Using Incremental Planning to Foster Application Framework Reuse

Alvaro Ortigosa”™ and Marcelo Campo’

“Universidad Nadonal del Centro Prov. Bs. As. - Fac Ciencias Exadas
ISISTAN Reseach Institute - Objects and Visuali zation Group

T Universidad Auténama de Madrid, E.S.T. de Ingenieria Informética

E-mail: {ortigosa, mcampo}@exa.uricen.edu.a

Contad author:

Alvaro Ortigosa

ISISTAN — Faaultad de Ciencias Exadas— UNICEN
Campus Universitario, Pargje Arroyo Se, (7000)
Tandil, Bs. As., Argentina

Abstract

In this work, we present an appoach for documenting oljed-oriented application frameworks and sing the
documentation to guide the framework instantiation process Our approach is based on a shift from a framework-
centered to a functiondity-centered documentation, through which a tool can guide the instartiation process
according to the functionality required for the new apgication. The fundamental idea of our work is the cmmbination
of the cncept of user-tasks modeling andleast comnitment planning methods to gude the instantiation process
Based onthese techniques, the toadl is able to present the different high leve activities that can be carried ou when
creating a rew application from a framework to the devedoper, taking as a basis the documentation provided by the
designer throughinstantiation rules.

Keywords: Applicaion Frameworks Reuse, Planning, Software Development Suppart Todls

1. Introduction

Objed-oriented application frameworks constitute agrea improvement in software reuse becaise they promote
not only the reuse of single building blocks, but also the reuse of the design of systems or subsystems. A framework
embodes design dedsions like the gplicaion control flow, distribution of resporsibilities among classes and
communicaion protocols for implementing coll aborations, which are implicitly reused by a user when developing a
new application using the framework.

Depending on framework complexity, however, this development may be ahard and time-consuming task for
novice users. Usualy, in order to take full advantage of framework capabiliti es, a user must understand the internal
details of the framework design. This involves, for example, the relationships among the different framework
components and what is expeded from the gplicaion spedfic code. Besides, considering that a framework is
generaly avery flexible design, this usually implies a design harder to understand.

These reasons make good quality documentation an esential factor to make aframework successful. However,
traditional design and code documentation techniques are not enough to describe the complexity of a framework,
spedally if considered the different kinds of users that may need to accessframework documentation [5]. Butler et
a. [1] describe four kinds of framework (re)users. applicaion developer, framework maintainer, developer of
another framework and verifier. Taking into acount this variety, different documentation methods have been
proposed for documenting frameworks. Some of them are informal and prescriptive[5][13][17], that is, they describe
how the framework should be used. Some other methods are more forma and descriptive: they describe the
framework design, and the user has to deduce how to use it [4][18]. Every technique is oriented to a given kind of
framework user, and even some of these gproaches are ale to provide good descriptions of some framework
aspeds, none of them can successfully satisfy all the framework documentation requirements[16].

In this context, more powerful todlsto suppart the production of good documentation and guidance for framework
users become increasingly important. In this work we present a new approac to suppart framework documentation
in such a way it can ad as an adive guide for the tasks that users must acamplish to build a spedfic gplicaion
using the framework. The fundamental ideaof our work is the combination of the concept of user-tasks modeling
and least commitment planning methods [19] to guide an instantiation process Based on this technique, a tod can
present the developer the different high level adivitiesthat can be caried out when creaing a new application from a
framework, taking as a basis the documentation provided by the designer through instantiation rules. For example, if
the framework is on the acounting domain, some of the initial adivities can be to crede anew type of acount, or to
describe anew agorithm to cdculate the tax rate. For ead of these high level adivities, there is alist of tasks that
the user must carry out in order to complete the adivity. When the user seleds her next objedive, the todl is able to
build the sequence of tasks that have to be done to accomplish that objedive; this list of tasks is cdled the
instantiation plan, and the processof plan credion is named planning. For this end a spedalized planning algorithm,
cdled PIT (Planning Instantiation Tasks), was developed. In this paper we present the main charaderistics of the
planning approach and a short example of the instantiation tool developed to suppart the gproach.

The paper is organized as foll ows. Next sedion discusses framework documentation requirements and the role of
user tasks applied to the framework instantiation process In sedion 3 we present the concept of incremental
planning of instantiation tasks, introducing a representation for the needed framework documentation. Sedion 4
presents SmartBooks, a method for framework documentation based on those ideas, and HiFi, a tool developed to
suppart the goproacdh, along with an example of its applicaion. In sedion 5, the PIT agorithm is described. Finaly,
in sedion 6, the main conclusions of the work are presented.

2. Framework Documentation and User Modeling

It is widely accepted that good framework documentation must combine diverse methods for documenting
frameworks [14]. Focusing on an application developer user (that is, one that uses the framework for developing a
new application), an important technology is represented by the so-cdled adive mokbodks [17]. A cookbodk
contains a set of redpes, where eab redpe describes, in an informal way, the solution for a spedfic problem using
the framework. Recipes do not explain the rationale of the design or why a problem must be resolved in a given way,
but just explain how the problem can be solved using the framework. Active mokbodks are toadls that enad redpe
descriptions, providing the user an interadive interfacethat guides her through the instantiation process One of the
reasons of cookbodk successis that humans are good at foll owing step-by-step dredions.

