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ABSTRACT

Large sets of candidate genes derived from
high-throughput biological experiments can be
characterized by functional enrichment analysis.
The analysis consists of comparing the functions of one
gene set against that of a background gene set. Then,
functions related to a significant number of genes in the
gene set are expected to be relevant. Web tools offering
disease enrichment analysis on gene sets are often
based on gene-disease associations from manually
curated or experimental data that is accurate but does
not cover all diseases discussed in the literature. Using
associations automatically derived from literature data
could be a cost effective method to improve the coverage
of diseases for enrichment analysis at comparable levels
of accuracy.

We implemented a method named Gene set
to Diseases, GS2D, as a web tool performing
disease enrichment analysis on human protein
coding gene sets. It uses an automatically built
dataset of more than 63 thousand gene-disease
associations defined as statistically significant
co-occurrences of genes and diseases in annotations
of biomedical citations from PubMed. The dataset
covers more diseases for enrichment analysis
than the largest comparable curated database
(Comparative Toxicogenomics Database) and its
performance compared favourably to similar approaches
based on manually curated or experimental data.
Graphical and programmatic interfaces are available at
http://cbdm.uni-mainz.de/geneset2diseases.
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AVAILABILITY AND REQUIREMENTS

• Project name: Gene set to Diseases
• http://cbdm.uni-mainz.de/geneset2diseases

• Interfaces: HTML/Javascript and REST
• License: free for academic users

INTRODUCTION

Functional enrichment analysis is performed to
characterize gene sets derived from high-throughput
technologies such as next generation sequencing. The

analysis compares the functional annotations of one
gene set against those of a background gene set to
find functions significantly enriched in the selected gene
set. These functional annotations can be retrieved from
different databases such as gene databases (e.g. Gene
Ontology [1] terms for molecular functions), biological
pathway databases (e.g. WikiPathways [2]), or large
collections of experimental datasets (e.g. ENCODE
project [3]). If a significant number of genes are
involved in the same function then this function can
be considered as more likely to be relevant to the
experimental conditions related to the gene set. When
annotations regarding gene functions are known only
from biological experiments that do not cover all possible
genes and functions [4], functional enrichment analyses
can fail to return all relevant results. Yet, use of
computational algorithms can help infer gene functions
for more genes (e.g. [5, 6]).

Whereas many tools exist that perform such analyses
based on Gene Ontology terms (see the Gene Ontology
Consortium pages for a list [1]), only few tools
analyse diseases (e.g. ToppGene [7] HPOSim [8],
and DOSE [9]). This is in stark contrast to the
fact that the study of human disease is a critical
focus of many biomedical researchers. These tools
often define associations between genes and diseases
from curated information (e.g. from the Online
Mendelian Inheritance in Man 1 (OMIM R©) database,
the Comparative Toxicogenomics Database (CTD) [10],
or WikiPathways [2]), or experimental datasets such
as those from genome-wide association studies (e.g.
GWAS Catalog [11]). As there are many diseases for
which few or no genes have been associated by such
ways, these tools are consequently limited.

The PubMed database which contains more than 26
million citations for biomedical literature (e.g. journal
articles) offers an alternative source of data about
the relations of genes to diseases. Automated text
mining of these data has been already applied to
derive gene-disease associations (e.g. [12, 13]);
however, these approaches require recognizing gene
names using automated text mining methods that suffer
from low accuracy [14, 15]. Another way to extract
gene-disease associations from the literature is to
integrate the numerous manually curated annotations of
PubMed citations for genes or diseases.

Our method, called Gene set to Diseases (GS2D),
derives gene-disease associations using statistically

Publisher: Kernel Press. Copyright c© (2016) the Author(s). This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://cbdm.uni-mainz.de/geneset2diseases
http://cbdm.uni-mainz.de/geneset2diseases
www.KernelPress.de


GENOMICS AND COMPUTATIONAL BIOLOGY Vol. 2 No. 1 (2016): e33

significant co-occurrences of genes and diseases
in annotations of PubMed citations. GS2D was
implemented as a web tool with a graphical and a
programmatic interface. Disease enrichment analyses
performed using these associations were compared to
analyses performed by other approaches.

