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A new mathematical model is developed for peristaltic transport in the esophagus. Manometric 
measurements of luminal pressure have been obtained in the esophagus and interpreted both biological 
and mechanical point of view. Biological data analysis pointed out that pressure distribution has a 
polynomial form along the esophagus. However, it has been considered as sinusoidal in calculations by 
scientists. Therefore, a mathematical result does not possibly fit same form with biological data. The 
developed model is calculated successfully with pressure distribution along the esophagus. The model 
is applied to a single contraction wave of normal swallowing in the esophagus. Analytical calculation 
from the new model on pressure distribution is in qualitative agreement with experimental observations. 
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INTRODUCTION 
 
The process of swallowing begins with chewing, mashing 
and mixing of food in the oral cavity; the complex 
structural motions within the pharynx that force the food 
bolus rapidly to the esophagus then follow; and the 
process ends with the transport of the bolus to the 
stomach by peristaltic contractions of the esophageal 
wall. The esophagus is stripped clean of all bolus fluid by 
the contraction wave in normal swallowing. When the 
bolus fluid completely passes through the UES and UES 
closes, then the bolus is propelled downwards towards 
the stomach by a combination of gravitational forces and 
peristalsis. 

Biofluids are propelled in tubes by transverse 
progressive waves propagating along the walls of the 
tubes in the peristalsis process. The flow of urine through 
the ureter, the movement of thyme in the entire gastro-
intestinal tract, and the transport of food-grains and 
liquids from the mouth through the esophagus are very 
common examples of this mechanism in the physiological 
world. Biomechanical pumps work in accordance with the 
same mechanism and are man-made instruments to 
pump physiological fluids, without hampering their purity. 
Misra and Pandey (2001) presented a mathematical 
model for the transport of food through the esophagus, by 
considering it to be governed by power-law. 

Implementing the concept of inward contraction, study is 
made of sinusoidal wave propagation, restricted within 
the stationary wall of the esophagus, along its length. 

Several investigations on the peristaltic transport 
through circular cylindrical tubes have been carried out 
by different researchers for Newtonian fluids (Brasseur et 
al., 1987; Shapiro et al., 1969; Takabatake et al., 1988; 
Yin and Fung, 1969) as well for non-Newtonian fluids 
(Bohme and Friedrich, 1983; Raju and Devanathan, 
1972). Some studies on peristaltic transport through 
tubes of noncircular cross-sections are also available in 
the literature (Rao and Usha, 1995; Rath, 1982).  

In all the studies mentioned earlier mentioned, the tube 
is considered to be of infinite length, and an assumption 
is made of infinite train-wave propagation. As a result of 
these considerations and assumptions, none of these 
studies are qualified to find applications to those 
physiological situations where a single wave travels down 
the length of an organ (for example, esophagus, and 
ureter) of finite dimension. Li and Brasseur (1993) 
pointed out this fact, and with the motive to explore the 
aspects of peristaltic pumping, they presented a model of 
peristaltic transport of a Newtonian viscous fluid, based 
on the classical lubrication theory, for arbitrary wave 
shape and arbitrary wave number through a  finite  length 



 
 
 
 
tube. 

A finite-length single wave model of Li and Brasseur 
(1993) for Newtonian fluids is applicable only when the 
intake is water or some drink of similar physical 
properties. A bolus passing through the esophageal tube 
may be suitably modeled by considering a fluid of non-
Newtonian nature. Carew and Pedley (1997) reported a 
peristaltic model with an active membrane through an 
infinite tube which remains occluded while relaxing, and 
activates only when it is subjected to a certain level of 
prestretch. 

Li and Brasseur (1993) improved the conventional 
sinusoidal wave equation by considering the position of 
the wall a function of the minimum radius of the tube 
which vibrates in only one direction. The amplitude which 
is thus, the radius of the stationary tube minus the 
minimum tube-radius has to be adjusted whenever the 
degree of contraction of the tube is varied. The present 
authors, however, felt that since the wall fluctuates 
inwardly, it should be a function of the radius of the 
stationary tube rather than that of the contracted tube, 
and when the wall relaxes from contraction, the dilation 
should be restrained within the stationary boundary. This 
avoids the adjustment of the amplitude of the wave as 
required in the study of Li and Brasseur (1993) when the 
minimum radius is changed. 

In this study, a new mathematical model is developed 
to calculate polynomial pressure distribution for the 
transport of food through the esophagus. The model is 
applied to a single contraction wave of normal swallowing 
in the esophagus. Analytical calculation from the new 
model on pressure distribution is in qualitative agreement 
with experimental observations. 
 
 
BIOLOGICAL DATA 
 
Manometry and videofluoroscopy are the two primary 
tools used to study esophageal motility, both in clinical 
and research setting. These two modalities provide 
fundamentally different information concerning bolus 
transport. Intraluminal manometry, which measures 
pressure at several fixed locations along the esophagus 
as a function of time, provides quantitative information 
regarding the forces applied to an ingested bolus by the 
esophageal musculature. The contraction wave is seen 
as a positive pressure on manometry which traverses the 
entire length of the esophageal body. On the other hand, 
videofluoroscopy records the geometry and motion of the 
esophageal wall in response to these forces. 

