
 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

165

AN OVERVIEW OF POPULAR DEEP LEARNING METHODS

Musab COŞKUN1*, Özal YILDIRIM2, Ayşegül UÇAR3, Yakup DEMIR4

1,4Department of Electrical and Electronics Engineering, Firat University, Elazığ, Turkey
2Department of Computer Engineering, Munzur University, Tunceli, Turkey
3Department of Mechatronics Engineering, Firat University, Elazığ, Turkey

*musabcoskun@firat.edu.tr

This paper offers an overview of essential concepts in deep learning, one of

the state of the art approaches in machine learning, in terms of its history

and current applications as a brief introduction to the subject. Deep

learning has shown great successes in many domains such as handwriting

recognition, image recognition, object detection etc. We revisited the

concepts and mechanisms of typical deep learning algorithms such as

Convolutional Neural Networks, Recurrent Neural Networks, Restricted

Boltzmann Machine, and Autoencoders. We provided an intuition to deep

learning that does not rely heavily on its deep math or theoretical constructs.

Key words: Deep Learning, Convolutional Neural Networks, Recurrent

Neural Networks, Autoencoders, Restricted Boltzmann Machines,

1. Introduction

Machine learning technology supports the modern society in many ways. This technology

becomes widespread in many products such as cameras and smart phones and is also used in many

applications such as content filtering in social network search. Moreover, it is especially beneficial for

object recognition [1,2], speech recognition [3], edge detection [4], and many other areas as addressed

in references [5,6,7].

Deep learning is part of a broader family of machine learning methods based on learning data

representations, as opposed to task-specific algorithms. Deep learning has enabled many practical

applications of machine learning and by extension the overall field of Artificial Intelligence.

Compared to shallow learning deep learning has the advantage of building deep architectures to learn

more abstract information. The most important property of deep learning methods is that it can

automatically learn feature representations thus avoiding a lot of time-consuming engineering. Better

chip processing abilities, considerable advances in the machine learning algorithms, and affordable

cost of computing hardware are primarily crucial reasons for the booming of deep learning [8].

Traditional machine learning relies on shallow networks which are composed of one input and

one output layer, and no more than one hidden layer between input and output layers. Deep learning is

qualified when more than three layers exist in a network including input and output layers. Therefore,

the more the number of hidden layers is increased, the more the network gets deeper as shown in

Fig.1.

The remainder of this paper discusses typical deep learning algorithms which are Convolutional

Neural Network (CNN), Recurrent Neural Network (RNN), Restricted Boltzmann Machine (RBM),

mailto:*musabcoskun@firat.edu.tr

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

166

and Autoencoders respectively. We offer our paper in a way that each section can be read

independently.

2. Deep learning methods

2.1. Convolutional Neural Network

CNN was firstly introduced by Kunihiko Fukushima [9]. It was later proposed by Yann

LeCun. He combined CNN with back-propagation theory to recognize handwritten digits and

document recognition [10,11]. His system was eventually used to read hand-written checks and zip

codes. CNN uses convolutional layers and pooling layers. Convolutional layers filter inputs for useful

information. They have parameters that are learned so that filters are adjusted automatically to extract

the most useful information for a certain task. Multiple convolutional layers are used that filter images

for more and more abstract information after each layer. Pooling layers are used for limited translation

and rotation invariance. Pooling also reduces the memory consumption and thus allows for the usage

of more convolutional layers.

2.1.1. Convolution Operation

Convolution is just a mathematical operation that describes a rule of how to mix two functions

and produces a third function. This third function is an integral that expresses the amount of overlap of

one function as it is shifted over the other function. In other words, an input data and a convolution

kernel are subjected to particular mathematical operation to generate a transformed feature map.

Convolution is often interpreted as a filter, where the kernel filters the feature map for information of a

certain kind. Convolution is described formally as follows:

(1)

CNN typically works with two-dimensional convolution operation as summarized in Fig. 2. The

leftmost matrix is input data. The matrix in the middle is convolution kernel and the rightmost matrix

Fig. 1. An example of deep neural network

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

167

is a feature map. The feature map is calculated by sliding convolution kernel over the entire input

matrix. The convolution process is an element-wise operation followed by a sum. For example, when

the right upper 3×3 matrix is convoluted with convolution kernel, the result is 77.