METHODS

Implementation

The data used as input by GS2D is based on (i)
biomedical citations with English abstracts from the
PubMed database, (ii) disease terms from the branch C
of the Medical Subject Headings thesaurus (MeSH R©),
and (iii) human protein-coding gene information from
the NCBI Gene database [16]. Manual annotations
of citations by diseases were extracted from PubMed.
Manual annotations of citations by genes were extracted
from gene2pubmed and GeneRIF files (NCBI Entrez
Gene FTP site). All the data was downloaded,
processed and stored in a MySQL database on 16
November 2015.

All computations were limited to 282749 PubMed
citations annotated with at least one disease and at
least one human protein-coding gene (Figure 1). From
the data, gene-disease associations were computed
from statistically significant co-occurrences of genes
and diseases in annotations of PubMed citations. The
significance of each association was evaluated by
a p-value from a one-tailed Fisher’s exact test and
false discovery rate (FDR) calculated by the Benjamini
and Hochberg method [17] using the R statistical
environment [18]. For a gene G, a disease D, and
the literature annotations L, the test is based on a
contingency matrix containing the following numbers of
citations (Figure 1):

• (a) citations in L annotated with D and G
• (b) citations in L annotated with D but not with G
• (c) citations in L annotated not with D but with G
• (d) citations in L annotated not with D and not with G

Gene-disease associations with less than 3
co-occurrences or a FDR greater than 0.05 were
filtered out to produce 63503 associations involving
2214 diseases and 7597 genes.

In order to produce the list of enriched diseases for
an input gene set, the diseases associated to the input
gene set are compared to the diseases associated to
a background gene set. By default, GS2D defines the
background gene set as all the human protein-coding
genes excluding the input gene set. Significance is
evaluated by a p-value from a one-tailed Fisher’s exact
test (using the R statistical environment) and FDRs
calculated by the Benjamini and Hochberg method. For
a gene set S, a disease D and a background gene set A,
the test is based on a contingency matrix containing the
following numbers of genes (Figure 1):

• (a) genes associated with D in S
• (b) genes associated with D not in S (but in A)
• (c) genes not associated with D in S
• (d) genes not associated with D not in S (but in A)

Web pages were built with WordPress 4.4 or
programmed using HTML 4, JavaScript, PHP and Perl 5.
Data were stored in a MySQL 5.5 database. Web pages
were tested using several web browsers (i.e. Firefox
39 and 43, Chrome 47, Chromium 47, Internet Explorer
8 and 11) and operating systems (i.e. Ubuntu 14.04,
Windows XP and 8.1).

Benchmarks and comparison

Two types of gene sets were used as gold standards
(Figure 2A): 10 GWAS-related gene sets downloaded
from the GWAS Catalog resource on 25 November
2015 [11] and 10 non-GWAS-related gene sets of at
least 20 genes from Menche et al. [19] who combined
OMIM and UniProtKB/Swiss-Prot. As GS2D uses
statistical methods similar to those of comparable tools
(Fisher’s exact test and correction for multiple tests),
we benchmarked against the ToppGene web tool [7]
that uses different background gene sets derived from
manually curated (CTD and OMIM) and experimental
data (GWAS datasets) (Figure 2B).

Analyses with GS2D based on automatically
derived data from the literature were performed
with gene-disease associations defined with at least 5
co-occurrences, at least 2 genes significantly associated
with a disease, and FDR<0.05. ToppGene was queried
to use CTD (ToppGene-CTD), OMIM (ToppGene-OMIM)
and GWAS (ToppGene-GWAS) at FDR<0.05.

For comparison, CTD manually curated gene-disease
associations were downloaded on 4 December 2015.
The following criteria were used to select the CTD data:
data with direct evidence (not inferred), and data related
to human protein-coding genes.

RESULTS

Function A: gene set to disease

GS2D is implemented as a web server to perform
disease enrichment analysis on gene sets. The input
gene set can be defined with human protein-coding
gene symbols or Entrez Gene identifiers. Whereas
the popular Gene Ontology enrichment analysis for
gene sets is based on gene-function associations,
GS2D is based on gene-disease associations inferred
by statistically significant co-occurrences of curated
annotations of genes and diseases in PubMed citations.
GS2D also gives the users options to change the
stringency of the results: gene-disease associations can
be filtered by a minimum number of co-occurrences
(default = 5), and enriched diseases for a gene set
can be filtered by FDR (default cutoff = 0.05) or by a
minimum number of associated genes from the gene set
(default = 2). Enriched diseases are listed with URL links
to disease definitions (MeSH web site) and to PubMed
citations with co-occurrences (PubMed web site).

