
Abstract
The capabilities of high-resolution, multispectral remote
sensing imagery to map important stream features is investi-
gated. Eighty centimeter spatial resolution CASI imagery was
acquired in eight spectral bands over Tofino Creek on the
west coast of Vancouver Island, British Columbia. A spectral
angle mapping algorithm was used to classify stream habitat
including hydraulic habitat, substrate material, and woody
debris. Subclasses were attempted in terms of streambed
material and water depth, but results were not reliable. A
classification of deep water, moderate depth water, shallow
water, sand, gravel and cobble, and woody debris in sunlit
conditions, however, proved accurate (80 percent on aver-
age). Individual logs and piles of woody debris were consis-
tently detected. Silty substrate in a tidal flats zone was also
classified, but results indicated that different substrate mate-
rial beneath the water may require separate classes and can
result in problematic water depth classification. Patterns of
general classes were reasonably represented within shadowed
areas cast by isolated trees or groups of trees. However,
problems do arise within lengthy shadowed stretches. Some
boundaries of stream features with surrounding forest and
between some zones of sand, gravel, and cobble were also
misclassified. High-resolution, multispectral imagery in four
or more bands combined with good geometric correction,
image mosaicking, and appropriate automatic classification
techniques offer a viable tool for stream mapping to meet a
variety of issues and applications. In the future, a powerful
suite of stream information may be compiled from multispec-
tral classification combined with high-resolution thermal and
lidar data.

Introduction
There is a broad need for mapping and monitoring stream
channel features. Fisheries surveys need to determine quan-
tities of different habitat. For example, pools, large woody
debris, and overhanging vegetation all provide good habitat
(Hardy and Shoemaker, 1995; Crowther et al., 1995). Sediment
available for transport is important environmentally and from
an engineering point of view (Gardiner, 1995). Due to poten-
tial for serious blockage of stream channels or sudden release
of large quantities of debris, large woody debris either as piles
or individual pieces can be important for hazard identifica-
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tion and management on some streams. It is a feature that is
often surveyed (Bilby, 1984; Bilby and Ward, 1989; Murphy
and Koski, 1989; Robison and Beschta, 1990; Bilby and Ward,
1991; Marcus et al., 2002). Restoration of streams is a growing
activity and includes modification of stream channels, woody
debris, streamside vegetation, and other features to restore the
state of a disturbed stream or to improve fish habitat (Frissel
et al., 1993; Stanford et al., 1996; Egan, 1998; Nienhuis and
Leuven, 2001; Kondolf et al., 2003). This requires knowledge
of the current state of streams to determine candidate loca-
tions and for planning specific restoration activities. The
effects of forest practices on streams is also an important
issue (Murphy and Hall, 1981; Hartman and Scrivener, 1990;
Bilby and Ward, 1991; Ralph et al., 1994); knowledge of
typical changes, conditions before logging, and those during
and after logging are of interest to determine if there is an
impact. Because streams are dynamic, it is often desirable to
conduct monitoring with repetitive mapping or with surveys
after catastrophic events like flooding (Werrity and Ferguson,
1980; Gilvear and Winterbottom 1992; Snider et al., 1994;
Gilvear et al., 1995; Hardy and Shoemaker, 1995; Bornette
and Amoros, 1996; Bryant and Gilvear, 1999; Meyer, 2001;
Mount et al., 2002). There is, therefore, a need for survey
methods that can effectively map a variety of stream features
in an efficient timely manner.

Traditionally, stream surveys are conducted on the
ground. These are time-consuming and costly, often lack
spatial detail, and are difficult to repeat at high temporal
resolution (Poole et al., 1997; Legleiter et al., 2002; Leuven
et al., 2002). Access to remote streams can also be a prob-
lem. Remote sensing such as aerial photography or digital
multispectral imagery provide an alternative that alleviates
these issues and complements field surveys. For example,
interpretation of aerial photography, usually of 1:20 000 to
1:5 000 scale, is used, often combined with varying degrees
of field observations (Lapointe and Carson, 1986; Gilvear
et al., 1995; Church and Hassan, 1998; Gilvear et al., 1999;
Leuven et al., 2002; Whited et al., 2002; Gilvear and Bryant,
2003). It, however, can suffer from interpreter error and
inconsistency and from poor or lack of interpretation in
areas of cast shadow from adjacent trees or terrain, and can
also be time-consuming, particularly if high spatial or tem-
poral detail is required. Automated analysis of data from
multispectral sensors provides several advantages. There is a
potential for consistent, accurate, and cost-effective high
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spatial resolution mapping. Spectral band selection can
often be tailored to help distinguish a single or multiple
features for applications such as mapping aquatics, sur-
rounding riparian zone vegetation, exposed substrate, water
depths, and penetration of water for detection of submerged
features. Mapping within shaded areas is a problem. The
high radiometric resolution of some multispectral sensors
may permit analysis within these areas. With precise posi-
tioning and geometric correction now available with current
technology, quick and accurate georeferencing is possible. In
addition, multispectral data can be combined with informa-
tion from scanning lidar and thermal imagery acquired
simultaneously to provide a wide variety of the needed
information for stream mapping (Torgersen et al., 1999;
Witte et al., 2001; Leuven et al., 2002).