Cookbodks are apromising approach, but they are limited by two fundamental drawbadks: firstly, the lack of
adequate environments that suppat the aedion of the aokbodks. Currently, cookbodks must be aeaed from
scratch, and all the work is responsibili ty of the documentation writer (consistency rules, if any, the stepsto be done,
etc). Seoondly, the redpes and cookbodks present the problem of little flexibility. The more detailed the assistance
provided by a given redpe is, the lesspassible it is for the user to follow an instantiation processdifferent from the
one stated by the redpe. This problem is more evident when deding with adive mokbodks, where the user has to
follow the embedded redpe up to the last detail, or must resign herself to work without the toodl. Even worse,
framework documentation should address the neals of developers with varying levels of experience with the
framework, giving each one the oppatunity to interad with the documentation at the level she prefers.

Besides these drawbacks, the focus of the documentation represents a aiticd point. In general framework
designers tend to explain how to use aframework taking into acawunt what we cdl a framework-centric view. That
is, the documentation tends to explain how to use or add spedfic components instead of centering the spedfication
around what functional requirements are satisfied by a given combination of framework components or methods.

Under this view, we daim that a more powerful tool should provide the user with some mechanism to expressthe
requirements that her spedfic goplication should fulfill, and provide guidance @&out what programming adivities
should be done in order to get such behaviors with the framework. On the other side, a documentation suppart tod
should emphasize the organization of the documentation regarding this asped as a central one.

Sedng the instantiation processas a set of programming adivities (i.e., subclassing, method overriding, etc.) then
such adivities can be asdmilated to the concept of user-tasks, successfully used in the modeling of interadive
applicdions [6]. In this way, the processof producing instantiation documentation can be seen as a processof user-
tasks modeling, as we explain below.

2.1. Instantiation Tasks

During the last yeas there has been a growing effort devoted to the modeling of the tasks a user can accomplish
whil e working with an interadive goplication [6][12]. The use of task modelsin complex applications alows aricher
interadion between the user and the system, since the system is able to more predsely understand the user
objedives, and dve her suppat towards their accomplishment. This sippat can be in terms of user modeling and
adaptation of the goplication to her neals, suppart for the development of help systems for applications[11], suppart
for the use of multiple annected appli caions, etc. One of the roles of task modelsis to conned the semantics of user
adionsto the lower level of elementary adions (events) impased by window toalkits. Usually, the gopli cations under
consideration have a well defined set of basic user adions, which is still too complex for a novice user to
comprehend or for a designer to kego in mind whil e thinking about other aspeds of the interface

The instantiation of software frameworksis an adivity that is also based on a well defined amount of basic tasks,
like for example dass gedadlizaion and method overwriting, but it presents a higher degree of complexity. A
framework documentation tool should provide means to allow a designer to describe the different ways a framework
can be used, by describing the different instantiation tasks (i.e., subclassing, method implementation, etc.) that are
nealed to oltain a given functionality with the framework, along with the enditi ons under which such tasks can be
exeauted. Nowadays, standard task management systems consist essentially of an event parser that is able to match
seguences of user events against task models in order to dedde which tasks the user is acaomplishing, and also to
match segquences of higher level tasks against higher level task models. A task management system that is suitable
for the cntrol of framework instantiation processes must also include adynamic basis of pending tasks, and a rule
interpreter that modifies the set of pending the tasks acwrding to the adions of the user. These modificaions can
include the adition of new pending tasks that are necessary to acmmplish after some others, or the subtler
modifications needed when atask like the aeaion of a software cmponent is undone.

Having the information about which tasks sould be done in order to implement some functionality, it would be
possble to generate, at least, a partial sequence of such tasks that guide the user in the instantiation process This
sequence of tasks can be seen as an instantiation plan that can be produced through some planning agorithm.

Planningis an Al technique that, given a goal and a set of posgble adions, produces an exeaution sequenceto read
the goal. In this case the goal is to huild an applicaion that must satisfy several functiona requirements and the
development is done through the adequate combination of severa instantiation tasks that produces the fina
applicdion, or at least, the main parts that can be built using the framework.

The instantiation todl is based on a planner that, given the functionality the user wants or neeals, produces an
instantiation plan. This plan is a set of partially ordered tasks that must be exeauted in order to oltain the desired
functionality. Some tasks can be aitomaticdly exeauted and some others must be caried out by the user. An
example of automatic task is the reuse of an existing component. Example of user task isthe aedion of a new class
or the redefiniti on of a given method.