Function B: gene to disease / disease to gene

GS2D can also be used to query its associations.
In this case, all gene-disease associations related to
each input gene or disease are listed with URL links to
disease definitions (MeSH web site), gene information
(Entrez gene web site) and to PubMed citations with
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Figure 1: Workflow. Gene set to diseases (GS2D) first derives gene-disease associations (A) from a co-occurrence analysis in
the literature annotations (L). These associations are then used to find enriched diseases in a gene set (S).
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Figure 2: Benchmarks. For benchmarking, 20 gold standard
gene sets were selected (10 derived from GWAS Catalog
and 10 from Menche et al.). Each gene set was used
as input for Gene set to diseases (GS2D), or ToppGene
service using gene-disease associations derived from the
Comparative Toxicogenomics Database (ToppGene-CTD), the
Genome-Wide Association Studies (ToppGene-GWAS), or
the Online Mendelian Inheritance in Man (ToppGene-OMIM)
database. Results were compared in a strict or relaxed
evaluation.

co-occurrences (PubMed web site). A button allows
sending all the listed genes as a gene set for a disease
enrichment analysis (function A).

Programmatic access

GS2D has a programmatic access allowing batch
queries and retrieval of results as tab-separated values.
The HTTP-based RESTful API is documented on the
web server with examples.

Use case 1: parameter tuning for the analysis of
Alzheimer’s disease genes

To demonstrate the impact of input parameters
on the results, we selected a gene set of 50 human
protein-coding genes associated with Alzheimer’s
disease using the Génie web tool [20]. Génie uses
automated document classification to find genes
associated with a topic, such as a disease, and it was
previously benchmarked for finding Alzheimer’s disease
genes at a precision of 94% in its top 50 results.

In order to find if there were other diseases involved
in a significant fraction of these 50 genes, function A
(gene set to disease) of GS2D was used with default
parameters. It returned a list of 60 diseases enriched
for the gene set, which can be described by count
and percentage of associated genes from the gene
set, fold change, P-value, FDR and related citations
(Figure 3). As expected, the top hit (lowest P-value) was
Alzheimer’s Disease (42 genes; FDR=4.90e-40).

Evaluating the statistics from the list could help
in refining the search to focus on the strongest
enrichments. For example, changing the FDR cut-off
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to 0.0001 reduced the list from 60 to 21 more
confidently enriched diseases. Setting additionally to
10 the minimum number of required co-occurrences
for gene-disease associations reduced the list further
to only 12 more confidently enriched diseases. It
filtered out weaker statistical enrichments such as
Creutzfeldt-Jakob Syndrome, which was listed as
enriched because of three genes including two with
less than ten relevant citations. Notably, the
selected diseases were all related to neurodegeneration.
This reflects the fact that many genes implicated
in Alzheimer’s disease have neuronal functions and
mutations involved in other neurodegenerative diseases,
making it difficult to find biomarker profiles able to
distinguish some of these diseases (see for example
[21]).

Use case 2: recapitulating p53 involvement in
diseases by analysing interacting genes

The second use case involves 254 human genes
interacting with p53, previously used as a predictive
model for cancer therapy [22]. Knowing that the tumour
suppressor p53 is involved in many human cancers [23],
we would expect GS2D to recapitulate this knowledge
when analysing p53 interacting genes by returning a
list of enriched diseases that includes various types of
cancers.

In order to get a list of diseases related to each
of the 254 input genes, function B (gene to disease)
of GS2D was used with default parameters. This
resulted in a list of 2638 gene-disease associations
that can be described by related citations, fold change,
P-value and FDR (Supplementary Table 1). The
diversity of diseases that can be associated by literature
co-occurrences to a single gene was exemplified by the
ABCB1 gene associated with very different diseases
including Acute Coronary Syndrome (6 citations),
Breast Neoplasms (105 citations) and Epilepsy (53
citations). Sorting results by disease names (by
clicking on corresponding column header) allowed visual
identification of several diseases associated to multiple
genes, including many types of cancer-related diseases
such as Adenocarcinoma (42 genes), Adenoma (9
genes), Breast Neoplasms (85 genes) and Cerebellar
Neoplasms (2 genes).