In the 1990s, airborne video, digital frame cameras, and
airborne multispectral imagers began to be investigated and
used for stream mapping with both manual and automated
techniques. These studies often addressed single variables
such as hydraulic habitat, water depth, and woody debris:
typically on a limited extent of the stream or single reach
(Marcus et al, 2003). Most used supervised maximum likeli-
hood classification or unsupervised spectral clustering
techniques, data with resolutions of 1 m, and many, although
not all, used a limited band set. Hydraulic or in-stream
habitat (e.g., eddy drop zones, glides, low and high gradient
riffles, and pools) has been a key focus (Hardy et al., 1994;
Panja et al., 1995; Wright et al., 2000; Marcus, 2002; Whited
et al., 2002). Depth has been examined with regression
relationships, radiometric modelling, and to a lesser extent
classification methods (Lyon et al., 1992; Gilvear et al.,
1995; Winterbottom and Gilvear, 1997; Bryant and Gilvear,
1999). Several studies have emphasized or included woody
debris mapping and classification (Wright et al., 2000; Marcus
et al., 2002). Substrate material either exposed or sub-
aqueous has been the main focus of some investigations, but
more commonly is included as a feature mapped as part of a
study with another focus with few projects addressing
differentiation of detailed substrate types (Lyon et al., 1992;
Crowther et al., 1995; Thomson et al., 1998; Paradine et al.,
1998). Marcus et al. (2003) used principal components
derived from 128 band 1 m resolution hyperspectral data to
examine supervised classification of hydraulic habitats,
depths using regressions, and a matched filter approach for
woody debris detection.

This study focuses on the automated classification of
high-resolution (80 cm) multispectral imagery acquired from
the Compact Airborne Spectrographic Imager (CASI) with a
spectral angle mapping approach. CASI is a high-quality
imaging spectrometer, capable of recording imagery in
programmable multiple spectral channels at high spatial
resolution (Anger et al., 1994). The study explores the
combined capabilities for mapping multiple variables (sub-
strate material, woody debris, and hydraulic habitat includ-
ing depth classes). It examines a mountain stream over a
5 km stretch, from where it ceases to be a very narrow, steep
stream completely overtopped by trees to its estuary. The
types of stream features that can be identified are inves-
tigated by extending the classification to finer classes than
are expected to be separable. It also examines the difference
between the riverine section and estuarine environment of
the stream and the issue of mapping within shaded areas
using an imager with high radiometric resolution. In addi-
tion, the capability of classifications using different band
sets was examined including natural colour and colour
infrared band combinations. The spectral angle mapper
classification method (Kruse et al., 1993) utilized in this
study is used in hyperspectral analysis, but has not often
been applied to stream mapping. It uses the orientation of

the multispectral vector for classifying surface type and has
the advantage of alleviating the effect of varying illumina-
tion conditions. The objective of the study is to provide an
example to help define the capabilities and limitations of
such data and analysis methods for mapping stream features.

Study Site
The study site is Tofino Creek (49° 12� N; 125° 36� W), a
mountain stream typical of the west coast of Canada in the
Clayoquot Sound area of Vancouver Island, British Columbia,
Canada (Figure 1). The study area consists of a 5 km length
that rises 250 m from tidewater to the start of an upper, more
mountainous stream portion. Typical flow rates averaged
over an annual period are 7.2 m3/sec. At the time of the
acquisition, surface turbulence ranged from quiet pools to
sections of fast flow, some with ripples or small standing
waves. White water was rare, only occasionally being
present in some of the shallow riffles. Turbidity values were
low. The stream has some straight reaches, but generally

Figure 1. Study area location.
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depth. These field sites and plots were chosen to capture the
range of conditions along the whole study area. From this
information surface conditions were determined for selected
areas on the imagery. Water depth (deep (�1.0 m), moderate
depth (0.35–1.0 m), shallow (�0.35 m)), riffles (very shallow
with riffles or riffles with partly exposed usually wet gravel
or cobble), substrate material (sand, gravel, cobble, boulder
or bedrock), woody debris (large or small scattered), and sur-
rounding forest condition (mature and regenerating hard-
wood and softwood plus open shrub areas) were assessed.
Some finer differentiation of gravel and cobble sizes was
also done. These data formed the basis for identifying sites
for training the classifier and testing its accuracy, and for
qualitative visual analysis of the correspondence of classi-
fied stream classes with reality. Natural colour aerial photo-
graphy at 1:19 000 scale (late summer, 1994) was also
available for the area and used as an ancillary source of
stream form information. A 1:5 000 digital orthophoto was
produced from the photography and used to aid the field-
work and analysis.

Methods
A spectral angle mapper approach (Kruse et al., 1993), a
supervised multispectral classification method, was imple-
mented with ENVI software and was used to extract surface
types. The approach treats the multispectral pixel values as
a vector and determines the vector’s angle in ‘n’ dimensional
space. One defines individual input pixels that form a set of
reference vectors (spectra) or angles for each class. Every
input reference vector is used independently, so each class
has more than one reference vector. The spectral angle for
each pixel of the image is then examined and assigned to
the class of the reference vector it is closest to. There is
however a threshold angle; any pixel that does not match
any of the reference vectors within this angle is designated
unclassified.