Fig. 2. A simple depiction of 2-dimensional convolutional operation

The convolution operation is usually known as kernels. By different choices of kernels, different

operations of the images can be obtained. Operations are typically including edge detection, blurring,

sharpening etc. By introducing random matrices as convolution operator, some interesting properties

might be discovered. As a result of convolution in neural networks, the image is split into perceptrons,

creating local receptive fields and finally compressing the perceptrons in feature maps. All in all,

learning a meaningful convolutional kernel is one of the central tasks in CNN when applied to

computer vision tasks.

2.1.2. Convolution Layers

A typical CNN architecture consists of convolutional and pooling (or subsampling or

downsampling) layers as depicted in Fig. 3. A convolutional layer is primarily a layer that performs

convolution operation. Its main task is to map. The result of staging convolutional layers in

conjunction with the following layers is that the information of the image is classified like in vision.

That means that the pixels are assembled into edges, edges into motifs, motifs into parts, parts into

objects, and objects into scenes. Convolutional layer introduces the Rectified Linear Unit (ReLU) the

non-linearity transform after convolution to assist the simulation to be more successful. There are

other non-linear functions such as Hyperbolic Tangent or Sigmoid that can also be used instead of

ReLU, however ReLU has been found to perform better in most situations. ReLU is a special

implementation that combines non-linearity and rectification layers in CNNs. It is a piecewise linear

function defined as follows:

),0max()(xxf (2)

which is a transform that replaces all negative pixel values in the feature map by zero

and therefore solves the cancellation problem as well as results in a much more sparse activation

volume at its output. The sparsity is useful for multiple reasons but mainly provides robustness to

small changes in input such as noise [12].

The pooling layer is responsible for reducing the spacial size of the activation maps. Although it

reduces the dimensionality of each feature map, it retains the most important information. There are

different strategies of the pooling which are max-pooling, average-pooling and probabilistic pooling.

Max-pooling takes the maximum of the input data. Average-pooling takes the averged value of the

input data. Probabilistic pooling takes a random value of the input data [13]. Pooling makes the input

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

168

representations or feature dimension smaller and more manageable. It helps the network to be

invariant to small transformations, distortions,and translations in the input image. It also reduces the

number of parameters and computations in the network as well as minimizes the likelihood of

overfitting.

Fig. 3. A typical CNN architecture

After several convolutional and max pooling layers, the high-level reasoning in the neural

network is done via Fully Connected Layers (FCLs). A FCL takes all neurons in the previous layer

and connects it to every single neuron it has. FCLs are not spatially located anymore, that means they

can be visualized as one-dimensional. Therefore there can be no convolutional layers after an FCL.

The output from the convolutional layers represents high-level features in the data. While that

output could be flattened and connected to the output layer, adding a fully-connected layer is a cheap

way of learning non-linear combinations of these features. The sum of output probabilities from the

Fully Connected Layer is 1. This is ensured by using the Softmax as the activation function in the

output layer of the Fully Connected Layer. The Softmax function takes a vector of arbitrary real-

valued scores and squashes it to a vector of values between zero and one that sum to one.

2.1.3. CNN Architectures

CNNs have recently enjoyed a great success in large-scale image and video recognition. The

influential architectures of CNNs can be listed as below and are presented in chronological order with

better accuracy from the earlier ones from LeNet to DenseNet.

LeNet is a pioneering work was named LeNet-5 by Yann LeCun after previous successful

iteration [14,15]. At that time the LeNet architecture was used mainly for character recognition tasks

such as reading zip codes, digits, etc. With the introduction of LeNet, LeCun et al. [15] also introduced

the MNIST database, which is known as the standard benchmark in digit recognition field.

AlexNet made CNNs popular in Computer Vision. It is composed of 5 convolutional layers

followed by 3 fully connected layers. It was developed by Alex Krizhevsky et al. and won ImageNet

ILSVRC challenge in 2012 [16]. During this competition it produced the best results, top-1 and top-5

error rates of 37.5% and 17.0%.

ZFNet won the ILSVRC 2013. It was proposed by Matthew Zeiler and Rob Fergus [17]. It

became known as the ZFNet. It was an improvement on AlexNet by tweaking the architecture hyper-

parameters, in particular by expanding the size of the middle convolutional layers and making the

stride and filter size on the first layer smaller.

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

169

VGGNet was the runner-up in ILSVRC 2014 from VGG group, Oxford [18]. It makes the

improvement over AlexNet and has 19 layers in total. Its main contribution was in showing that the

depth of the network or the number of layers is a critical component for good performance. Although

VGGNet achieves a phenomenal accuracy on ImageNet dataset, its deployment on even the most

modest sized Graphics Pprocessing Units (GPUs) is a problem because of huge computational

requirements, both in terms of memory and time. It becomes inefficient due to large width of

convolutional layers.