In order to know if the multiple associations observed
above were significant for the gene set as a whole,
function A (gene set to disease) of GS2D was
used. It returned a list of 101 diseases significantly
enriched for the gene set (Supplementary Table 2).
The list included Adenocarcinoma (FDR=4.38e-03),
and Breast Neoplasms (FDR=2.51e-07) but neither
Adenoma (FDR>5e-02) nor Cerebellar Neoplasms
(FDR>5e-02), which were associated to fewer genes
as shown above. As expected, the list also included
many other types of cancers related for example to lung,
mouth, larynx, colon, hepatocytes, stomach, bones,
prostate, or squamous cells.

Through this analysis, GS2D recapitulates that in the
literature p53 is known for its role in many cancers but
it is actually not often associated to adenoma (benign
tumours) (e.g. [24]) or to multiple nervous system

tumours (e.g. ependymomas [25] or non-astrocytic
central nervous system tumours [26]).

Benchmarks and comparison

For 20 gold standard gene sets, we compared lists
of enriched diseases produced by GS2D and ToppGene
using CTD (ToppGene-CTD), OMIM (ToppGene-OMIM)
or GWAS associations (ToppGene-GWAS) (Figure 2).
The strict evaluation compared the ranks of the disease
known to be related to the gene set and the relaxed
evaluation compared the ranks of closely related
diseases in the MeSH hierarchy (Table 1 and 2). For
example, for the gold standard gene set known to be
related to Inflammatory Bowel Diseases, the relaxed
evaluation also considers ranks of Crohn Disease or
Colitis Ulcerative (Table 3).

On strict evaluation of 10 GWAS gold standard gene
sets, GS2D produced always the best ranking, nine
times together with another method (Table 1). On
relaxed evaluation of the 10 GWAS gold standard
gene sets, GS2D produced always the best ranking,
together with another method. On strict evaluation of
10 non-GWAS gold standard gene sets, GS2D produced
eight times the best ranking, three times together with
another method (Table 2). On relaxed evaluation of
non-GWAS gold standard gene sets, GS2D produced
always the best ranking, eight times together with
another method.

Overall, GS2D was the best performing method in
both the strict and relaxed evaluation. We evaluated
CTD-based analyses as second best performing
method. CTD contains considerably more gene-disease
associations than the GWAS Catalog, OMIM and
other curated datasets ([27] and DisGeNet database
statistics 2). Therefore, we compared the CTD data to
automatically generated data used by GS2D.

GS2D defined more gene-disease associations than
CTD (63503 and 23507, respectively). Whereas in the
entire data GS2D covered a smaller number of diseases
than CTD (2214 and 3880, respectively) (Table 4), the
proportion of diseases associated to a single gene was
strikingly smaller in GS2D (24.7% vs 60.3%). Overall,
GS2D covered more diseases when considering only
traits associated with at least 2 or more genes. As we
consider meaningful only enrichment analyses based
on diseases associated to more than one gene, we
could conclude that for such analyses GS2D is more
comprehensive.

DISCUSSION

We have implemented as a web tool a method
called Gene set to Diseases (GS2D) performing
disease enrichment analysis on human gene sets.
Contrary to the most commonly used methods that
use experimental or curated data to derive associations
of genes to diseases, GS2D uses automatically
derived gene-disease associations from co-occurrences
in biomedical citations. When compared to results from
similar tools that use different methods to associate
genes to diseases, GS2D performed equally or better.
The GS2D web tool can be used interactively from
its simple and fast web interface or programmatically
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Figure 3: Interactive output table. The figure shows the output table of a disease enrichment analysis on a gene set of 50
genes related to Alzheimer’s disease. The enrichment analysis output can display a selected amount of diseases (top left-hand
side drop-down menu), can be filtered (top right-hand side search box), sorted (clicks on column headers) and navigated by
pages (bottom right-hand side navigation menu). Diseases are linked to the corresponding Medical Subject Headings thesaurus
entries. Genes from the input gene set related to each disease are listed in the last column and linked to corresponding numbers
(superscript numbers) of related PubMed citations.