Pixels of the different classes distributed throughout the
study area were chosen to generate the reference spectra for
each class. A series of very fine classes and reference spectra
were defined to determine the types of features that could
be differentiated (Table 1). Classes were then successively
eliminated or combined to achieve a set of classes that can
be reliably classified. For example, it was found that eli-
minating the reference spectra for the large cobble class
altogether, resulted in better overall classification of both
small-medium cobble and large cobble than retaining both
reference spectra as part of a combined class. In contrast,
combining the existing two woody debris classes resulted in
a good classification of a combined woody debris class since
much of the confusion within each class was due to mis-
classification as the other woody debris class. Table 2 gives
a second reduced set of sunlit (non-shaded) classes. In order
to handle specific issues in the classification, specialized
classes were created and reference spectra generated for
such cases as cobble, sand, or water under the shadow
of trees. A deciduous and a conifer tree class were also
included.

The spectral angle classifier was then run. All eight
bands were used for the main analysis, but special runs
examining various reduced band sets were also conducted.
Several threshold angles were tested and a threshold of
0.2 radians was used for each class. As well, the classifica-
tion results were filtered with a 2 � 2 sieve function (mini-
mum size of area of 2 � 2 pixels and pixels removed by
the filter were replaced with spatially adjacent classes by
an erosion process). It consolidated the classification into
larger mapping units and eliminated small and single pixel
units.
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follows a sinuous course with channel widths ranging from
10 to 40 m. Substrate material varies from sand, through
cobble, with some boulder and bedrock. It was predominantly
light in color, and generally, there was no algae on the sub-
strate. Aquatic plants were not common and were contained
within small localized sites. At and near the mouth of the
stream, silt substrate material occurs. The stream is surroun-
ded by forested mountains rising steeply on both sides.
Adjacent to the stream, trees are mainly mature conifers
(e.g., western hemlock (Tsuga heterophylla), amabilis fir
(Abies amabilis), Sitka spruce (Picea stichensis), and western
redcedar (Thuja plicata)), but there are some deciduous
trees and regenerating areas.

Image Data, Conditions, and Preprocessing
Imagery was acquired at 80 cm resolution in three adjacent
and overlapping flight lines with a CASI imager. Each flight
line was orthorectified using differential GPS, aircraft attitude
data and existing British Columbia 1:20 000 topographic
map (TRIM) data. CASI is a sensor that can produce imagery
in 288 spectral bands in the visible and near-infrared spec-
tral region (Anger et al., 1994), but it was operated in spa-
tial mode for this study to obtain high spatial resolution
imagery in eight spectral bands. These bands were centred
on 438 nm, 489 nm, 550 nm, 601 nm, 656 nm, 715 nm,
795 nm, and 861 nm with spectral bandwidths of approxi-
mately 50 nm (i.e., �25 nm). Imagery was recorded with
12-bit radiometric resolution, but processed to 16-bit data.
It was acquired at 80 cm resolution. No radiometric correc-
tions for bi-directional reflectance affects or normalization
between flight lines were conducted. This was not deemed
necessary as the data were acquired over a short period
of time with similar illumination conditions, a strong
bi-directional reflectance influence was not observed or
expected for the water and substrate material under the
illumination and view angle conditions of the study, and
the spectral angle approach is somewhat insensitive to these
effects. The three flight lines of imagery were then mosai-
ced into one data set, and the whole mosaic was analyzed
(Plate 1).

Data were flown between 1237 and 1315 on 25 September
1996 which resulted in a solar azimuth and elevation of
194° and 39°, respectively. Flight lines were oriented along
the stream course, and each line was flown in the same direc-
tion from the upper reaches down the valley to the stream
mouth (approximately 210°). There were high-scattered, thin
cirrus clouds present in the region. The ground surface was
dry as there was no recent rainfall. There was some senes-
cence of ground vegetation, but deciduous trees were gener-
ally still green with only occasional early signs of senescence.
Water levels were moderate with the last major rainfall
being 13 and 14 September. Although flow measurements
were not taken during 1996, typical September flows for non-
storm event periods are in the neighbourhood of 0.7 m3/sec.
Plate 2 gives several ground photographs taken the day after
the flights showing typical conditions.

Ground Reference Data
A “walk over” survey of the stream was conducted one and
two days after the over-flights along a 4.5 km section of the
5 km stretch of the stream within the study area. Over 70
locations distributed along the stream course were docu-
mented. At each location, 35 mm colour photographs were
taken of the channel features. Each site may have several
stream features and conditions represented and recorded.
In addition, three detailed plots (typically 25 by 60 m) were
established, gridded, and mapped for surface type and water
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Test areas of known surface type were identified on the
imagery based on the ground reference data. The number of
independent sites ranged from 3 to 15 for each class, with

most having 5 to 10 sites each. Tables 1 and 2 list the total
number of pixels in the test areas. The accuracies of the
classifications were tested against the class determined for
these predefined test areas. These sites were independent of
the reference spectra used to generate the classes. Accuracies
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(a)

Plate 1. Subsection of study area. (a) Natural color band
combination (letters indicate locations of ground photo-
graphs of Figure 3). (b) Final classification of subsection.
(deep water � dark blue; moderate depth water � blue;
shallow water � light blue; sand � yellow; gravel � light
gray; cobble � dark gray; rock/boulder � very dark gray;
logs and woody debris � brown; conifer � dark green;
deciduous � light green)

(b)

(b)

Plate 2. Field survey photographs of different planform
classes along Tofino Creek. See Plate 1a for the loca-
tion of these photographs. (a) sand, gravel and small
woody debris. (b) cobble, shallow and deep water, woody
debris. (c) gravel, woody debris and shallow and deep
water.