GoogLeNet was invented by Szegedy et al. from Google that was the winner of ILSVRC 2014

[19]. Its main contribution was the development of an inception module that dramatically reduced the

number of parameters in the network. Inception module approximates a sparse CNN with a normal

dense construction. Since only a small number of neurons are effective as mentioned earlier,

width/number of the convolutional filters of a particular kernel size is kept small. Additionally, it uses

convolutions of different sizes to capture details at varied scales. Another salient point about the

module is that it has a so-called bottleneck layer. It helps in massive reduction of the computation

requirement. Another change that GoogLeNet made, was to replace the FCLs at the end with a simple

global average pooling which averages out the channel values across the 2D feature map, after the last

convolutional layer. This drastically reduces the total number of parameters. This can be understood

from AlexNet, where FCLs contain approximately 90% of parameters. Use of a large network width

and depth allows GoogLeNet to remove the FCLs without affecting the accuracy. It achieves 93.3%

top-5 accuracy on ImageNet and is much faster than VGG.

ResNet (Residual Network) developed by Kaiming He et al. was the winner of ILSVRC 2015

[20]. ResNet is a 152 layer network, which was ten times deeper than what was usually seen during

the time when it was invented It features special skip connections and a heavy use of batch

normalization. It uses a global average pooling followed by the classification layer. It achieves better

accuracy than VGGNet and GoogLeNet while being computationally more efficient than VGGNet.

ResNet-152 achieves 95.51% top-5 accuracies.

 DenseNet was published by Gao Huang et al and won best paper award in CVPR 2017 [21]. It

has each layer directly connected to every other layer in a feed-forward fashion. The DenseNet has

been shown to obtain significant improvements over previous state-of-the-art architectures on four

highly competitive object recognition benchmark tasks(CIFAR-10, CIFAR-100, SVHN, and

ImageNet).

2.2. Recurrent Neural Network

RNNs are a family of neural networks for processing sequential data. RNNs are popular models

that have shown great promises in a variety of problems such as speech recognition, language

modeling, translation, image captioning [22-26]. RNNs are called recurrent because they perform the

same task for every element of a sequence, with the output being depended on the previous

computations. In other words they have a memory which captures information about what has been

calculated till the moment. In theory RNNs can make use of information in arbitrarily long sequences,

but in practice they are limited to looking back only a few steps.

A simple example of RNN was firstly proposed by Elman[27]. Its diagram is shown in Fig. 4.

If RNN in Fig. 4 is unfolded, it turns out to be like in Fig. 5. A chunk of neural network looks at some

inputs and outputs a value. A loop allows information to be passed from one step of the network to the

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

170

next. A RNN can be thought of as multiple copies of the same network, each passing a message to a

successor. This chain-like nature reveals that RNNs are intimately related to sequences and lists.

Fig. 4. A simple example of RNN

Fig. 5. Unfolding of a RNN in time of the computation involved in its forward computation

The big deal about RNN is its memory capability for modeling sequential patterns. It was

plagued with gradients that die after a few steps till Long Short Term Memory (LSTM), the most

commonly used type of RNNs, was invented [28] . It was much better at capturing long-term

dependencies than vanilla RNNs. LSTMs have a different way of computing the hidden state.

An LSTM is an architecture that solves the vanishing gradient problem of plain vanilla RNN, so

unless there are other considerations, there is no reason not to choose LSTM. The central idea behind

the LSTM architecture is a memory cell which can maintain its state over time, and non-linear gating

units which regulate the information flow into and out of the cell [29].

2.3. Restricted Boltzmann Machine

Boltzmann machines have been proposed in 1985 [30]. Compared to the times when they were

first introduced, RBMs can be applied to more interesting problems due to the increase in

computational power and the development of new learning algorithms in many domains such as image

classification, texture synthesis, medical image processing, and denoising [31-36].

An RBM is structually a shallow neural net with just two layers that are the visible layer (input

layer) and the hidden layer [37] as shown in Fig. 6. It is a method that can automatically find patterns

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

171

in data by reconstructing the input. An RBM is considered restricted because of the fact that neurons

in each layer have no connections between them and are connected to all other neurons in other layer.