Rank on strict evaluation Rank on relaxed evaluation
GWAS gold standard gene set GS2D ToppGene-CTD ToppGene-GWAS ToppGene-OMIM GS2D ToppGene-CTD ToppGene-GWAS ToppGene-OMIM

Arthritis, Rheumatoid 1 1 1 1 1 1 1 1
Breast Neoplasms 1 1 1 - 1 1 1 -
Colitis, Ulcerative 1 1 1 - 1 1 1 -
Crohn Disease 1 1 1 - 1 1 1 -

Diabetes Mellitus, Type 2 1 1 1 1 1 1 1 1
Inflammatory Bowel Diseases 3 5 4 - 1 1 1 -

Lupus Erythematosus, Systemic 1 1 1 1 1 1 1 1
Multiple Sclerosis 1 1 1 2 1 1 1 2

Obesity 1 2 4 1 1 2 4 1
Prostatic Neoplasms 1 1 1 3 1 1 1 3

Table 1: Benchmarks on 10 GWAS gold standard gene sets. Ranks of the disease exactly matching the GWAS gold standard
gene set (strict evaluation) or matching a closely related disease (relaxed evaluation) in results of enrichment analyses. Green
cells denote best or equal best performance of Gene set to Diseases (GS2D) in comparison to the ToppGene web tool deriving
gene-associations from the Comparative Toxicogenomics Database (ToppGene-CTD), the Genome-Wide Association Studies
(ToppGene-GWAS), or the Online Mendelian Inheritance in Man (ToppGene-OMIM) database.

Rank on strict evaluation Rank on relaxed evaluation
Non-GWAS gold standard gene set GS2D ToppGene-CTD ToppGene-GWAS ToppGene-OMIM GS2D ToppGene-CTD ToppGene-GWAS ToppGene-OMIM

Anemia, Aplastic 5 3 - 2 1 1 - 1
Cardiomyopathy, Hypertrophic, Familial 3 2 - 1 1 2 - 1

Ectodermal Dysplasia 1 2 - 2 1 1 - 1
Hair Diseases 2 - - - 1 1 - 1

Limb Deformities, Congenital 3 18 - - 3 14 - 8
Malformations of Cortical Development 2 - - - 2 3 - 5

Mitochondrial Diseases 6 6 - - 1 1 - 1
Peroxisomal Disorders 1 3 - - 1 1 - 1

Spastic Paraplegia, Hereditary 1 1 - 1 1 1 - 1
Spinocerebellar Ataxias 1 1 - 1 1 1 - 1

Table 2: Benchmarks on 10 non-GWAS gold standard gene sets. Ranks of the disease exactly matching the non-GWAS gold
standard gene set (strict evaluation) or matching a closely related disease (relaxed evaluation) in results of enrichment analyses
using different types of gene-disease associations. Green cells denote best or equal best performance of Gene set to Diseases
(GS2D) in comparison to the ToppGene web tool deriving gene-disease associations from the Comparative Toxicogenomics
Database (ToppGene-CTD), the Genome-Wide Association Studies (ToppGene-GWAS), or the Online Mendelian Inheritance in
Man (ToppGene-OMIM) database.
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GS2D ToppGene-CTD ToppGene-GWAS ToppGene-OMIM
Rank 1 Crohn Disease Colitis, Ulcerative Crohn’s disease Rheumatoid Arthritis; RA
Rank 2 Colitis, Ulcerative Crohn Disease Coronary disease Sarcoidosis, Susceptibility To, 1; SS1
Rank 3 Inflammatory Bowel Diseases Arthritis, Rheumatoid Type 1 diabetes Human Immunodeficiency Virus Type 1,

Susceptibility To
Rank 4 Arthritis, Rheumatoid Lupus Erythematosus, Systemic Inflammatory bowel disease -
Rank 5 Diabetes Mellitus, Type 1 Inflammatory Bowel Diseases Multiple sclerosis -

Strict evaluation rank 3 5 4 -
Relaxed evaluation rank 1 1 1 -

Table 3: Benchmark of Inflammatory Bowel Diseases. The table lists top 5 results of disease enrichment analysis on
a gold standard gene set known to be related to Inflammatory Bowel Diseases (in bold). The gold standard gene set was
retrieved from the GWAS Catalog and contained 165 genes. Disease enrichment analysis was performed by Gene set to
diseases (GS2D), or by the ToppGene service using gene-disease associations derived from the Comparative Toxicogenomics
Database (ToppGene-CTD), the Genome-Wide Association Studies (ToppGene-GWAS), or the Online Mendelian Inheritance in
Man (ToppGene-OMIM) database. For the strict evaluation, the rank of Inflammatory Bowel Diseases is retained. For the relaxed
evaluation, either the rank of “Crohn Disease” or “Colitis, Ulcerative” (in red) is retained as they are directly related to Inflammatory
Bowel Diseases in the MeSH hierarchical vocabulary.