It is necessary to make dea that, in order to be pradicd, atool like this has to alow aflexible execution of tasks.
It has to allow tasks to be adieved in any order, to be interrupted in order to work on other tasks, and even to be
cancdled at any moment, and the system must be &le to adapt itself to the new situation risen at ead of these steps.
In this snse the use of least commitment planning techniques [19] appeas as an interesting aternative to build
partial plan sequences in aflexible way. Next sedion presents the general format of the instantiation rules that must
be provided to the planner as input. In sedion 5 the PIT algorithm, spedally developed to suppart the planning of
instantiation tasks based on instantiation rules, isintroduced.

3. Incremental Planning of Instantiation Tasks

The PIT agorithm is an adaptation of the UCPOP planning algorithm [19], spedally developed to manage the
requirements of a framework instantiation process The UCPOP agorithm is further extended to suppart not only
partial planning, but incremental planning too.

The planning is said to be partial because the resulting tasks are just partially ordered. Given a pair of tasks, they
can have aspedfic ordering (that is, one should be finished before the other can be exeauted) or no ardering, so any
one can be exeauted first, and even they can be executed in parall€l.

Besides being partial, the planning is incremental. That is, the instantiation plan is not generated at once, but it is
done gradually, acording to the tasks executed by the user. Sometimes the plan generation is halted, waiting for
some user input. Moreover, the user can incrementally redefine her objedives, or modify past dedsions, and the plan
generation must be updated acwrdingy.

3.1. Instantiation Rules

The input of the planner is a set of rules that describes the necessary steps to oltain the desired functionality.
These rules are generated by the tod through a graphicd interfacethat allows the designer to expressinstantiation
adions along with general design documentation of the framework. The tod is described in the next sedion.

Some of these rules are framework spedfic, while others describe general situations of framework instantiation.
The genera form of aruleis:

precondition list — effect

and represents changes on the software and/or the plan state.

While implicit in this representation there is an instantiation adion (that, executed when the preconditions hold,
will produce the dfed), only preconditions and effed are significant to the planning algorithm. Spedficdly, effect
states a condition that will be true when the preconditions are true. So, in every step the planner tries to make true the
preconditions of an adion whose dfed is part of the goals.

The following rules are spedfic for a visuaizaion framework named LuthierAbstractors[2], which provides
suppart for building visuali zations with abstradion scdes and filtering. All the examples of this paper are based on
the Luthier Abstractors framework because, due to space onstraints, they should be & smple & possble. Because of
the same reasons, the framework cannot be explained here; see[2] for a detail ed explanation.

getUserlnput(‘ltems to Filter ?’, ltems), implements(‘filter’, Items) — functionality(‘Management of Visualization Focus’) 1)
tryUseComponent(Component, TransportFilter) - implements(‘filter’, ‘[buses, subways, train]’) 2
tryUseComponent(Component, ZoneFilter) — implements(‘filter’, ‘[residential, commercial, industrial]’) 3)
tryUseComponent(Component, FilterAbstractor) — implements(‘filter’, ltems) 4

Rule (1) states that in order to obtain visuali zations with management of the visuali zation focus, a ammponent (or
set of components) implementing a ‘filter’ can be used. Besides, the ammponent must be seleded taking into acount
the sets of items the user wants to filter. Rules (2) and (3) represent that the TransportFilter or ZoneFilter
components can be used to filter some spedfic items. Finally, rule (4) provides a component to be used by default,
when there is not a more spedfic component.

It must be noticed that the terms used to expressthe functionality (‘Management of Visualization Focus' in the
example) are abitrarily fixed by the designer. In this way, the tod must show the user the different functionality
implemented by the framework, so the user can choose. This representation can be further refined if a domain
language were defined to provide atextual vehicle to express the functionality desired for a spedfic goplication,
athough this asped is beyond our current goals.

Examples of generic rules are rules that state how a component can be used:

exists (class (CompDesc, X)), choose (CompDesc, [refine', 'reuse’], Answer), useComponent (C, CompDesc, Answer)
- tryUseComponent (C, CompDesc). (5)
- exists (class (CompDesc, X)), defineNewComp (C,CompDesc) - tryUseComponent (C, CompDesc) (6)

The first rule states that, in order to use a existing component, the user can choose between wsing it "asis’, or
creding a spedalizaion of it. The seacond one shows what to doif the component does not exist. These framework
independent rules are cdled “primitives’, because they are the building blocks to describe the framework spedfic
rules.

Some primitive rules have, as a side dfed, the aedion of tasks that must be caried out by the user. For
example, if the planner finds that the implementation of a given functionality requires the spedalization of a
component and the redefinition d some methods, the crresponding tasks are aeded and queued as “pending” tasks
for the user. For example, the foll owing primitive rule describes how to instantiate anew component:

pendingTask (‘DefineNewClass', FuncDescs) = implementComponent (C, FuncDescs) (7)|

There exists another type of task, cdled “waiting task”, which represents a task whose result is necessary for the
planning process itself. When the planning algorithm finds a waiting task as a precondition of a desired post-
condition, it creaes the task and is suspended. Once the user compl etes the task, the dgorithm is reinitiated. One of
the primitive rules used to get input from the user is

waitingTask (‘GetlnputTask', Description, Return) - getUserInput (Description,Return) (8) |

Thisrule representation is used by the SmartBooks method to asgst the framework instantiation process In order
to suppart the gproad, it was developed a planning algorithm that uses these rules as input. With the goal of
making simpler the understanding of these ideas, firstly the method is introduced in the next sedion, and then an
explanation of the PIT algorithm is presented in sedion 5.

