
Abstract
We compared the capability of the Earth Observing-1 (EO-1)
Hyperion hyperspectral (HS) data with that of the EO-1
Advanced Land Imager (ALI) multispectral (MS) data for
discriminating different land-use and land-cover classes in
Fremont, California. We designed a classification scheme of
two levels with level I including general classes and level II
including more specific classes. Classification shows that the
HS data does not produce better results than the MS data when
we directly applied a Mahalanobis distance (MD) classifier.

We tested a number of feature reduction and extraction
algorithms for the HS image. These algorithms include
principal component analysis (PCA), segmented PCA (SEGPCA),
linear discriminant analysis (LDA), segmented LDA (SEGLDA),
penalized discriminant analysis (PDA) and segmented PDA
(SEGPDA). Feature reductions were all followed by an MD
classifier for image classification. With SEGPDA, SEGLDA, PDA,
and LDA, similar accuracies were achieved while a segmenta-
tion-based approach we proposed (SEGPDA or SEGLDA) greatly
improved computation efficiency. They all outperformed
SEGPCA and PCA by 4 to 5 percent (level II) and 1 to 3
percent (level I) in classification accuracy.

For level II classification, overall accuracies obtained by
using the features extracted from the HS image were 2 to 3
percent greater than those obtained with the MS image. For
various vegetation class and impervious land use categories,
the HS data consistently produced better results than the MS
data. For level I classification, the HS image generated a
thematic map that is �0.01 greater in kappa coefficient
comparing to the MS image. When we collapsed the level II
classification map to a level I map, 5 percent (HS) to 7
percent (MS) improvements were achieved.

Introduction
The EO-1 Hyperion is the only hyperspectral (HS) sensor
operated in space (NASA, 1996). An HS sensor has contigu-
ous narrow wavelength bands (about 10 nm each) that are
able to capture more subtle spectral details of the objects on
the ground than a multispectral (MS) sensor (about 100 nm
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each). However, it is often difficult to process the high
dimension of such data (�200 bands). The limited number
of training samples comparing to the high dimension of data
and the high correlation among the adjacent bands will lead
to inaccurate estimation of the covariance structures and
degenerate ranks of spectral matrices, thus limiting the
accuracy of classification (Hughes, 1968; Hsu et al., 2002).

Land-use classification in an urban setting using
multispectral data or panchromatic imagery has been widely
studied. Spectral, contextual, texture, and structural informa-
tion are extracted to aid the characterization of different and
complex land surfaces and to improve the accuracy of
identification (Gong and Howarth, 1990a and 1990b; Gong
and Howarth, 1992; Deguchi and Sugio, 1994; Ridd, 1995;
Xu et al., 2003). Gong et al. (1997, 2001, and 2002) meas-
ured in situ HS data in order to establish a spectral library,
to recognize different species of conifers, and to further
extract ecological parameters by data transformation and
selection of biophysically sensitive bands. Thenkabail et al.
(2004) reported substantial improvement in rainforest type
classification in Africa when using Hyperion data compared
to the use of Advanced Land Imagery (ALI), Ikonos, and
Landsat ETM� data. However, analysis of imaging spectrom-
eter data for urban land-use applications has rarely been
explored. Roessner et al. (2001) applied the concept of
linear spectral unmixing, considering spatial neighborhood
using a procedure of iterative endmember selection to
differentiate land surfaces in an urban area in Germany.

Therefore, two questions lead us to this research. First,
does the HS image contain more information than the MS
image for urban land-use classification? This question has
not yet been addressed probably due to the unavailability of
simultaneous acquisition of both the MS and HS data. The
launch of EO-1 made it possible for us to explore and
compare the classification results from the two sensors.
Second, as for HS data, what feature reduction/extraction
methods would be better in terms of both computational
efficiency and classification accuracy?

Direct spectral matching using binary coding and
vectorization with known spectra in a spectral library to
label the unknown pixels is possible because of the high
spectral resolution (Jia, 1996; Goetz et al., 1985). Due to the
complexities caused by the high dimensional space of the
data, feature extraction schemes such as PCA or fisher’s LDA
have been applied in transforming and reducing the data
dimension by maximizing the ordered variance of the whole
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data set or the ratio of between-class variance and within-
class variance of the training samples. Jia (1996) and Jia and
Richards (1999) proposed a segmented principal component
(PC) transformation to reduce the computation cost by
selecting subsets of the covariance matrix in a lower seg-
mented dimension. Penalized discriminant analysis (PDA)
was suggested to more efficiently deal with the high correla-
tion among the bands by penalizing the high within-class
variance and to improve the performance of LDA (Yu et al.,
1999). Jimenez and Landgrebe (1999) segmented and trans-
formed the whole spectrum into sub-spectra, estimated
training statistics at the sub-spaces, iteratively updated an
orthogonal projection matrix until getting a minimum
Bhattacharyya distance (BD) among the classes.