Minimum number of genes per diseases GS2D diseases CTD diseases Diseases in common
1 2214 3880 1558
2 1667 1539 1001
3 1389 1075 767
5 1044 690 510

10 676 404 304

Table 4: Comparison to the Comparative Toxicogenomics Database (CTD).

as a web service (results are usually returned in 1-2
seconds).

We have also demonstrated the use of GS2D in two
use cases: (a) we have shown how knowledge about
p53’s role in cancers can be recapitulated from a set
of genes interacting with p53 and (b) how tuning GS2D
parameters helps get more stringent results for a set
of genes related to Alzheimer’s disease. Importantly,
GS2D offers two ways to increase the stringency of the
results: decreasing the FDR cutoff or increasing the
minimal number of required co-occurrences. The former
is usually also offered by comparable web tools (such as
ToppGene), but not the latter that actually impacts the
background set of gene-disease associations (reducing
its size by keeping the most significant associations).
Although such tuning is not applicable to CTD and OMIM
(qualitative data), it would be interesting for enrichment
analyses to filter out less confident GWAS associations
using available quantitative values (e.g. p-values).

GS2D was compared to the ToppGene service
because it used 3 different sources of gene-disease
associations: CTD (ToppGene-CTD), OMIM
(ToppGene-OMIM) and GWAS data (ToppGene-GWAS).
Overall, GS2D performed better than ToppGene. More
specifically, ToppGene-OMIM and ToppGene-GWAS
performed worse than ToppGene-CTD. This may be
explained by the bigger size of the CTD data ([27]
and DisGeNet database statistics) or by its higher
quality compared to GWAS data which is not always
reproducible [28].

We have focused GS2D to human genes as we have
found too limiting to discriminate the disease-related
literature by species using co-occurrences (smaller
resulting datasets; data not shown) and as
disease-related studies are mainly about human
diseases even if model species are involved.

In conclusion, GS2D is a fast and competitive web
tool performing disease enrichment analysis on human
gene sets. Since building its gene-disease associations

takes a short time, regular updates can be planned. Its
graphical and programmatic interfaces are accessible at:
http://cbdm.uni-mainz.de/geneset2diseases.
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12. Bravo À, Cases M, Queralt-Rosinach N, Sanz F, Furlong LI. A
Knowledge-Driven Approach to Extract Disease-Related
Biomarkers from the Literature. BioMed Research International.
2014;2014:1–11. doi:10.1155/2014/253128.

13. Bundschus M, Dejori M, Stetter M, Tresp V, Kriegel HP. Extraction
of semantic biomedical relations from text using conditional
random fields. BMC Bioinformatics. 2008;9(1):207.
doi:10.1186/1471-2105-9-207.

14. Lu Z, Kao HY, Wei CH, Huang M, Liu J, Kuo CJ, et al. The gene
normalization task in BioCreative III. BMC Bioinformatics.
2011;12(Suppl 8):S2. doi:10.1186/1471-2105-12-s8-s2.

15. Wei CH, Kao HY, Lu Z. GNormPlus: An Integrative Approach for
Tagging Genes, Gene Families, and Protein Domains. BioMed
Research International. 2015;2015:1–7. doi:10.1155/2015/918710.

16. Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res. 2015 nov;44(D1):D7–D19.
doi:10.1093/nar/gkv1290.

17. Yoav Benjamini YH. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of
the Royal Statistical Society Series B (Methodological).
1995;57(1):289–300.

18. R Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria; 2013.

19. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J,
et al. Uncovering disease-disease relationships through the
incomplete interactome. Science. 2015;347(6224).
doi:10.1126/science.1257601.