4. SmartBooks

SmartBooks is a method for helping in framework instantiation through intelligent documentation. The method is
based on the ideaof generating an instantiation plan from the description of the functionality required for a given
application. Esentiadly, the method prescribes that the framework should be documented using documentation
bodks. These bodks, different from the cookbodks, contain not only descriptions of the reuse situations anticipated
by the framework designer; they also contain documentation of the framework design: component interfaces,
responsibiliti es, communication protocols. That documentation can include, among other things: the meta-patterns
and design patterns implemented in the framework, contrads, pre and pacst conditions and any other information the
developer can provide to describe the design of the framework and the conditions that have to be maintained by the
classes developed by the framework users. Additionally, the designer must provide information about how the
framework can be used to satisfy different functional requirements in the form of instantiation rules. From this
information, and spedally from the instantiation rules, the planning agorithm can produce a sequence of
instantiation tasks that must be caried out by the developer, depending on the functionality desired for the new
application.

Based on the SmartBooks method it was built a prototype todl, cdled HiFi (Helping in Framework Instantiation).
Thistodl, implemented in Smalltalk, provides a seamlessenvironment to produce documentation about a framework
and the gplicaion themselves. New documentation can be alded during the development process either about the
framework or the gplicaion being implemented, and the new documentation can be used to validate the work
already done and generate more acarrate plans for the rest of the instantiation.

Thetod is aso fully integrated with the Smalltalk browser in such a way that it can monitor the user adions and
reads acordingly. For example, if the user produces code that is related to some instantiation task involved in the
instantiation plan, HiFi deteds the changes and the plan can be updated. In the same way, the plan can be augmented
with tasks nealed to keep the software developed consistent with the documented design. These control adivities are
caried aut by an intelligent agent, based on consistency rules. Whil e this paper is focused on the generation of the
instantiation plan, the functionality of thisagent isout of its £ope, and it is further explained in [9].

The next two sedions present an example of the gplicaion of SmartBooks through HiFi to decument and
instantiate the Luthier Abstractors framework. The use of the toal consists of two separated processes. in afirst step,
the framework developer uses the todl to creae the documentation, and then the gplicaion developer uses the
documentation to creae an instance of the framework.

4.1. Documenting a Framework

On the documentation stage, the framework developer must describe the design of the framework using UML
notations [15], being this documentation structured as a design bodk. In this bodk the user can navigate through the
different diagrams, spedfications, textual annotations and the framework code. Besides traditional notations, the
designer should describe what functionality could be implemented using the framework, and how the functionality is
related to the framework components (instantiation rules).

TjHiFi - Book Manager

File Edit Go Window Tasks Debugging Help

W@|E % @|t..|@|§-j i ¢%|&,|EI|Z%|@;|
Chapter: 1 Default Chapter 44| »p ‘ Section: Absiraction Level 44| B
TjC:\AlvarohStalk\dbookshlibramy\default\abstractors. bk _[Olx
Abstraction Level
@ fAbstractor
R AhstractionLevel
£ Zhew
E : Tty 7 etltems
i ; BetAbstractionLevel
Ianagement of Detail Lewe urrentLevel
oK Cancel

[Any] ScaleAbstractor

ontinuousLevel Discretel evel

] hangeAbstractionl evel b
Yetiterms

etAbstractionlevel

Fig. 1 —Example of Functionality Spedficaion

Figure 1 shows an example of describing the functionality implemented by a cll aborative group. In this example,
the designer documents a ollaborative group (cdled Abstraction Levd), and spedfies that this collaboration
implements the “Management of Detail Level” functionality. The spedficaion describes the cmmponents needed for
implementing this functionality and impases some nstraints on these cmmponents.

Spedficdly, the description shown in figurel represents:

1. For implementing the “Management of Detail Levels’ functionality, an instance of ScaleAbstractor (or one of its
subclasses) and an instance of a subclassof AbstractionLeve should be used.