In RBM networks, connections between neurons are bidirectional and symmetric. This means that

information flows in both directions during the training and during the usage of the network and those

weights are the same in both directions. During forward pass, an RBM takes the inputs and translates

them into a set of numbers that encode the inputs. In the backward pass, it takes this set of numbers

and translates them back to form the reconstructed inputs. A well-trained RBM network is able to

perform the backward translation with a high degree of accuracy. In both steps, the weights and biases

have a crucial role. They allow the RBM to decipher the interrelationships among the input features

and they also help RBM decide which input features are the most important when detecting patterns.

Through several forward and backward passes, an RBM is trained to reconstruct the input data.

There are three steps repeated over and over through the training process as below:

 With a forward pass every input is combined with an individual weight and one overall

bias, and the result is passed to the hidden layer which may or may not activate.

 Each activation function is combined with an individual weight and an overall bias, and

the result is passed to the visible layer for reconstruction in a backward pass.

 In the last step, the construction is compared against the original input to determine the

quality of the result.

An interesting aspect of an RBM is that the data does not need to be labeled. This turns out to

be very important for the real-world data sets like photos, videos, and sensor signals. These are all

tending to be unlabeled. By reconstructing the input, the RBM must also decipher the building blocks

and patterns that are inherent in the data.

RBMs have received a lot of attention recently after being proposed as building blocks of multi-

layer learning architectures called Deep Belief Networks (DBNs) [31, 39].

Fig. 6. The network graph of an RBM with n hidden and m visible units [38]

DBNs are multi-layer belief networks. Each layer in DBN is an RBM and they are stacked each

other to construct DBN. DBNs were conceived by Hinton as an alternative to backpropagation. It

showed that it is possible to learn a deep, densely connected, belief network one layer at a time. Their

architecture demonstrated successful results on the MNIST dataset [40].

The difference of a DBN from a multilayer perceptron comes from the way it is being trained.

Training method of the DBN is the key factor that it can outperform its shallow counterparts. A DBN

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

172

can be viewed as a stack of RBMs, where the hidden layer of one RBM is the visible layer of the one

above it. It can be illustrated as depicted in Fig. 7. A DBN is trained as follows:

 RBM1 is trained to reconstruct its input as accurately as possible.

 The hidden layer of RBM1 is treated as the visible layer for RBM2 and RBM2 is

trained using the outputs from RBM1.

 This process is repeated until output layer in the network is trained.

Fig. 7. An architecture of DBN

An important point about a DBN is that each RBM layer learns the entire input. It works

globally by fine tuning the entire input in succession as the model slowly improves. After initial

training, the RBMs create a model that can detect inherent patterns in the data. However what those

patterns are called is still unknown. To finish the training, it is required to introduce labels to the

patterns and fine-tune the network with supervised learning. In order to do this, a small set of labeled

samples is needed so that the features and patterns can be associated with a name. The weights and

biases are changed slightly, resulting in a small change in the network’s perception of the patterns, and

often a small increase in the total accuracy.

All in all, an RBM can extract features and reconstruct features. However, the vanishing

gradient problem is still waiting to be solved. A DBN only needs a small labeled data set, which is

important for real-world applications. The training process can also be completed in a reasonable

amount of time through the use of Graphical Processing Units (GPUs). Furthermore, the resulting

network will be very accurate compared to a shallow network. Therefore a DBN can be regarded as a

solution to the vanishing gradient problem.

2.4. Autoencoders

Autoencoders (also called Autoassociators) are a family of neural networks for which the input

layer is the same as the output layer, as well as an unsupervised learning algorithm[41,42]. They work

by compressing the input into a latent-space representation, and then reconstructing the output from

this representation as illustrated in Fig. 8. In more terms, autoencoding is a data compression

algorithm where the compression and decompression functions are data-specific, lossy and learn

automatically from examples. They have been used as building blocks to build a deep multi-layer

neural network [43] as well as reducing the dimensionality of the data [31]. An autoencoder takes a set

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

173

of typically unlabeled inputs, and after encoding them, tries to reconstruct them as accurately as

possible. As a result of this, the network must decide which of the data features are the most

important, essentially acting as a feature extraction engine. Autoencoders are typically very shallow,

and are usually comprised of an input layer, an output layer and a hidden layer. Some of autoencoder

networks have only two layers instead of three like the RBM. It can also be thought of as a 2-way

translator like the RBM. Input signals are encoded along the path to the hidden layer, and these same

signals are decoded along the path to the output layer.