Study Site, Data Description, and Georeferencing
Our study area is the city of Fremont, part of the Silicon
Valley, located on the southeast side of the San Francisco
Bay in California. Fremont is a city of over 208,000 people
with an area of 235 km2, making it the fourth most popu-
lous city in the Bay Area and California’s fifth largest city

in area (The City Government of Fremont, California,
2004). Figure 1 contains a EO-1 Hyperion image taken on
17 January 2001. The diverse landscapes in the study area
range from the hilly regions in the north, the urban area in
the middle, and the salt evaporators in the southern end of
the San Francisco Bay. The urban part includes old
residential areas (A), indicating that larger and taller trees
are present; new residential areas (B) mainly in the north,
covered by new and smaller trees with wider streets and
roads; city parks and school lawns (C); industrial and
commercial areas (D) in the northwest and south parts
appearing bright due to the high reflectance of the concrete
or sand cover occupying a relatively larger space; Highway
880 (E) running through the heart of the urban region from
the northwest to the southeast; and the Quarry Lake (F)
that appears dark, couching down south of the mountain-
ous regional park in the north.

An overview of instruments Landsat ETM�, EO-1, ALI,
and Hyperion and their science applications were presented
(Ungar et al., 2003). The fourth track of the ALI data geo-
graphically overlaps with the long narrow Hyperion scene
(256 pixels in width and 6,478 lines in length). Both images
have a spatial resolution of 30 m. The panchromatic (PAN)
scene covering the same area has a ground sampling distance
of 10 m. The ALI, Hyperion, and PAN images were cut to
cover only the study site (Figure 1). The Hyperion and the
ALI data were geographically registered by carefully choosing
13 ground control points (GCPs) at a root mean squared error
(RMSE) of 0.20 and 0.11 pixels in the vertical and the hori-
zontal directions. They were further geometrically corrected
with respect to two quadrangles of 7.5-minute topographic
maps. Nine GCPs were used and the RMSE of the georeferenc-
ing were 0.50 pixels and 0.83 lines. The PAN band of the
imagery was georeferenced with respect to three correspon-
ding orthorectified aerial photographs at 1 m spatial resolu-
tion from the USGS Digital Orthophoto Quadrangle (DOQ)
database. Fourteen GCPs were collected and the RMSE was
0.38 pixels and 0.41 lines. The PAN imagery was geo-matched
with the Hyperion and the ALI data. The final georeferenced
ALI and Hyperion images have 310 by 550 pixels while the
PAN image is 930 by 1,650 pixels. The cubic convolution
method was adopted for image resampling. The PAN image
has been used along with the orthophotos and the topo-
graphic maps as references.

The Hyperion data has 242 bands (22 bands with
overlapped wavelengths) with 12-bit quantization and a
spectral range covering 400 nm to 2,500 nm wavelengths.
There were 38 empty bands and 43 noisy bands that were
removed, so that 161 bands were used for analysis. Those
removed bands were mostly water vapor absorption bands.
The bands of the ALI were designed in such a way that the
central wavelengths of six bands matched those of the
Landsat Thematic Mapper (TM).

Hierarchical Classification Scheme
A land-use and land-cover classification system with
remotely sensed data has been developed by the USGS and
adopted since the 1970s (Anderson et al., 1976; Roessnner,
2001). A hierarchical classification scheme was adopted to
make it possible and easier to merge and separate land-use
classes based on different scales of studies (Table 1). In this
research we developed a two level system for detailed land-
use and land-cover mapping (level I and level II). Level I and
level II are in an increasing order of detail. Field visits were
made twice in March 2002. Selection of separate training and
test samples was guided by the property description for each
class and validated in the field. The number of training and
test samples is also listed in Table 1.
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Figure 1. EO-1 Hyperion imagery of our study site in
Fremont, California taken on 17 January 2001. 
(A) Old residential; (B) New residential; (C) Park;
(D) Industrial; (E) Highway 880; (F) Quarry Lake.
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While these classes are the common land-use and land-
cover categories found in the study area, several classes were
generally ignored in previous research. These include the two
level II classes, road and highway. Previous research using
satellite data from similar spatial resolution rarely distinguish
them from the other urban classes. We included them in this
research in order to test the capability of HS data in distin-
guishing them from the other urban land-use classes.