2. The method setAbstractionLeveé of ScaleAbstractor must be cdled from another objed (i.e., the cdler classand
method are not defined)

3. ThesetAbstractionLeve method d AbstractionLeveé must cdl the changeAbstractionLeve of ScaleAbstractor

4. The changeAbstractionLevd method d ScaleAbstractor must send a getltems message to self.

5. The getltems method o ScaleAbstractor must invoke the method currentLeve of AbstractionLevd.

These descriptions are used, mainly, to generate the rules used by the planner to generate the instantiation plan.
For example, from the description of figure 1 rule (9) is derived. Thisrule is added to the other rules defined for the
framework and the generic rules used independently from the framework.

tryUseComponent(X1, ‘ScaleAbstractor’), tryUseComponent(X2, ‘AbstractionLevel’), calls([Any],[Any],X1,'setAbstractionLevel’),
calls(X2,’setAbstractionLevel’,X1,’changeAbstractionLevel’), calls(X1,'changeAbstractionLevel,X1,'getltems’),

calls(X1,’getltems’, X2, currentLevel’) - functionality(‘Management of Detail Levels’). 9)

Functionality descriptions are not only used for rule generation, but also they are linked with the rest of the
documentation, and can be navigated by the framework user when trying to understand how the framework works.

It must be noted that there exist subclasses of ScaleAbstractor (which are not shown in figure 1), that redefine the
functiondity attribute of the ScaleAbstractor class by defining spedfic scdes managed by the subclasses. Because

of this refinement, the planner will have to ask the scde to be managed, in order to be &le to choose the right
component.

4.2. Planning and I nstantiating

Once the framework has been documented, SmartBooks can be used to assst the implementation of applicaions
using the framework. Based on the designer description, the tool shows the user the functionality provided by the
framework. The user seleds the functionality required for the gplication to be implemented, and the instantiation
plan is generated, acording to the describing rules’.

In the example, the user seleds that the gplication should provide management of detail |evels and visualizaion
focus. After this sledion, the planning algorithm is cdled with the following goals:

functionality (‘Management of Detail Levels’), functionality(‘Management of Visualization Focus’)

Figure 2 shows the user interfaceof the task manager, that is, the list of tasks to be exeauted by the user generated
by the planner. Throughthis interfacethe user can, for example, seled atask to be exeauted, insped atask, or access
the documentation that explains the mntext of the task (why it should be exeauted, constrains, etc.).

ﬁHiFi - Book Manager =1 B
File Edit Go Window Tasks Debugging Help |

5 @B =le 2| B| b n|aln|a]
E Chapter: il Default Chapter ﬁl m| Section: Tazk Manager ﬁl @I
!

8| e
E? L]

T C:\Alvaro\Stalk\dbooks\library\default [[O]

»

b 4 GetlnputTask task: Abstraction Scale
R Use or Hedefine HouseAhstractor selection

il DefineClass task. Class:SpecialHouseAbstractor Superclass:HouseAbstractor
DefineMethod task. Class:SpecialHouseAbstractor Method: getlterns

&7 DefineMethod task. Class:SpecialHouseAbstractor Method: changeAbstractorLevel
GetlnputTask task: Types to Filter
= DefineClass task. Class:unnamed Superclass:FilterAbstractor
Define Objects to Yisualize
= Define *isual Mappings
€] > =

Fig. 2 - Task Manager interface The tasks aready exeauted are displayed in gray, and the pending tasksin
bladk. Underlined tasks are required, and the others are optional

The planner starts to work with the first goal, functiondity (“ Management of Detail Levds’), and finds rule (9).
As a onsequence, the adion and its preconditions are alded to the agenda. The next condition to be satisfied is:

tryUseComponent (X1, ‘ScaleAbstractor’) |

At this point, the planner applies a primitive rule, that spedfies how to use a @mponent. From this rule, the
planner finds it needs further information from the user, namely, the astradion scale that must be managed. A task
of type GetlnpuTask is generated with this goal, and based on the user input, the planner concludes that a
HouseAbstractor component can be used.

Every time a omponent is ®leded to be used, the user can choose ather to use it “as is’, or to crede a
spedalization of the component. This fad is described by the primitive rule (5) that generates a task (second task of
figure 2) so the user can choose. In the example, the user has ®leded to crede aspedalizaion of the component, so
the planner generates a task to define anew subclass of HouseAbstractor (third task on the list). Besides, following
the designer spedficaion, two more tasksto define methods of the new classare generated (fourth and fifth tasks).

In the same way the seaond requirement is analyzed. In this case, the planner asks the user to provide the list of
types of items to be filtered. With the user answer, the planner concludes that no existing component implements the
required functionality, but acoording to rule (4) the FilterAbstractor component implements the generic filter
functionality. For this reason, it generates a task to define anew class subclass of FilterAbstractor (line seven of
figure 2)

Besides the tasks for implementing the spedfic functionality, there ae tasks that must be exeauted every time an
applicdion is built using the framework. In this case, it is necessary that the user defines the objeds to be visualized
and the presentations of these objeds. Thisis represented by the last two tasks of thelist.

5 PIT

A planning agorithm, named PIT, was developed to suppat the SmartBooks method. This agorithm was
spedficdly designed to fulfill the requirements of the framework instantiation domain. PIT is, basicdly, a loop that
tries combinations of goals. If a plan cannot be built for the cmplete set of goals, it tries with a subset of these goals.
The dgorithm works using backtradking, and eventually it will try every combination of goals until building a plan
for a given subset or returning an empty plan. If aplan is built for a proper subset of the original goals, it means that
the framework documentation is not enough to completely describe how to implement a given functionality, but user
tasks for implementing the known perts are generated anyway.