Fig. 8. Autoencoder architecture [44]

Deep autoencoders are extremely useful tools for dimensionality reduction [31]. For example,

these networks can transform an image containing 28x28 grid of pixels into a representation with only

30 numbers. The image can then be reconstructed with the appropriate weights and bias. Additionally,

some networks also add random noise at this stage in order to enhance the robustness of the

discovered patterns. The reconstructed image would not be perfect. However the result would be a

decent approximation depending on the strength of the network. The purpose of this compression is to

reduce the input size on a set of data before feeding it to a deep classifier. Smaller inputs lead to large

computational speedups, so this preprocessing step is worth the effort.

Data denoising and dimensionality reduction for data visualization are considered as two main

interesting practical applications of autoencoders. With appropriate dimensionality and sparsity

constraints, autoencoders can learn data projections that are more interesting than Principal

Component Analysis (PCA) or other basic techniques.

3. Conclusions

In this paper, we particularly consider deep models such as CNNs, RNNs, RBMs, and

Autoencoders. Due to the prominence and more problem spaces of CNNs in recent years, we mainly

focused on their structure and gave more details about their structures and architectures.

Since deep learning inception, the last decade has been the blooming of Artificial Intelligence.

Deep learning takes hand-crafted techniques out of the scene when there is enough data and good

network architectures in order to learn abstract features. With recent improvements in GPU technology

a lot of matrix computations can be done very efficiently in parallel and this helps training a deep

network not consuming time as it used to be a decade ago. This is also one of the reasons why deep

learning is growing to prominence. While still nascent, it is deep learning getting closer to the ultimate

goal of Artificial Intelligence which is closed to a human intelligence level that helps solving harder

and more significant problems that truly affect humanity.

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

174

4. References

[1] M. Liang, and X. Hu, Recurrent convolutional neural network for object recognition, IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3367–3375.

[2] P. Pinheiro, and R. Collobert, Recurrent convolutional neural networks for scene labeling,

Proceedings of the 31st International Conference on Machine Learning, 2014, vol. 32, pp. 82–90.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, Natural Language

Processing (Almost) from Scratch, J. Mach. Learn. Res., 2011, vol. 12, pp. 2493–2537.

[4] Mohamed A. El-Sayed, Yarub A. Estaitia, and Mohamed A. Khafagy, Automated Edge Detection

Using Convolutional Neural Network, Int. J. Adv. Comput. Sci. Appl., 2013, vol. 4, no. 10, pp. 11–17.

[5] Dan Cireşan, Deep Neural Networks for Pattern Recognition.

[6] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, DeepContour: A deep convolutional feature

learned by positive-sharing loss for contour detection, in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2015, vol. 07–12–June, pp. 3982–3991.

[7] E. Shelhamer, J. Long, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation,

IEEE Trans. Pattern Anal. Mach. Intell., 2017, vol. 39, no. 4, pp. 640–651.

[8] Y. LeCun, Y. Bengio, G. Hinton, L. Y., B. Y., and H. G., Deep learning, 2015, Nature, vol. 521,

no. 7553, pp. 436–444.

[9] Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model for a Mechanism

of Pattern Recognition Unaffected by Shift in Position, 1980, Biol. Cybernetics 36, pp. 193-202.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

Handwritten digit recognition with a back-propagation network, in NIPS’89.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, 1998, Proceedings of the IEEE.

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio, Deep Sparse Rectifier Neural Networks,

2011, Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15

of JMLR. Pp. 315-323.

[13] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng, Convolutional deep belief

networks for scalable unsupervised learning of hierarchical representations, 2009, In Proceedings of

the 26th annual international conference on machine learning, pp. 609–616.

[14] Yan Lecun B Boser, John S Denker, D Henderson, Richard E Howard, W Hubbard, and

Lawrence D Jackel, Handwritten digit recognition with a back-propagation network, 1990, In

Advances in neural information processing systems. Citeseer.

[15] Yann LeCun, L´eon Bottou, Yoshua Bengio, and Patrick Haffner, Gradient-based learning

applied to document recognition, 1998a, Proceedings of the IEEE, pp. 2278–2324.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, Imagenet classification with deep

convolutional neural networks, In Advances in neural information processing systems, 2012, pages

1097–1105.

[17] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. CoRR,

abs/1311.2901, 2013, Published in Proc. ECCV, 2014.

[18] Karen Simonyan, and Andrew Zisserman, Very Deep Convolutional Networks For Large-Scale

Image Recognition, 2014, arXiv preprint arXiv:1409.1556.