Classification Methods
Correlation Matrix

The high correlation among adjacent spectral bands creates a
large amount of redundant information and causes the
estimated covariance or correlation matrices with respect to
continuous bands to degenerate and become unreliable. Let
us denote the digital number of a pixel as dni,n for band i
and pixel n, i � 1, . . . , I; n � 1, . . . , N; I and N is the
total number of bands and total number of pixels in an
imagery, respectively. The vector representation for pixel
n is dnn � (dn1,n, . . . , dnI,n)T. The band mean vector is
written as � � (�1, . . . �i . . . , �I)T, where �i is the mean
digital number of band i. The total covariance of the image 

is represented by . 

Figure 2a and 2b show the band correlation matrix of the
ALI and the Hyperion data. The diagonal line indicates the
highest correlation, 1, which is represented in white. The
darker the tone, the lower is the absolute value of the
correlation. We can see that the contiguous bands along the
diagonal line appear “in blocks” showing high correlation
among them, especially for the Hyperion data. The correla-
tion matrix of the Hyperion data looks quite similar to that
of the airborne visible and near-infrared imaging spectrom-

�T �
1
N �

N

n�1
�dnn � m ��dnn � m �

T

eter (AVIRIS) data (Jia, 1996). There are six major blocks
along the diagonal line, with separation lines between
blocks at band 1, 13, 28, 49, 85, 125, and 161 correspon-
ding to wavelengths at 437, 560, 712, 925, 1,346, 1,810,
and 2,365 nm. They are mostly absorption bands by water
or oxygen.
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TABLE 1. HIERARCHICAL CLASSIFICATION SCHEME WITH TWO MAPPING LEVELS AND THE NUMBER OF TRAINING TEST SAMPLES AND

DESCRIPTION FOR EACH LAND-COVER AND LAND-USE CLASS OF LEVEL II MAPPING

Level I Level II Train # Test # Description

1 meadow land 1 meadow land 198 162 meadow land on the hill slope, moisture content varies with 
seasons, rather dry in the summer, green in the winter

2 lawn 2 wetland lawn 125 92 well trimmed with higher water content
3 lawn 138 93 such as school lawns, frequently walked and interfered by 

humans, lower moisture
3 oak woodland 4 oak woodland 205 206 trees grown in the valley, mainly oaks
4 residential 5 old residential 187 157 appear dark red on the false color display of images, 

covered by houses, larger and more trees
6 new residential 125 75 appear relatively lighter red on the false color display of 

images, covered by houses, smaller and less trees
5 dry grass/bare soil 7 dry grass/bare soil 131 105 perannual dry grass or bare soil
6 swamp 8 swamp 173 191 marshland embedded with grass and shrubs, appear brown 

in the false color display of images, along the edges of 
salt evaporators

7 lake 9 mud 102 108 mud shell, between the edges of lakes and swamps
10 lake water 182 149 clear lake water
11 mixed lake/ 163 144 appear dark blue and navy blue, in between clear 

salt evaporator lake water and salt evaporator, more salt concentration 
comparing to clear lake

8 salt evaporator 12 salt evaporator 1 215 161 appear light green, different stage of salt evaporation
13 salt evaporator 2 187 174 appear bright green
14 salt evaporator 3 168 144 appear dark green

9 commercial/ 15 commercial 160 89 relatively smaller areas along the streets
industrial 16 industrial 239 153 relatively larger areas and more concentratedly distributed

10 transportation 17 high way 177 132 high way 880, 84
18 road 162 117 roads and streets in the city

Figure 2. Band correlation matrix (in absolute
values) presented in an image form: (a) ALI data,
and (b) Hyperion data. Separation wavelengths
between sub-blocks of the Hyperion correlation data
are labeled. The diagonal line indicates the highest
correlation, 1, which is represented in white. The
darker the tone, the lower is the absolute value of
the correlation.
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Mahalanobis Distance Classifier
The estimates of training samples for the mean vector and
within-class covariance matrix are denoted by �(c) and �W,
c � 1, . . . , C; where C is the total number of classes. Here, 

= �c where �c is 

the proportion of class c samples in the total samples and
Nc is the sample size of class c. In this study, we used
Mahalanobis distance classifier for both the original ALI and
the Hyperion datasets, and all the subsequent feature
reduced images. A pixel dnn will be classified into class c if 

the distance is minimized.