(a)

(c)
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TABLE 1. CLASSIFICATION ACCURACY (PERCENT) OF FINE CLASS SET

Ground Reference Class

Wet Scatt. Logs Shaded Shaded Shaded
Deep Moderate Shallow Small-med. Rock/ Large Cobble/ Woody with Deep Moderate Shallow Shaded Shaded
Water Water Water Sand Gravel Cobble Boulder Cobble Riffle Debris Bark Water Water Water Gravel Cobble Conifer Deciduous

Deep water 94.2 10.4 0 0 0 0 0 1.1 0.7 0 0 0.7 8.5 0 0 0.1 0 0.1
Moderate water 1.6 86.8 0 0 0 0 0 0 0 0 0 0 19.1 0 0 0 0 0
Shallow water 0 1.2 87.3 0 0 0 1.0 0 0.7 0 0 0 4.6 0.5 0 0 0 0.3
Sand 0 0 0 75.2 0 0.7 0 10.0 0 5.1 14.8 0 0 0.5 0 0 0 0.1
Gravel 0 0 0 0.6 76.6 7.8 4.7 1.1 3.5 0.3 0 0 0 0 0 0 0 0
Small-medium 0 0 0 21.2 11.7 57.0 14.0 64.7 7.1 0 0.3 0 0 0 0 0 0 0.1

cobble
Rock/boulder 0 0 5.0 0 2.2 0.1 45.2 0.0 14.8 0.3 0 0 1.4 0 0 1.5 0 0
Large cobble 0 0 0 0.3 5.6 33.1 3.0 16.8 11.3 0 0 0 0 0 0 0 0 0
Wet cobble/riffle 0 0 2.2 0 0 0 24.1 0 50.7 0 0 0 1.1 0 0 0 0 0
Scattered woody 0 0 0 2.1 2.2 0.2 0 4.7 0 71.7 50.3 5.1 1.1 3.1 0.6 1.2 1.8 7.2

debris
Logs with bark 0 0 0 0.3 0 0 0 0 0 13.0 23.0 0 0 0 0 0 0 0.8
Shaded deep 3.7 0 0 0 0 0 0 0 0 0 0 33.0 28.4 15.2 7.5 3.0 0 0.1

water
Shaded moderate 0.5 1.3 4.3 0 0 0 0 0 0.7 0 0.6 31.0 17.0 28.3 8.6 4.7 0.5 0.6

water
Shaded shallow 0 0 0.2 0 0 0 0.3 0 0 0 0 0 0 22.0 0 0.4 0 0

water
Shaded gravel 0 0 0 0 0 0 0 0 0 0 0.3 7.4 10.6 16.2 23.0 5.3 0 0
Shaded cobble 0 0 0 0 1.2 0.6 0.7 0.5 4.2 5.8 4.4 13.1 0 4.2 55.7 79.2 0 0.1
Conifer 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0.5 0 1.6 73.9 11.9
Deciduous 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 20.7 76.6
Unclassified 0 0.3 1.0 0.3 0.5 0.5 7.0 1.1 6.3 3.8 6.3 8.8 8.2 9.4 4.6 2.9 3.1 2.1

Number of pixels 622 607 603 633 1294 1236 299 188 142 293 318 297 282 191 174 730 777 1459
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of the classifications were also visually checked against
the identifiable stream features from the imagery itself, the
1:20 000 photography, and field sites not formally used as
test areas.

Results and Discussion
Substrate Material
This section examines the classification of sunlit substrate
areas that are exposed (i.e., not submerged). There is little
confusion of sunlit substrate with other surface types. The
results regarding discrimination among various sunlit sub-
strate types (Table 1) however were mixed. The differentia-
tion of substrate material into sand, gravel, small-medium
cobble, large cobble, boulder/rock classes was too fine.
Although some general patterns matched the ground truth,

the small-medium cobble and large cobble classes were
severely confused. The large cobble class being very poorly
classified (only 17 percent accuracy) with most being classi-
fied as small-medium cobble. Figure 2 indicates similar
spectral values and shapes for the two classes. A second
classification with a combined small-medium cobble/large
cobble (cobble) class improved results with 75 percent
accuracy for sand, 77 percent for gravel, 91 percent for
cobble, and 45 percent for boulder/rock (Table 2). Gravel
and sand were not confused, but there were considerable
amounts of sand and gravel classed as cobble (22 percent
and 19 percent, respectively) and some cobble classed as
gravel (8 percent). If the gravel and cobble classes are com-
bined accuracy was 97 percent for gravel/cobble. The rock
class had poor classification, but removal from the classifi-
cation resulted in the accuracy of some of the other classes
being reduced. In general, with this data set, it appears that
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TABLE 2. CLASSIFICATION ACCURACY (PERCENT) OF REDUCED SET OF SUNLIT CLASSES

Ground Reference Class

Deep Water Moderate Water Shallow Water Sand Gravel Cobble Rock Wood Debris* Conifer Deciduous