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

175

[19] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, Going Deeper with Convolutions,

2014, Computer Vision and Pattern Recognition (CVPR 2015).

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image

Recognition, 2015, arXiv:1512.03385v1.

[21] Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten, Densely Connected

Convolutional Networks, 2016, arXiv:1608.06993v4.

[22] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton, Speech recognition with deep

recurrent neural networks, 2013, IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP).

[23] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel

connectionist system for unconstrained handwriting recognition, 2009, IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 31(5):855–868.

[24] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Honza Cernock, Sanjeev Khudanpur,

Recurrent neural network based language model, 2010, INTERSPEECH 2010.

[25] Biao Zhang, Deyi Xiong, and Jinsong Su, Recurrent Neural Machine Translation, 2016, EMNLP

2016, arXiv:1607.08725v1.

[26] Justin Johnson, Andrej Karpathy, and Li Fei-Fei, DenseCap: Fully Convolutional Localization

Networks for Dense Captioning, 2015, arXiv:1511.07571v1.

[27] Jeffrey L. Elma, Finding Structure in Time, 1990, Cognitive Science 14, pp. 179-211.

[28] Sepp Hochreiter, and Jürgen Schmidhuber, Long Short-Term Memory, 1997, Neural

Computation 9(8):1735-1780.

[29] Klaus Greff, Rupesh K. Srivastava, Jan Koutnık, Bas R. Steunebrink, and Jurgen Schmidhuber,

LSTM: A Search Space Odyssey, 2016, IEEE Transactions On Neural Networks And Learning

Systems, vol.28, Issue: 10, pp. 2222-2232.

[30] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski, 1985, A learning algorithm for

boltzmann machines. Cognitive science, 9(1):147–169.

[31] G. E. Hinton and R. R. Salakhutdinov, 2006, Reducing the dimensionality of data with neural

networks, Science, 313(5786):504–507.

[32] J. Kivinen, and C. Williams, Multiple texture Boltzmann machines, 2012, JMLR W&CP:

AISTATS 2012, 22:638–646.

[33] H. Larochelle and Y. Bengio, Classification using discriminative restricted Boltzmann machines,

2008, International Conference on Machine learning(ICML), pp. 536-543.

[34] A. Mohamed, and G. E. Hinton, Phone recognition using restricted Boltzmann machines, 2010,

IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4354–4357.

[35] T. Schmah, G. E. Hinton, R. S. Zemel, S. L. Small, and S. C. Strother, Generative versus

discriminative training of RBMs for classification of fMRI images, 2009, Advances in Neural

Information Processing Systems (NIPS 21), pp. 1409–1416.

[36] Y. Tang, R. Salakhutdinov, and G. E. Hinton, Robust Boltzmann machines for recognition and

denoising, 2012, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

2264–2271.

[37] Hinton, G.E, Training products of experts by minimizing contrastive divergence, 2002, Neural

Computation 14, pp. 1771–1800.

 Vol 7, Number 2, 2017

 European Journal of Technic
EJT

176

[38] Asja Fischer, and Christian Igel, Training Restricted Boltzmann Machines: An Introduction,

2014, Pattern Recognition 47:25-39.

[39] [Hinton, G.E, Learning multiple layers of representation, 2007, Trends in Cognitive Sciences

11(10), pp. 428–434.

[40] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, A Fast Learning Algorithm for Deep

Belief Nets, 2006, Neural Computation 18, pp. 1527-1554.

[41] Yoshua Bengio, Learning Deep Architectures for AI, 2009, Dept. IRO, Universite de Montreal,

Technical Report 1312.

[42] P. Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, Extracting and Composing Robust

Features with Denoising Autoencoders, 2008, Proceedings of the 25th International Conference on

Machine Learning (ICML2008), pp. 1096-1103.

[43] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle, Greedy Layer-Wise

Training of Deep Networks, 2007, Advances in neural information processing systems, pp. 153-160.

[44] Autoencoders -Bits and Bytes of Deep Learning, [Online], https://medium.com/towards-data-

science/autoencoders-bits-and-bytes-of-deep-learning-eaba376f23ad, [Accessed: 09-Oct-2017].

https://medium.com/towards-data-science/autoencoders-bits-and-bytes-of-deep-learning-eaba376f23ad
https://medium.com/towards-data-science/autoencoders-bits-and-bytes-of-deep-learning-eaba376f23ad