The dnn and �(c) can be either obtained from the original image or
from the transformed images by feature reduction techniques.

Feature Reduction Methods
PCA and Segmented PCA
To deal with the problem of low ratio of the number of
training samples over the spectral bands and to reduce the
computational cost, PC transformation is used to project the
original data into a new orthogonal space with successive
variance maximized. The result is that the few major
components contain most of the variances in the original
dataset so that further analysis can be pursued based on the
few major components. The SEGPCA adopts the idea of the
segmented PC transformation proposed by Jia and Richards
(1999) in such a way that the processing operates on
subgroups of the original data rather than on the full set of
data as does the conventional PCA. Thus, it further reduces
the computation time and mitigates the small training
problem (Jia, 1996; Jia and Richards, 1999). Other efforts
have been made on the generation of more reliable statistics
in a lower dimensional space (Jimenez and Landgrebe, 1999;
Jimenez et al., 1999). In this study, to maintain the computa-
tion simplicity and efficiency, we did not select features
according to the criterion of BD but rather choosing one or
two major components from the six blocks according to
three criteria: the visual inspection, order of variance
explanations, and eigenvalues. We calculated the variance-
covariance matrix from the entire image rather than using
the training samples. Therefore, both PCA and the SEGPCA
were kept in an unsupervised fashion. It is intuitively
meaningful that we select a few major components from
each highly correlated block to avoid choosing most of the
major components from only one or two blocks.

LDA and Segmented LDA
Fisher’s LDA searches for successive linear combinations of
data to maximize the ratio of between-class variance over
within-class variance of training samples in an expectation
of spreading the means or the cluster centers of different
classes as much as possible while keeping the within-class
variation at a similar level for all classes (Yu et al., 1999). It
is based on an assumption of reliable estimation of training
statistics. Let us denote the overall mean vector of training
samples by

�c . The between-class covariance matrix is

defined as �c . LDA looks for an

I by p projection matrix whose j th column
is a transformation vector for producing the particular j th

component image. The number of total components p is
determined by the intrinsic dimension of �B corresponding to

bj

BLDA � (bl, . . ., bp)

	�m (c)� m0��m(c) �m0�
T

�B � �
C

c�1

	m (c)m0 � �
C

c�1

�dnn � m(c)�
T

��1
W (dnn �m(c))

	
1
Nc

�
Nc

n�1
�dnn�m(c)��dnn � m(c)�

T

�
C

c�1
�W

the number of non-zero eigenvalues, which is less than or
equal to C-1. The ratio for the newly projected images

where �c

by definition. Differentiating g with respect to 


 and letting it be 0 yield where 
s are 

the eigenvectors corresponding to the p non-zero eigenval-
ues of �W �B and maximizing g.

Segmented LDA first divides the whole spectrum into sub-
blocks with each block containing a set of continuous highly
correlated spectral bands as determined from the correlation
matrix mentioned earlier (Figure 3). Denote the dimension of
the kth sub-block as Ik, and I1 � . . . � Ik � . . . � IK � I.
For each sub-block of spectral bands, estimate the between-
class covariance matrix and the within-class covariance matrix
in a sub-space that has the dimension equal to the number of

�W 
�1 �B b � g 	b,

s2
W � bT �W b

	�bT m(c) � bT m0�
2

� bT �B b,s2
B � �

C

c�1
g �

s2
B

s2
w

,
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Figure 3. Flow chart of a Segmented LDA.

–1
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bands in the sub-block. Then, apply LDA to each sub-block to
generate new component images (features) (with a number of
min(C-1, Ik)). This projection is supposed to spread the means
of the classes as much as possible. With the newly projected
images for each sub-block, we could either select the first few
feature images for each sub-block to generate a combined pool
of new features that can be subsequently used for classifica-
tion (Scenario 1 in Table 2) or select more feature images (less
than min(C-1, Ik)) from the kth sub-block for k � 1, . . . , K to
form a new sub-space (Scenario 2 in Table 2). For Scenario 2,
we apply LDA once again to search for an optimal set of
orthogonal sub-space for use in final MD classification.