Deep water 97.9 10.4 0 0 0 0 0 0 0 0.2
Moderate water 2.1 88.1 4.3 0 0 0 0.3 0.3 0.5 0.6
Shallow water 0 1.2 87.4 0 0 0 1.0 0 0 0.3
Sand 0 0 0 75.2 0 0.7 0 10.1 0 0.1
Gravel 0 0 0 0.6 76.6 7.8 4.7 0.3 0 0
Cobble 0 0 2.3 21.5 18.5 90.6 41.8 5.2 0 0.2
Rock 0 0 5.0 0 2.2 0.1 45.2 0.2 0 0
Wood debris* 0 0 0 2.4 2.2 0.2 0 78.7 1.8 8.0
Conifer 0 0 0 0 0 0 0 0 73.9 11.9
Deciduous 0 0 0 0 0 0 0 0 20.7 76.6
Unclassified 0 0.3 1.0 0.3 0.5 0.5 7.0 5.1 3.1 2.1

Number of pixels 622 607 603 633 1294 1236 299 611 777 1459

*Scattered woody debris and logs with bark.

Figure 2. Selected reference spectra for different planform classes.
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four substrate classes of sand, gravel, cobble, and boulder/
rock could be reliably differentiated and accurate sand,
gravel/cobble differentiation was fairly easy to achieve. It
must be remembered, however, that these substrate classes
are gradational, and there are often no clear boundaries in
terms of classes and their spatial distribution.

In the tidal reach of Tofino Creek the substrate becomes
silt. It was determined that two classes, wet and dry silt,
were needed to represent the intertidal area. These classes
were well-separated from the sand, gravel, and cobble
classes from higher in the stream course, with accuracies of
92 percent and 80 percent for wet and dry silt respectively
and 86 percent for a combined silt class. Confusion of wet
silt was with moderate depth water and dry silt with shal-
low water. Field and laboratory spectra of estuarine sedi-
ment (Bryant et al. 1996) also indicated differences between
silt substrate and sands and in a study with 4 m resolution
CASI imagery of an intertidal site (Thomson et al., 1998); wet
and dry classes of substrate were also used.

Water
Three water classes were designated representing depths:
shallow �0.35 m, moderate 0.35–1.0 m, and deep �1.0 m.
A fourth class representing riffles/wet cobble included very
shallow water with riffles, and areas of riffles with partly
exposed cobble or sometimes gravel, usually wet. Accuracies
are good for the three water depth classes at 94 percent,
87 percent and 87 percent for deep, moderate and shallow,
respectively (Table 1). Some shallow areas were confused
with rock and riffle/wet cobble. The riffle/wet cobble class
was unsuccessful with only 51 percent accuracy. Areas of
riffle/wet cobble were classed as one of the substrate, either
cobble, rock, or gravel, and there were some commission
errors with test pixels of rock and shallow water also having
pixels being classed as riffle/wet cobble.

Other studies have also shown good results for differen-
tiating stream depth, but mixed and variable results differen-
tiating hydraulic habitats such as pools, eddy drop zones,
riffles, and glides. Lyon et al. (1992) with a radiometric
modeling approach achieved high accuracy for 60 cm depth
classes, on average 93 percent accuracy. Gilvear et al. (1995)
and Winterbottom and Gilvear (1997) with digitized aerial
photography and Bryant and Gilvear (1999) with 2 m multi-
spectral imagery used bathymetric techniques involving
regression and a radiometric model to map water depth.
Gilvear et al. (1995) determined similar depth classes as this
study, although shallow water and riffles were combined in
one class. A series of studies using 1 m resolution hyper-
spectral data (Legleiter et al., 2002; Marcus, 2002; Marcus
et al., 2003) achieved an overall classification accuracy of
68 percent to 86 percent, depending on the study reach, for
pools, eddy drop zones, glides and riffles. Riffles were the
most difficult to classify at 52 percent to 76 percent accu-
racy. More specific classes could not be differentiated with
overall classification accuracies being approximately 20 per-
cent lower for seven habitat classes (Legleiter et al., 2002).
Wright et al. (2000) with 1 m resolution four-band visible
infrared imagery had poor results using narrow habitat
classes, and variable results from 28 percent to 80 percent
depending on the stream reach for general habitat classes.
Similar to the results of this study, there was confusion of
riffles with exposed substrate. Another study using similar
data achieved classification accuracies of approximately
70 percent for four depth-flow rate classes (Whited et al.,
2002).

At the mouth of Tofino Creek where the substrate is
silty, it was found that for the shallow and moderate water
depth classes, new classes were needed (shallow water with
a silt substrate; moderately deep with silt substrate). This is

in keeping with other studies which have shown that sub-
strate material will affect depth estimates and classifications
(e.g., Lyon et al., 1992). Use of river reference spectra for
water depth in the estuary area produced a pattern related
to water depth, but not similar depth classes as in the river
classes. Alternately, using reference spectra for the estuary
area for classifying the river gave poor results. Accuracies
of the moderate and shallow water classes in the estuary
area using reference spectra for the estuary were lower than
achieved for the moderate and shallow water river classes
in the river section using river reference spectra. For exam-
ple, accuracy of moderate depth water was 69 percent with
27 percent being classed as deep water. Shallow water (silty
substrate) accuracy was 70 percent with 27 percent being
classified as wet silt and some confusion even with dry silt.
However, deep water was classified well (97 percent). An
additional class of silty water was included. It also achieved
approximately 70 percent accuracy, having some confusion
with wet silt and areas of the other water classes being clas-
sified as silty water.