PIT is cdled with three aguments: a plan (initially null), a set of goals to be satisfied, and a set of rules describing
adions that can be used to satisfy the goals. The plan itself is compaosed by six elements: alist of instantiated adions;
alist of partial orderings; a set of causal links; alist of variables with their corresponding values (bindings); alist of
pending tasks creaed through the planning; and a list of goals which are not considered in the plan. The six of them
are anpty inthe null (initial) plan.

Step 1 d PIT testsif the agendais empty, and if true, returns the aurrent plan. Just a part of this returned plan will
be used dredly by the user. The user interads through the tasks produced during the planning process (the tasks
component of the plan), but she does not neel to know about the midde steps produced by the planner. The
information can be used, anyway, to assst the user, explaining the mntext of the tasks she is required to exeaute.
Besides, al the information about the resulting plan will be necessary if the dgorithm must be exeauted again, for
example after amodification on the user goals.

Step 2 cdls the auxiliary function, which does most of the planning work. If Aux_PIT builds a plan, it is returned.
Otherwise, step 3tries diff erent subsets of agenda, so that to find an instantiation plan for a given combination . Step
4 makes the reaursive invocaion with the new agenda. If no plan can be built for any subset of goals (except the
empty one), an empty plan isreturned. That means that the planner could not build a plan for any of the initial goals,
either combined or inisolation.

In order to guarantee the dgorithm halts and tries all the solutions before failing, the function that chooses a
subset of goals to be removed must be caefully designed. It should consider orderly al the passble subsets. For a
corred behavior of the planner, this function must consider first the smaller subsets. In this way, if it is possble to
generate aplan, this plan will consider as much goals as possble.

Algorithm: PIT ([A,0,L,B, tasks, pending[Jagenda, A)

1. Termination: If agenda is empty, return ([A,O,L,B, tasks, pendingly

2. Call auxiliary function: return = PIT_Aux ([A,0O,L,B, tasks/Jagenda, 4). If it has success, return return. Otherwise, go to step 3.

3. Goal selection: choose a (no empty) set of goals Gpens O @agenda. If every proper subset of agenda was tried, return an empty
plan. Otherwise, let agenda’ = agenda [J pending - Gpend, Pending’ = Gpeng.

4. Recursive call: return PIT (/A,0,L,B, tasks, pending'[Jagenda’).

The Aux_PIT function in every loop looks in the ayenda for a goa to be satisfied, and if it finds an adion
describing how to satisfy it, adds its preconditi ons to the ayenda.

Step 1testsif the agendais empty, and if true, returns the current plan.

Step 2 seleds the next goal to be satisfied ([Q, AL, where Q are the preconditi ons of A.. Asthe goa ordering can
be significant, the first goal of the agenda is always sleded. Steps 2.a and 2b handle the caes of multiple
preconditions. In 2.c, if the precondition is a waiti ngTask, the corresponding task is creaed, put in the queue of task
to be exeauted, and the execution is hated (by cdling to nextEvent procedure) urtil an event is produced. An event
represents a task completed by the user. If the completed task is the one the planner is waiting for, the agenda is
updated to refled the result of the user adion, and the dgorithm isrestarted.

If the precondition implies a pending task must be exeauted by the user, the task is added to the list (2.d). Next
point, 2.e, handles the speda operators. if, no and forEach. Finaly, if the oppaite precmndition is also a
precondition of A, aplan cannot be built.

Step 3looks for an adion that satisfies Q. With this purpose, it looks first for an adion arealy instantiated that
can be used (that is, it tries to find if the work was arealy done by a previous adion). If one of these previous
adions can be used, it is slected. In the cae none of the instantiated adions is useful, the dgorithm looks for an
adion that describes how to satisfy the precondition. It takes the first ruleit finds, but if in the future fail s to satisfy a
goal, will badtrack to this point and a different rule (if it exists) will be seleded. Then, it updates the plan
representation. In the cae there is no way to satisfy the current goal, the function badtradks to find aternative ways
to satisfy the aurrent agenda. If it does not find away, the control isreturned to PIT.

Step 4 updates the ayenda and list of adions. If the adion seleded in 3isan old adion, it just neals to remove the
current goal from the agenda. On the other side, if it is anew adion, its preconditions are added to the agenda. It also
updates the list of bindings and the list of adions.

Step 5verifiesif the new adion needs sosme ordering relationship with the old ones, and in this case the necessary
relationships are alded to the partial orderinglist.

Finaly, step 6 makesthe reaursive invocation.