Similar to the SEGPCA, SEGLDA significantly saves compu-
tation time. To calculate the symmetric within-class covari-
ance matrix, the conventional LDA needs to fill in OLDA �
I*(I � 1)/2 entries while the SEGLDA only needs to fill in 

4, Ik � 50 for k � 1, . . . , K, then OLDA � 20100 and 
OsegLDA � 5100. To apply LDA, the conventional method has
to invert the matrix and to calculate the eigenvalues and
eigenvectors at the full dimension while the SEGLDA com-
pletes these tasks at the sub-spaces. To do the image
transformation, the conventional LDA must calculate at least
I*m multiplications and (I�1)*m additions where m is the
number of features finally selected for classification while 

subblock is equally distributed. For example, if m � 8, then 

avoids the estimation of the covariance at the full dimen-
sional space. Instead it is applied to a small group of bands,
thus making it easier to estimate reliable parameters from
limited number of training statistics.

PDA and Segmented PDA
The PDA introduces a penalty matrix � to the within-class
covariance matrix to penalize and limit the effect that a
band with high within-class variation may have in the
case of LDA but to reserve the low within-class variation
band in the meantime. The function of the penalty
matrix was geometrically interpreted (Yu et al., 1999). It
unequally smoothes the within-class variation for all the
classes in the hyperspectral space. The realization of
SEGPDA is similar to that of the SEGLDA in a sense of the
segmentation process before applying PDA, except that it
adds a penalty term to the estimation of the within-class
covariance matrix.

Experiments, Results, and Discussion
To answer the question “Does the HS image contain more
information than the MS image for urban land use mapping?,”
we tested classification on both the original images and the
above feature extracted images. The spectral curve of the
mean digital number for each of the 18 level II classes was
plotted for both the ALI and the Hyperion data (Figure 4). We
did not apply any atmospheric correction to the data
because they will not affect classification performance (Song
et al., 2000). Therefore, we directly applied Mahalanobis
distance classifier to both of the original ALI image (nine
bands) and the Hyperion image (161 bands). The kappa
coefficient from the nine MS bands for the level II mapping
was 0.855 and 0.868 from the 161 HS bands (Table 2). The
difference between the two images was only 1.3 percent.
When we collapsed the fine and detailed level II classes by
merging them into their corresponding coarser level I
classes, the kappa coefficient for the MS bands was 0.929
and 0.924 for the HS bands. The HS image did not gain more
from collapsing the detailed classes than did the MS image.
To statistically test the significance of the accuracy differ-
ences, we conducted a t-test between the kappa coefficients
of each pair of compared classification results. A Z-value
can be determined by dividing the difference between two
Kappa coefficients resulting from two classifications by the
square-root of the sum of the corresponding Kappa variances
(Gong and Howarth, 1990b). A Z-value above 2.37 indicates

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Augu s t  2007 959

TABLE 2. KAPPA ACCURACY AND SIGNIFICANCE TEST FOR THE ALI AND THE HYPERION IMAGE CLASSIFICATION FOR BOTH LEVEL I AND

LEVEL II CLASSES WITH DIFFERENT FEATURE REDUCTION ALGORITHMS

Level I Level II

MS HS MS HS

Scenario � Criterion Kappa Kappa sd Kappa Kappa sd Z-value Kappa Kappa sd Kappa Kappa sd Z-value

MD 0.929 0.00555 0.924 0.00569 0.63 0.855 0.00732 0.868 0.00703 1.28
PCA 0.905 0.834
SEGPCA 1 0.924 0.848

2 0.927 0.847
3 0.921 0.843

LDA 0.928 0.00556 0.935 0.00530 0.91 0.855 0.00733 0.880 0.00677 2.51
SEGLDA 1 1 0.891 0.822

1 2 0.883 0.825
1 3 0.888 0.828
2 0.932 0.876

PDA 0.1 0.917 0.936 0.844 0.882
1 0.930 0.00551 0.937 0.00525 0.92 0.857 0.00730 0.884

10 0.923 0.937 0.00525 0.849 0.880
20 0.936 0.885 0.00664 2.84
50 0.934 0.884

100 0.933 0.876
SEGPDA 1 20 3 0.893 0.836

2 0.931 0.871

entries. For example, if I � 200, K �

the SEGLDA only needs to calculate multiplications 

and additions if the number of bands for each

I*m � 1600, . On the other hand, the SEGLDA
m
K

	 �
K

k�1
Ik � 400

m
K

	 �
K

k�1
(Ik � 1)

m
K

	 �
K

k�1
Ik

OsegLDA � �
K

k�1

Ik (Ik � I)
2

04-098.qxd  7/10/07  3:07 PM  Page 959



that the two classification results are significantly different
at the 0.99 confidence level. The resulting Z-values of 1.28
and 0.63 for the level II and level I classes indicated that
there was no significant difference between the two images
on the urban land-use classification.

