romex wire.
Photograph (b) shows the phantom scanned by the antennas, which are
on a plastic disc moved by a translation stage.
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Fig. 5. Reconstruction of electrical components behind gypsum
plasterboard. (a) is the magnitude of the sampled data; (b) is the magni-
tude of the reconstruction, showing the electrical junction box, conduit,
wire, and the pine stud; (c) is the estimated PSF; and (d) is the estimated
MTF. The decibel scale is such that black is 0 dB and white is −30 dB.
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20 mm thick melamine laminated particleboard layers. The scatter-
ing from the inside of the particleboard layers is comparable to the
scattering from the foil cross. Applying the algorithm with α being
0.2 times the maximum magnitude data point and λ varying from
0.2 to 0.05 as the iterations proceed, the reconstruction of Fig. 8 is
obtained. The reconstruction frequency is at 17.59 GHz. The cross
can be clearly discerned, despite the fact that it is unrecognizable in
the raw data. The algorithm must apply the correct phase to nu-
merically focus the cross as well as the amplitude variations to
the MTF to correct for interference effects in the layers.

5. ANALYSIS AND CONCLUSION

There are some aspects of note of the operation of the algorithm.
While the algorithm is used in many cases to focus the target without
being provided the approximate distance to the object from the
antenna, and in the foregoing demonstrations this information
was not provided to the algorithm, when imaging through highly
scattering objects, even an approximate focusing of the data before
application of the algorithm can greatly help the algorithm enhance
the object of interest rather than scatterers inside the wall. A prefo-
cused version WP�x; y� can be computed from the data W �x; y�,
propagating the data by a distance d in the Fourier domain

W̃ P�kx; ky� � W̃ �kx; ky� exp
h
id

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k20 − k

2
x − k2y

q i
in a manner

analogous to the high-pass filter of Eq. (14). For thin walls, it is often
the case that this focusing operation produces a somewhat recogniz-
able image; however, for thick, highly scattering walls, the object may
still appear highly obscured after refocusing, but the deconvolution
algorithm improves the image. For practical use, the data may be
rapidly refocused so that an operator may examine various refocused
images to find the approximate object depth, and then the decon-
volution algorithm may be used to enhance the image. Like any
operation that maintains the circular symmetry of the convolution
kernel, the deconvolution algorithm may still be applied after
refocusing.

Another aspect to note is that a smaller regularization constant λ
tends to enhance high spatial frequencies, but oversharpening may
occur if λ is too small. In practice, λ should be selected on the basis of
the required resolution. Because electrical conduits or plumbing tend
to be large with lower spatial frequency features, it may be desirable
to make the resolution more coarse to remove out-of-focus scattering
from inside the wall. The degree of sparsity α is usually best set to the
minimum value required to enable sharpening to occur.

While there are challenges to practically exploiting blind de-
convolution algorithms, blind deconvolution may be an effective
way to cope with multilayer structures of unknown composition
that are likely to occur in practical imaging situations. Circular
symmetry is a strong constraint that can be applied to effectively
remove the many effects of propagation through multilayer struc-
tures. For this reason, we believe that this algorithm is likely to
find use in imaging instruments used for construction, ground-
penetrating radar, or seismology.

Funding. Air Force Office of Scientific Research (AFOSR)
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