Function PIT_Aux: ([A,O,L,B, tasks [J agenda, A)

1. Termination: if agenda is empty, return {A, O, L, B, agenda, tasks}.

2. Goal reduction: remove a goal (@, A.[from agenda

a) If Q is a conjunction of Q; then put each <Q;,Ac> in agenda; go back to step 2.

b) If Q is a disjunction of Q;, then choose the first Qi from the disjunction and put <Q,A:> in agenda; go back to step 2.

c) If Q is a waitingTask(TaskClass, Description, Return), create and put in the queue the task so the user executes it. Let result =
NextEvent. After returning, B'= B [J {(Return, result)}; A'= A; O'=0; L'=L,; tasks '= tasks. Go to step 6.

d) If Q is a pendingTask, let tasks' = tasks [7{Q}. The rest of the variables stays without changes. Go to step 6.

e) If Q is an operator, call HandleOperator(Q, A, (A, O, L, BOJagenda, (A", O’, L', B'[] agenda’). If the function does not fail, go to step
6 without changing any variable, except agenda’. Otherwise, fail.

f) If Q is a literal and a link A, ™A exists in L, then fail (the plan is impossible)

3. Selecting an action: select an action A, with effect R. Firstly try with the existing actions (A) and then try to apply an action from
A. In any case, Ap < Ac must be consistent with O and the effect R (or consequent if the effect is conditional) unify with Q given B. If
no action satisfies the requirements, then fail. Otherwise, make:

L'=L O{A, - A}

B'=B [J{(u,v)|(u,v) OMGU(Q,R,B) ~ u,v are variables from R}

O'=0 O{A, <A}

4. Enable new actions and effects: let A= Ay agenda’ = agenda . If A, [J A then add A, to A’, add <preconditions(Ap) \
MGU(Q,R,B),Ap> to agenda’, add {A,<A,<Ag} to O and add the no-codesignation constraints (A,) to B'. If the effect is conditional and
it has not been used to establish a link in L, then add its antecedent to agenda after substituting with MGU(Q,R,B).

5. Causal link protection: for each causal link | = A; ~"A; in L and for each action A, which threatens | nondeterministically choose
(or, if no choice exists, fail):

Demotion: add A; < Aja O’

Promotion: add Aj<A;a O'.

Confrontation: if the A;’s threatening effect is conditional with antecedent S and consequent R, then add <-S\MGU(P,-R) , A; > to
agenda’.

6. Recursive call: If B is inconsistent then fail; otherwise call PIT_Aux(<A’,0',L’,B’, tasks'>,agenda’, 4)

The NexEvent function halts the dgorithm while waiting for the user exeauting a waiting task. Once the task is
finished, itsresult is returned

Funtion NextEvent ()

1. Wait next event: stop until the user produces an event, by finishing a task. Let event = [EventName, TaskDesc, Result[]
2. Restart planning: return Result

The Hand eOperator function manages gedal operators, used to modify the normal behavior of the planner. The
if operator is used to represent that a given adion can be gplied only if another condition, an argument, is arealy
present in the plan. The not operator represents the oppaite condition: the adion can be gplied only if a given
condition was not made true yet. Finally, the forEach operator is used to expressa condition that must be satisfied by
alist of elements. Thislast operator is neaded because the PI T algorithm does not provide universal quantifiers’.

Function HandleOperator (Q, Ac, [A, O, L, B[Jagenda, ', O', L', B'Jagenda’)

case(Q)

if (condition) if (Ap, condition) A, fail. Otherwise, L' = L + {Ap~>conditionAc}, agenda=agenda’.

not (condition) if (Ap, condition) O A, fail. Otherwise, L' = L + {Ap~>not(condition)Ac}, agenda=agenda’.

forEach(Var, List, Objective) agenda’ = agenda. For each element X from List, put in agenda’ a new goal equal to Objective, with
every X Var replaced by X.

6. Conclusions

In this paper an approach to dacument appli cation frameworks was introduced. In addition, a planning algorithm
and atod designed to suppart the goproach were presented.

The main contribution of this work is to show how planning techniques can be used to suppart the framework
instantiation process The SmartBooks method propaoses the combination of least commitment planning techniques
and user-tasks modeling. The HiFi toaol exemplifies that this approac is a good vehicle to implement functionality-
oriented assstance SmartBooks is espedally useful for inexperienced users, but it is flexible ewough to assist more
expert users.

Even so the examples presented on this paper are simple, the gpproach hes aready been thoroughly tested with a
medium sized framework, and the results show that the method can be scded up [10]. The main reason is that,
independently of the framework size ard complexity, the instantiation tasks are basicadly subclassing and method
implementation. This scdability is further supparted by the caability of expressng implementation alternatives as
independent instantiation rules, which enables the moduarity of the documentation.

Starting from this point, there ae several aspeds of framework instantiation suppart that need more reseach. One
of these agpeds is team based development. In this case, the task manager can be extended in order to manage the
distribution of instantiation tasks among the developers, and the mordination of these developers.

It isalso necessary to consider how to assist when the framework design changes. If the implementation of a given
functionality or the framework architedure is changed, documentation has to be updated acwrdingly. The
documentation tod should provide asdstance oriented towards those changes.