Regarding the second question in feature reduction, the
original Hyperion data was first projected into a transformed
space by maximizing either the data variance (i.e., PCA) in
an unsupervised fashion or separability among different
classes (i.e., LDA, and PDA) in a supervised fashion (through
the use of training samples). The newly projected compo-
nent images were then both visually inspected and computa-
tionally tested for classification. We found that the first
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Figure 4. Spectral plot of the mean digital numbers of the 18 training classes: (a) ALI data, land-cover
classes, (b) ALI data, land-use classes, (c) Hyperion data, land-cover classes and (d) Hyperion data,
land-use classes.

TABLE 3. DATA SEGMENTATION LISTING BLOCK NUMBER, BAND RANGE, WAVELENGTH RANGE, AND THREE CRITERIA FOR

FEATURE SELECTION USING THE SEGPCA

Sub-block Band Wavelength(nm) Criterion 1 PC1(%) PC2(%) Criterion 2 
1(10e6) 
2(10e5) Criterion 3

1 1–13 437–560 1 97.50 1.5 1,2 0.78 0.12 1
2 14–28 570–712 2 95.80 2.2 3,4 1.32 0.31 2,3
3 29–49 722–925 3,4 98.20 1.4 5 3.70 0.52 4,5
4 50–85 962–1346 5,6 99.00 0.5 6 9.10 0.41 6,7
5 86–125 1417–1810 7,8 98.00 1.2 7 0.84 0.10 8
6 126–161 1971–2365 9 95.50 1.1 8,9 0.06 0.01 9

seven to nine features contain most of the variation of the
data. Therefore, they were used for further classification.
Due to the fact that most of the HS space was redundant, the
useful information can be kept in a low dimensional space.
The intrinsic dimensionality was generally less than ten
(Harsanyi and Chang, 1994). Therefore, we finally reduced
the dimension of the Hyperion data from 161 to 9, from
which we could achieve the best accuracy and this coinci-
dentally matched the dimension of the ALI space.

For the segmentation-based feature reductions of the
Hyperion data, we divided the spectrum into six sub-blocks
according to the visual inspection result of the correlation
matrix as stated earlier (Table 3). We tested the blocking
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behavior of the correlation matrix obtained from two other
study sites in Patagonia, Argentina and found that the
separation lines at wavelength of 437, 560, 712, 925, 1,346,
1,810, and 2,365 nm surprisingly representative. Clearly,
these separation lines are not scene dependent and there-
fore they may be applicable to other scenes without pre-
examination. For the SEGPCA, we generated a data covari-
ance matrix from each sub-block and transformed each
sub-block of images into new component images that
maximized the variances. In other words, we applied PCA to
each sub-block of bands rather than applying PCA to the
whole dataset. Then, we selected one or two features from
each segment of component images according to the three
criteria listed earlier (Table 3). Criterion 1 is based on
visual inspection. Criterion 2 is based on the consideration
of choosing component images that could cover the data
variation from each sub-group as much as possible. Crite-
rion 3 was based on the ranking of the weighting contribu-
tions of the component images. The results from Table 2
showed that there was no much difference among these
three criteria selections. Comparing the PCA with the
SEGPCA, there was a 1 percent increase in the kappa accu-
racy using the SEGPCA for level II mapping and a 2 percent
increase for level I mapping.

Utilizing the same strategy of feature selection as
SEGPCA, we obtained a kappa coefficient of 0.822 to 0.828 for
level II classification employing Scenario 1 for the SEGLDA.
The results were 5 percent to 6 percent lower for level II
and 4 percent to 5 percent lower for level I than those from
the conventional LDA although it saved about five-sixths of
the computation time. This was attributed to the fact that we
ignored the high correlations among these selected features
from each sub-block. The combination of the high separabil-
ity features from each sub-group might not lead to high
separability for the whole dataset. On the contrary, they
might contain less information as it was possible that the
high separability images from each subgroup were along
similar directions, and they were highly correlated thus
ignoring other useful features. Based on this observation we
constructed a second experiment (Scenario 2) in which a
reasonable number of features from each sub-group (it was
five in this experiment as the remaining features contain
mostly noise) was chosen. Those selected features were then
combined to form a new sub-group (5*6 � 30 features) for a
second round of LDA resulting in nine final features that
have the maximum separability among the classes. In this
case, we achieved a kappa accuracy of 0.876 that was at the
same level as a conventional LDA while still greatly reducing
the computation of a conventional LDA.