Woody Debris
Woody debris occurred as several distinct components (logs,
scattered small woody debris, and root mat). Logs generally
were 3 to 18 m long and 20 to 75 cm in diameter; some
however, were up to 25 m long by 90 cm wide. Some of the
logs had lost their bark and were bleached. Visually, the
bleached logs appear quite similar to the sand, gravel, and
cobble areas, and it was felt there may be considerable
confusion among these classes. Other logs had not lost their
bark and were darker. There were also incidences of scat-
tered woody debris with small pieces of wood (20 cm to
2 m long by 0.3 to 8 cm wide) concentrated in a debris
zone. Smaller pieces were sometimes associated with these
zones. Pieces varied from being bleached with no bark too
having bark on, and most were dry. Coverage by the debris
varied from 25 percent to 80 percent of the area and the
size of the affected area was generally small (1 m2 to 25 m2).
They tended to be concentrated in areas of sand or gravel
substrate rather than cobble. A class of root mat was inclu-
ded in the analysis. Root mats occurred at the end of some
logs or as separate entities usually associated with a stump.
Because of the different nature of the bark or bleaching, but
mainly the structure and corresponding reflectance differ-
ence, the root mats had varied and often different reflectance
from the other wood debris. It was not the intent to actually
identify root mat as a different class, but to use it to com-
bine with the other classes to produce an overall woody
debris class.

There is not a strong application need in stream map-
ping to differentiate the type of woody debris except between
the scattered smaller debris and larger pieces, such as root
mat and logs. The main classification was run with refer-
ence spectra representing scattered small debris and others
representing a log class, which included logs with bark and
root mat. An additional trial with separate reference spectra
of bleached logs was conducted and will be discussed later.
The spectral characteristics for the scattered debris and logs
with bark are variable in shape and intensity and are some-
times similar. Figure 2 gives example spectra of each. There
was confusion between the two classes, especially logs with
bark being classed as scattered debris (Table 1). There was
however minor commission error in the scattered woody
debris class (5 percent of the pixels classed as scattered
debris were gravel and 2 percent sand). Combining both
classes, scattered woody debris and logs with bark, classifi-
cation accuracy was excellent at 79 percent. Error resulted
mostly from woody material being classed as sand. It was
also noted that the woody debris and especially large logs
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had properly classified pixels associated with them, but
these were in a discontinuous pattern along their length.
This is due mainly to the issue of log width versus pixel
size and the presence of mixed pixels. The post-classification
filtering process used also tended to enhance this effect and
reduce the number of pixels classed as the woody debris
classes. It is anticipated that with some post-classification
processing using algorithms to check for linearity, width
limits and continuity analysis, the identification of logs
would be strengthened.

Wright et al. (2000) and Marcus et al. (2002) with four-
band multispectral imagery were unable to classify large
woody debris due to small spectral differences versus sand
and gravel and the 1 m resolution of the imagery. They
recommend higher resolution and more spectral bands, as is
used in this study. The better results of this study may be
due to higher spatial resolution imagery, on average larger
woody debris size, and the spectral angle mapping classifi-
cation approach. Marcus et al. (2003) using 1 m hyperspec-
tral data achieved 85 percent accuracy but with 49 percent
commission using a match filtering approach that only
identified presence or absence of large woody debris.

Woody debris in the form of large, white/gray bleached
logs was examined in an additional analysis. Separate spectra
(Figure 2) and test areas were used. The spectral shape was
quite similar to the substrate classes and confusion might be
expected. One meter resolution multispectral imagery of
Marcus et al. (2002) also indicated the spectral characteristics
of large woody debris and sand and gravel to be similar.
Classification was poor. Only 9 percent of the test pixels
were classed as bleached logs; just over half were misclassi-
fied as one of the substrate classes. However, a third of the
test pixels were classified as one of the other two woody
debris classes (scattered debris and barked logs). Accuracy of
some of the other classes such as sand, gravel, and rock
decreased due to confusion caused by the bleached log class.

The scattered woody debris areas sometimes have small
amounts of vegetation associated with them, and this can
cause confusion in the classification. There was also a pheno-
menon of misclassification at the edge of the stream chan-
nel. There was often a narrow strip of pixels classed as the
scattered woody debris class at the boundary between the
vegetated forest and the stream channel either substrate
material or water (Plate 1). This was more common and
somewhat wider along shadowed edges. There were also
some pixels within the deciduous test area that were classi-
fied as scattered woody debris. These were usually asso-
ciated with small shadowed gaps in the canopy of the
deciduous test areas.