Regarding scalahility, it should also be mnsidered the behavior of the PIT algorithm as the number of rules and
goals increases. Even so the time consumed by the dgorithm grows exponentially with the input size, this time will
never be significant compared with the time involved in a development process In that way, it is only necessary to
guaranteethat the dgorithm halts.

One of the limitations of the proposed approad is the alditional burden for the framework developer, though the
use of a documentation toadl like HiFi can help to reduce this effort. Nevertheless considering that developing a
framework is a hard and time-consuming task, and the success of a framework is highly tied to its usability,
producing good daumentation can be mnsidered an adivity within the development process which is worth
investing efforts.

7. Acknowledgements

The authors thank Analia Amandi and Roberto Moriyon for the invaluable discusgons about this work and
comments on the manuscript. They would also like to thank to anonymous referees of the SEKE'99 Conference for
their comments on a preliminary version of this paper.

8. References

[1] Butler G., Dénommée P. Documenting Frameworks. In: Building Applicaion Frameworks. Chapter 21. M.Fayad,
D.Schmidt, R.Johnson (eds.) John Wiley and Sons, N.Y, 1999. ISBN #0-471-24875-4

[2] Campo M., PriceT. Luthier: Building Framework Visualization Toadls. In: Implementing Application Frameworks. Chapter
11 M.Fayad, D.Schmidt, R.Johnson (eds.) John Wiley and Sons, N.Y, June 1999. ISBN #0-471-15012-0

[3] GammaE., Hm R., Johrson R., Vlisddes J Design Patterns: Elements of Reusable Objed-Oriented Software. Addison
Wedley, Realing, Mass, 1994.

[4] Hdm R., Holland I., Gangopadhyay D. Contrads. spedfying behaviora compositions in objed-oriented systems. In
Procealings of OOPS.A'90, ACM/SIGPLAN, New York, 1990.

[5] Johrnson R. Documenting frameworks using patterns. In Procealings of OOPSLA'92. ACM/SIGPLAN, New York, 1992

[6] Johrmson P., Wilson S., Markopoulos P., Pycock J.. ADEPT, Advanced Design Environment for Prototyping with Task
Models. Procealings of INTERCHI' 93, ACM Press

[7] L&goieR., Keller R. Design and reuse in oljed-oriented frameworks: Patterns, Contrads, and Motifs in Concert. In Objed-
Oriented Techndogy for Database and Software Systems. V.Alagar, R.Missaoui (eds.), World Scientific Publishing,
Singapore, 1995.

[8] Meyer B. Applying Design by Contrad. IEEE Computer, October 1992. Volume 25, Number 10.

[9] OrtigosaA., Campo M. SmartBooks: A Step Beyond Active-Cookbodks to aid in Framework Instantiation. In Techndogy of
Objed-Oriented Languages and Systems 25, June 1999, |IEEE Press

[10] Ortigosa A. Un método para la Aplicaddn de Documentadén Inteligente en la Instanciadon de Frameworks Orientados a
Objetos. PhD Tesis, Universidad Auténoma de Madrid. February 2000. (in Spanish)

[11] Pangdli S., Paternd F. Automatic Generation o Task-oriented Help. Procealings of UIST’95. ACM Press

[12] Paternd, F. Understanding Task Model and User Interface Architedure Relationships, CNUCE Interna Report, Decenber
1997.

[13] PreeW. Design Patterns for Objed-Oriented Software Development. Addison-Wesley. 1994

[14] PreeW. Framework Development and Reuse Support. In Visua Objed-Oriented Programming, Concepts and Environments.
M.Burnett, A.Goldberg, T.Lewis (eds.). Manning - PrenticeHall . 1995.

[15] Rumbaugh J., Jacohson I., Booch G. The UML Reference Manual. Addison-Wesley, 1999

[16] Richner T. Describing Framework Architedures: more than Design Patterns.

[17] Schappert A., Sommerland P., PreeW. Automated framework development. Symposium on Software Reusability (SSR'95),
ACM Software Engineging Notes. Aug. 19%.

[18] Soundargjan N. Understanding Frameworks. In: Building Applicaion Frameworks. Chapter 12. M.Fayad, D.Schmidt,
R.Johnson (Eds.) John Wiley and Sons, N.Y, 1999. ISBN #0-471-24875-4

[19] Weld D. An Introduction to Least Commitment Planning. Al Magazne, Summer/Fall 1994.

1 It is assumed that the framework documentation completely describes the functionality available. The user will
not have any guide to implement functionality not described, eveniif it is provided by the framework.

2 The solution adopted by UCPOP for providing uriversal quantifiers is to assign a type to every universaly
quantified variable. Every time one of these variables is found in a precondition, it is replaced by al the individuals
of the mrresponding type existing in the universe of discourse. The problem with this lution is that it assumes a
static universe. This assumption is not true for the framework instantiation domain where dements like dasses and
methods are dynamicdly creaed during the instantiation process