To penalize high local variation, we considered a
second derivative-type penalty matrix �D, defined as

, where DK denoted a k–1 by k dimensional
first difference operator matrix and � was the smoothing
parameter (Yu et al., 1999). Our within-class covariance
matrix �W was perturbed by adding this penalty matrix in
the PDA. We let the smoothing parameter � to vary at 0.1, 1,
10, 20, 50, and 100. The best classification accuracy we
could achieve with PDA was 0.885 with � � 20 for the level
II mapping and 0.937 with � � 1 or 10 for the level I class
mapping. Applying SEGPDA in a similar fashion as SEGPCA,
we obtained a kappa value of 0.836 for level II classes when
we selected the features based on the ranking of eigenvalues
(Scenario 1, criterion 3). By pooling features from each
subgroup and forming a new set of features for final SEGPDA
(Scenario 2), we improved the kappa value to 0.871 for
level II classes and 0.931 for level I classes. No significant
difference existed between the results from the SEGPDA and
the PDA (Z-value of 1.45 and 0.79). The choice of the

lDT
K DT

K�1 DK�1 DK

penalty matrix can be critical, and further pursuit to the
knowledge of different spectral behavior among different
bands will make the penalty matrix to be more adaptable to
the data and would possibly improve the classification
performance.

Among the six feature reduction/extraction methods,
SEGPDA, PDA, SEGLDA, and LDA obtained similar classification
accuracy, although a PDA-based approach consistently
achieved a slightly higher (less than 1 percent for both
level I and level II classes) accuracy than an LDA-based
approach. They all outperformed the SEGPCA and the PCA
by 3 percent to 5 percent for level II classes and 1 percent
for level I classes.

For the ALI imagery, we also tested LDA and PDA in an
attempt to further reduce and extract features to improve the
MD classification. However, it seemed that there was no
room left for further improvements as a kappa value of 0.857
and 0.930 for level II, and level I classification was the best
we could obtain comparing to 0.855 and 0.929 by directly
using a MD classifier. When we compared the best kappa
values obtained from the Hyperion data for both level II and
level I mapping (0.885 and 0.937, respectively) with that
obtained from the ALI data (0.857 and 0.930, respectively),
we found that there was less than 3 percent difference for
the level II classification and no difference for the level I
classification at a Z-value of 2.84 (indicating a significant
improvement) and 0.92, respectively. The resulting maps
were shown in Plate 1.

Is it worthwhile to make this effort of using the HS data
instead of the MS data in the classification of urban land
uses? For which specific class does the HS perform better
than the MS? When the conditional kappa coefficients of the
best classification results using the ALI (PDA, � � 1) and the
Hyperion (PDA, � � 20) data are plotted for each individual
level II class (Figure 5), it can be seen that for various water
class including swamp, mud, clear lake, mixed lake/salt
evaporator, and three different staged salt evaporators, both
the HS and the MS images satisfactorily (perfectly for the HS)
classify them with kappa values close to 1. For meadow
land, wetland lawn, lawn, and oak woodland that are
mainly vegetation, the HS data perform obviously better than
the MS data. For the level II impervious land-use classes
such as commercial, industrial, highway, and concrete road,
the HS image classification outperforms the MS image,
particularly on the industrial. It implies us that hyperspec-
tral imagery possibly not only have strength on identifying
subtle spectral changes of vegetation, but also on mapping
urban impervious surface. For road, none of the two images
appeared to produce a satisfactory result. This can be
explained by the high spectral confusion between road and
several other classes such as highway, new residential, old
residential (Figure 4). However, the MS classifies better with
dry grass/bare soil and especially new residential, where
less vegetation coverage in the neighborhood comparing to
the old residential.

Two confusion matrices arranged in three main blocks
along the diagonal entries are presented for the best MS
(Table 4) and HS (Table 5) classification results. The category
number is listed on the first row and the first column; row
entries are references and column entries are classified
results. The first block contains all vegetation classes. Both
images achieved good results, and the HS image improves
the MS classification by 7 percent on average. The second
block contains all water-related and relatively pure cover
classes. Both the images produce almost perfect classifica-
tion results. The third block contains all human induced
land-use classes, and they are mostly spectrally mixed
classes. Generally, both the images achieved poorer results
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with these classes comparing to the other land-cover classes.
There is a great confusion among old residential, new
residential, and the roads, as is between commercial and
industrial, and between highway and road. The HS improves
the classification accuracy by 5 percent on average for this
third block. The left column of Figure 4 depicts spectral
curves from land-cover classes listed in the first, and the
second block and the right column depicts those from the
land-use classes as listed in the third block. The use of

hyperspectral data on vegetation type identification has been
intensively investigated in the past, however, less explored
on urban mapping. This research evaluates the capability of
satellite-borne hyperspectral sensor on mapping urban
environment, particularly the potential of mapping urban
impervious surfaces.