Shadow
Presence of shadow cast by trees adjacent to a stream is a
major problem in stream mapping. It is particularly prob-
lematic when using automated interpretation techniques
(Crowther et al., 1995; Neale et al., 1995). The CASI sensor,
however, with its large dynamic range provides some detail
within the shaded areas. If particular shadow classes were
not included in the classifications conducted for this study,
shadowed areas produced misclassified or unclassified
pixels. The spectral angle mapper approach by dealing with
the orientation of the multispectral vector somewhat miti-
gates against the difficulties caused by different illumination
conditions such as sunlit versus shade. There was moderate
success at classification within shadow areas using sun-
lit reference spectra. Nevertheless, without select shadow
classes of each surface type there are considerable problems.
Shadowed classes were made for the predominant surface
types (gravel, cobble, and deep, moderate and shallow
water). There were few sites of shaded sand, so it was not

included as a class. These classes generally constituted
shade from individual trees or clump of trees rather than
deep continuous shaded zones along long stretches of the
stream channel.

The shaded classes increased classification accuracy of
the shaded areas over that without the shaded classes, but
were not very accurate in themselves at the individual class
level. There was confusion between neighbouring shaded
water depth classes and between shaded gravel and cobble
(Table 1). For example, 56 percent of the shaded gravel test
pixels were classed as shaded cobble. Shaded shallow water
was confused with shaded deep and moderate water and
shaded gravel. The shaded water classes also had approxi-
mately 9 percent unclassified. There was some classification
of sunlit water areas as shaded water of the correct depth
class. Except for shaded moderately deep water there was
very little classification of shaded areas as a sunlit class.
Considerable shaded moderate depth areas were classed as
one of the sunlit water depth classes (Table 1). Accuracy
was quite good if one permits classification of pixels in
the test area to be considered correct if it is classed as an
adjacent shaded class or equivalent or adjacent sunlit class.
For example, accuracy of shaded deep water under these
criteria (i.e., permitting shaded moderate and sunlit deep
and moderate water to be correct) was 68 percent, shaded
moderate was 73 percent, 50 percent for the shallow shaded
class, and 79 percent and 85 percent for shaded gravel and
cobble, respectively. Although not accurate at the class level,
use of shaded classes produced good general classification
with improved accuracy over classifications not using shaded
classes. Visually, the classification does help eliminate most
of the distinct patterns of the cast shadow (Plate 1). Many
of the cast shadow areas are not discernible on the classifica-
tion, while others appear as a pattern of speckled or patchy
mixes of correct and incorrect, but often neighbouring classes.
However, in the shade associated with long stretches of
adjacent dense forest canopy, the classification was not
reliable. In these deep large shadow zones the pixels were
generally still classified as one of the classes (rather than
being unclassified), but the class was often a water class
even in the case of substrate areas.

Overall Classification
Overall accuracy can be assessed qualitatively by comparing
patterns of stream classes with that known from the ground
sites and photographs, and quantitatively by class accuracies.
Overall accuracy will depend on the quantity of each class in
the survey area. For example, because the accuracies of the
shaded classes are poor, especially for deep large shadow
areas, the overall accuracy will depend on the quantity and
nature of shadow cast upon the stream channel. In this study,
for the time of image acquisition, 65 percent of the 5 km
study stretch of the stream was totally sunlit, 20 percent was
mostly shaded and 15 percent had approximately one-fourth
of the channel width shaded or with scattered tree shadows.
The average class accuracy for the classes of Table 1 (minus
deciduous and conifer) was 54 percent, but this includes an
uncombined cobble class (large cobble and small-medium
cobble classes) and equal weighting to the poorly classified
shaded areas. As well, some shaded class pixels do get classed
as the equivalent sunlit class and are considered an error in
Table 1. Table 2 gives the accuracy when only sunlit classes
and test pixels are used, combined cobble and wood debris
classes are included, and the riffle/wet cobble class elimi-
nated. Average accuracy of the classes was 80 percent (with-
out deciduous and conifer).

Visual inspection indicated that, overall, the classifica-
tion effectively represented the pattern of water depth and
substrate material. Misclassification of strips along the boun-
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dary of the stream channel and surrounding vegetated areas
as woody debris caused a misleading pattern. The shallow
and deep water classes were classed well. The sand to gravel
boundary is gradational and some overlap in these classifi-
cations is expected, but nevertheless sand versus gravel
differentiation and mapping was good. The log and debris
class detected logs well and even detected zones of scattered
small woody debris. Large single logs were identified but
often were not represented as a contiguous series of pixels.
Spurious areas classed as rock/boulder occurred within
gravel and cobble areas. Visually reasonable portrayals of
stream features were classified in shaded areas caused by
individual trees or tree clusters, although artifacts of the
shade pattern occurred. Deep continuously shaded stretches
were not well classified.

New classes were needed to represent different substrate
and water clarity conditions near the mouth of the river.
Accuracies were good, but reference spectra representing all
the estuary and upriver regions used in a single classifica-
tion of the whole study area produced poor results. This
indicates that, for complete classification of the whole area,
it would be best to conduct separate classifications.

Band Set Analysis
The above classification results were generated from the
complete band set of all eight bands. The CASI sensor is capa-
ble of producing imagery in 288 narrow visible and near-
infrared spectral bands and high spatial resolution imagery
in the order of 8 to 10 bands. However, these may not all be
needed. As well, video camera imagery and digital frame
camera data with only three or four spectral bands are being
used for various stream mapping projects (Snider et al., 1994;
Hardy and Shoemaker, 1995; Neale et al., 1995; Wright et al.,
2000; Whited et al., 2002; Marcus et al., 2002). Classifica-
tions with several band sets were conducted (Table 3). The
first classification included all bands as above and produced
the best results. Similar results were obtained with a classifi-
cation without the 438 nm band which was somewhat noisy.
The accuracy of the substrate classes, however, were lowered
somewhat. A four-band classification with a spectral band in

the near-infrared, red, green, and blue spectral bands had
reduced accuracy for the main sunlit classes, but results were
still good. If either the near-infrared or blue band were
removed, specific classes became poorly classified (e.g., the
shallow water and gravel classes were poorly classified for
the near-infrared, red, and green (color infrared) band combi-
nation, and the moderate water class had low accuracy for
the red, green, blue (natural color) band combination). The
infrared band was needed to separate deciduous from conifer.
Classification of the shadowed classes was erratic among the
different band sets.