20. Fontaine JF, Priller F, Barbosa-Silva A, Andrade-Navarro MA.
Genie: literature-based gene prioritization at multi genomic
scale. Nucleic Acids Research. 2011 may;39(suppl):W455–W461.
doi:10.1093/nar/gkr246.

21. Berlyand Y, Weintraub D, Xie SX, Mellis IA, Doshi J, Rick J, et al.
An Alzheimer’s Disease-Derived Biomarker Signature
Identifies Parkinson’s Disease Patients with Dementia. PLOS
ONE. 2016 jan;11(1):e0147319.
doi:10.1371/journal.pone.0147319.

22. Hussain M, Tian K, Mutti L, Krstic-Demonacos M, Schwartz JM.
The Expanded p53 Interactome as a Predictive Model for
Cancer Therapy. Genomics and Computational Biology. 2015
Sep;1(1):e20. doi:10.18547/gcb.2015.vol1.iss1.e20.

23. Hollstein M, Sidransky D, Vogelstein B, Harris C. p53 mutations in
human cancers. Science. 1991 jul;253(5015):49–53.
doi:10.1126/science.1905840.

24. Gandour-Edwards R, Kapadia S, Janecka I, Martinez A, Barnes L.
Biologic markers of invasive pituitary adenomas involving the
sphenoid sinus. Modern Pathology. 1995;8(2):160–164.

25. Fink KL, Rushing EJ, Schold SC, Nisen PD. Infrequency of p53
gene mutations in ependymomas. Journal of Neuro-Oncology.
1996;27(2):111–115. doi:10.1007/BF00177473.

26. Nozaki M, Tada M, Matsumoto R, Sawamura Y, Abe H, Iggo RD.
Rare occurrence of inactivating p53 gene mutations in primary
non-astrocytic tumors of the central nervous system:
reappraisal by yeast functional assay. Acta Neuropathologica.
1998 mar;95(3):291–296. doi:10.1007/s004010050800.

27. Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F,
Furlong LI. Gene-Disease Network Analysis Reveals Functional
Modules in Mendelian, Complex and Environmental Diseases.
PLoS ONE. 2011 jun;6(6):e20284.
doi:10.1371/journal.pone.0020284.

28. Nagai Y, Takahashi Y, Imanishi T. VaDE: a manually curated
database of reproducible associations between various traits
and human genomic polymorphisms. Nucleic Acids Research.
2014 oct;43(D1):D868–D872. doi:10.1093/nar/gku1037.

NOTES
1Online Mendelian Inheritance in Man, OMIM R©. McKusick-Nathans

Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD,
USA), 2016. World Wide Web URL: http://omim.org/

2DisGeNET, Integrative Biomedical Informatics Group,
Research Programme on Biomedical Informatics (Barcelona,
Spain), 24 August 2016. World Wide Web URL:
http://www.disgenet.org/web/DisGeNET/menu/dbinfo#sources

7

http://dx.doi.org/10.1093/nar/gku1179
http://dx.doi.org/10.1093/nar/gkv1024
http://dx.doi.org/10.1126/science.1105136
http://dx.doi.org/10.1016/j.ymeth.2014.07.004
http://dx.doi.org/10.1093/nar/gku1113
http://dx.doi.org/10.1186/1471-2105-7-159
http://dx.doi.org/10.1093/nar/gkp427
http://dx.doi.org/10.1371/journal.pone.0115692
http://dx.doi.org/10.1093/bioinformatics/btu684
http://dx.doi.org/10.1093/nar/gku935
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.1155/2014/253128
http://dx.doi.org/10.1186/1471-2105-9-207
http://dx.doi.org/10.1186/1471-2105-12-s8-s2
http://dx.doi.org/10.1155/2015/918710
http://dx.doi.org/10.1093/nar/gkv1290
http://dx.doi.org/10.1126/science.1257601
http://dx.doi.org/10.1093/nar/gkr246
http://dx.doi.org/10.1371/journal.pone.0147319
http://dx.doi.org/10.18547/gcb.2015.vol1.iss1.e20
http://dx.doi.org/10.1126/science.1905840
http://dx.doi.org/10.1007/BF00177473
http://dx.doi.org/10.1007/s004010050800
http://dx.doi.org/10.1371/journal.pone.0020284
http://dx.doi.org/10.1093/nar/gku1037