What else can be done to further improve the overall
HS mapping efficiency and/or accuracy? From a statistical
point of view, the existing feature reduction methods could
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Plate 1. The best level II classification map using (a) the ALI data, and (b) the Hyperion
data. The best level I classification map using (c) the ALI data, and (d) the Hyperion data.
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Figure 5. The conditional kappa coefficients of individual
classes for the best level II classification using the ALI
data and the Hyperion data. LC1 (land-cover type 1):
vegetation class; LC2 (land-cover type 2): water class;
LU1 (land-use type 1): residential and soil; LU2 (land-use
type 2): impervious surface.

TABLE 4. CONFUSION MATRIX FROM THE BEST ALI CLASSIFICATION. BLOCK 1: CLASS TYPE 1 TO 4 ARE VEGETATION; BLOCK 2: CLASS TYPE 8 TO 14 ARE

WATER; BLOCK 3: CLASS TYPE 5 TO 7 AND 15 TO 18 ARE PERVIOUS AND IMPERVIOUS LAND-USE CATEGORIES, RESPECTIVELY

Classification

ALI 1 2 3 4 8 9 10 11 12 13 14 5 6 7 15 16 17 18

1 156 6 162
2 71 21 92
3 5 86 1 1 93
4 3 175 1 12 15 206
8 191 191
9 105 3 108

10 149 149
11 144 144
12 158 3 161
13 174 174
14 144 144
5 2 1 114 33 7 157
6 6 55 4 10 75
7 78 1 26 105

15 1 68 7 12 1 89
16 2 1 3 60 81 6 153
17 1 2 4 1 111 13 132
18 2 3 18 33 61 117

161 71 116 178 196 107 164 144 158 174 147 124 123 87 129 88 167 118 2452
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be adjusted. For example, the Noise Adjusted PCA or MNF
could be further explored in an absence of the a priori
information about the noise structure; it could be applied
not only for rare target detection but also for an exhaustive
image classification (Green et al., 1988; Lee et al., 1990;
Chang and Du, 1999). For the PDA, the penalty matrix may
be adjusted to fit the local band variation for a better
performance. A fast and optimal feature selection process
should also be pursued. It may be beneficial to use spatial
information in the HS imagery to further improve the
classification. All these can be further investigated.

Conclusions
With the satellite-borne hyperspectral sensor, Hyperion,
recently coming into existence, we investigated ways to make
better use of those abundant resources of spectral data to
improve the land-cover and land-use mapping in an urban
environment. Based on our exploratory analysis, we conclude:

1. There is no significant improvement (less than 1 percent in
kappa coefficient) of classification accuracy when comparing
Hyperion data (161 bands) with the ALI data (nine bands) if a
Mahalanobis distance classifier is directly applied. However,
the best feature reduction and extraction image (nine bands)
from the original Hyperion data improves the ALI (nine
bands) classification by 3 percent for level II classes
(significant on the t-test) and less than 1 percent (insignifi-
cant on the t-test) for level I classes.

2. Feature reduction algorithms applied to the ALI data do not
improve classification accuracy compared with the original
ALI image. Feature reduction does not seem necessary for the
ALI image.

3. Among different feature reduction algorithms applied to the
Hyperion data, a segmentation-based approach basically
improves the computation efficiency over a conventional one.
There are no significant differences in terms of classification
accuracy among SEGPDA, SEGLDA, PDA, and LDA although the
PDA-based algorithms consistently showed a less than 1
percent improvement over the LDA-based algorithms. All these
four supervised feature reduction methods outperform PCA by
5 percent (level II) and 3 percent (level I), SEGPCA by 4 percent
(level II) and 1 percent (level I) and the direct use of the MD
classifier by 2 percent (level II) and 1 percent (level I).

4. For the individual classes, the best feature reduction image
from the HS data generally produced better results than the
MS data except for new residential and dry grass. For pure
land-cover (block 2 of the confusion matrices) classes, both
images produced close to perfect results. For the vegetation
classes (block 1) and the relatively mixed spectral classes
(block 3), the HS improved the kappa accuracy by less than
3 percent. The HS particularly showed strength on classify-
ing vegetation and urban impervious surface.

5. By collapsing the level II to the level I classes, we gained
about 5 percent accuracy for the ALI image and 7 percent for
the feature reduced Hyperion image.
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