Four bands were needed for good stream planform
classification. Classifications improved slightly with more
bands. The blue spectral bands appeared useful for substrate
classification with the spectral angle mapping approach. For
example, accuracy of the substrate classes was reduced when
the 438 nm band was removed. There was erratic classifica-
tion of substrate and other classes with both the color infra-
red and normal color band combinations. A blue band was
needed to classify shallow water and a near-infrared band
for moderate depth water. It is desirable to have sensors
capable of acquiring at least four bands (blue, green, red,
and near-infrared). Three channel sensors producing colour
infrared or natural colour imagery such as most video and
digital frame cameras may suffer difficulties classifying
stream features.

Summary and Conclusion
Application of spectral angle classification to multiband CASI
imagery over a 5 km clearwater length of Tofino Creek gave
good classifications of the following classes: deep, moderate
and shallow water, sand, gravel and cobble, and woody deb-
ris. Overall accuracy of sunlit stream channels was 80 per-
cent and accuracy of the three water classes was 91 percent
and 72 percent for substrate classes (sand, gravel and cobble,
plus rock/boulder). It may in some cases be possible to gather
useful information regarding finer classes. Tidal flat and
estuary classes that had silty substrate could be distinguished
from other stream features. Alternately, this indicated that
water depth classes are sensitive to the substrate material,
silty substrate requiring separate classes from the sand
through cobble substrate material found in the main part of
the stream. Woody debris in the form of both logs with bark
and scattered small woody debris was identified by the clas-
sification method. Bleached logs without bark were not
classified well. The classification worked moderately well in
isolated shadow areas, but not for long zones of deep shadow.
The method also seems robust; it was conducted on a mosaic
representing data from three flight lines flown sequentially
and the data was not normalized.

Good capabilities were shown for mapping the impor-
tant stream habitat features using high-resolution, multi-
spectral imagery with at least four spectral bands. The study
area included a variety of conditions and extended from
near the upper reaches of the stream with moderate gradi-
ents down to the outflow of the stream in a low gradient
tidal flats zone. However, specific results, class types, and
choice of classification options will vary for other stream
conditions and settings and further testing and refinement
of methods for different conditions is needed. Turbidity,
organic content and sediment load of the water would be
factors. Different parent materials for the substrate and pre-
sence of sub-aqueous and floating vegetation would have
to be factored into the methods. The spectral angle app-
roach and judicious use of shadowed reference pixels pro-
duced some good mapping of generalized classes for cast
shadow areas from single trees or tree clusters. However,
long continuous zones of deep shadow caused difficulties.
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TABLE 3. CLASSIFICATION ACCURACY (5) OF DIFFERENT BAND SETS1

Classification Accuracy Per Bandset

Bands: Bands: Bands: Bands: Bands:
Class 1–8 2–8 7,5,3,2 7,5,3 5,3,2

Deep water 94 92 86 77 65
Moderate water 87 78 79 80 20
Shallow water 87 91 88 27 75
Sand 75 69 68 61 45
Gravel 77 70 73 29 80
Small-medium cobble 57 66 58 60 19
Large cobble 17 5 6 2 65
Wet cobble/riffle 51 51 50 43 26
Rock/boulder 45 45 40 49 9
Wood debris* 76 76 65 70 56
Conifer 74 69 79 44 1
Deciduous 77 77 78 73 31
Shaded deep water 33 34 52 59 56
Shaded moderate water 17 19 22 52 14
Shaded shallow water 22 40 18 10 1
Shaded gravel 23 14 21 10 22
Shaded cobble 79 75 59 32 66

Overall Accuracy 58.3 57.1 55.4 45.8 38.3

*Scattered woody debris and logs with bark.
1Band numbers are: 1 � 438 nm, 2 � 489 nm, 3 � 550 nm, 
4 � 601 nm, 5 � 656 nm, 6 � 715 nm, 7 � 795 nm, and 8 � 861 nm.
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The timing of imagery acquisition should be planned to
minimize cast shadow.

Such automated techniques and multispectral sensors
provide a viable tool for mapping stream features suitable
for a variety of applications. Information can be efficiently
summarized for individual reaches and spatially analyzed
regarding such parameters as size, shape, and adjacency.
With the addition and data fusion of high-resolution lidar
and thermal imagery collected simultaneously or in separate
surveys, it may be possible to gain even more information.
Examination of this combination and indeed further devel-
opment and validation of automated stream planform classi-
fication is needed. However, multispectral classification
of high-resolution imagery with appropriate use of current
methods and adaptation for specific survey needs and stream
conditions is a tool available to be utilized by those interes-
ted in stream mapping.
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