The manometric evaluation of esophageal motility has 
focused on the peristaltic pressure waveforms that result 
from the aborad sequence of esophageal muscle 
contraction and relaxation. Brasseur et al. (1987) has 
studied interpretation of manometric data with and 
without concurrent radiographic image. An appreciation 
of  mechanics  of  the   swallowing   process   and   bolus 
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transport is necessary for proper interpretation of 
manometric intraluminal pressure measurements in terms 
of the spatial and temporal changes in lumen geometry. 

Manometric pressure has been analyzed in the axial 
direction in order to describe the peristaltic pressure 
wave as it propagates through the esophagus in the 
direction of the bolus and to determine what sampling 
interval along the esophageal length is required for 
accurate representation. The appearance of the 
contraction wave as it propagates in the axial direction is 
important because of the interface of this wave with the 
bolus and additional appeal for understanding the 
coordination of underlying neuromuscular events 
responsible for transit (Clouse et al., 1996). Conventional 
manometric analysis found out that pressure distribution 
along the esophagus has a polynomial form. Ren et al. 
(1993) obtained this experimentally. The axial pressure 
profile within the bolus at a specific instant when the 
bolus was located in the distal esophagus is illustrated 
schematically in Figure 1. 

Manometric analysis result of barium, wet and dry 
swallowing show that pressure distribution has a similar 
profile along the esophagus. This finding may attract 
attention that pressure distribution along the esophagus 
independent form bolus shape. 
 
 
Mathematical model 
 
Pressure distribution along the esophagus had been 
assumed sinusoidal in the literature, and as such, 
calculations have been done accordingly. However, 
experimental studies and biological data show that 
pressure distribution has a polynomial form. The goal is 
to develop an equation to calculate the spatial and 
temporal variations of intraluminal pressure p(x, t) along 
the esophagus. 

The esophagus is treated as a circular tube of finite 
length and flow is assumed with single-phase Newtonian 

incompressible fluid of uniform viscosity . The 
characteristic velocity of the peristaltic wave is c, the 

wavelength of the bolus is , the tube length L, average 

radius of the bolus a and the minimum tube radius is . A 
single contraction wave of peristaltic transport and 
pressure distribution are illustrated in figure 2. The fluid 
bolus is transported from left to right by contraction 
waves along the esophagus. The appropriate Reynolds 
number for peristaltic transport is: 
 













 aca
Re

                          (1) 

 

The wall of the esophagus is contracted under the 
influence of a periodic transverse contraction wave which 
the passage is first shortened by way of contraction of
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Figure 1. Axial distribution of intrabolus pressure during effective peristaltic transport of low viscosity barium bolus. Pressures had 
been measured during 2-7 swallows in 6 subjects at instant when proximal manometric site has determined on fluoroscopy to be 0.5 
cm from tip of bolus tail. At this time bolus was in distal esophagus and esophageal emptying had not begun. Seven manometric sites 
were spaced 1 cm apart. Vertical dashed line indicates boundary between bolus-containing and lumen-occluded esophageal segments 
and is theoretically site of maximum intrabolus pressure (pmax). Intrabolus pressure, located in region of bolus tail that is contiguous to 
segment of actively contracting esophageal wall (vertical arrows), was significantly greater (p < 0.05) than that at other sites, which 
were not significantly different from each other (Ren et al., 1993). 

 
 
 
muscles. Then, its path is retracted so that its original 
position is attained. This process continues until the bolus 
is completely squeezed out. The shape of the bolus tail 
and head is described using sinusoidal functions, and the 
main body of the bolus is approximated with a constant 
radius. Mathematically, it can be expressed as follows: 
 

 
  




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






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

 





ctx
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Here,   is the wave amplitude and    a2 . 

Intraluminal pressure in a moving bolus has the force 
applied to the bolus at the esophageal wall. This applied 

pressure may be due to passive elasticity in the 
esophageal wall, or active muscle tension, primarily in the 
circular muscle. However, intrabolus pressure is not 
directly related to the wall tension. When there is 
significant motion, part of the tensile force within the 
esophageal wall goes into accelerating the wall and the 
fluid (Brasseur and Dodds, 1991). It should be 
considered that pressure wave, as seen in Figure 2, 
covers the entire esophagus which begins at the UES 
and ends at the LES at any specific time. Pressure 
distribution along the esophagus can be defined as: 

 
1. No-bolus region: high pressure zone (po+p1), 
 

2. Bolus segment: pressure gradient decrease gradually,
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Figure 2. Schematic representation of Bolus geometry, pressure distribution, coordinates system and nomenclature of the model. 
 
 
 
pmax is effected at the bolus tail (po+p1), 
3. After bolus segment: low pressure zone (p0). 
 
Pressure wave travels along the esophagus in time. 
These approaches can be expressed mathematically as: 
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Here, b1, b2 and b3 are constants; p0 and p1 are constants 
of resting and active pressures. 

The first derivative of governing equation is as follow: 
 








 






L

bctxb

L

bctxb
hp

x

p 2121
1

)(
tanh)

)(
(sec

        

(4) 

 
The equation of conservation of momentum in an 
axisymmetric coordinate system moving with the wave 
shape at speed c is written in the literature as follow: 
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Table 1. Values of coefficients 
 

Symbol Value Unit 

p0 3.5 mmHg 

p1 94.5 mmHg 

b1 14 - 

b2 11 - 
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The axial and radial velocities: 
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Equation 3 is the governing equation for the pressure 
distribution along the entire esophagus. However, 
equations 5, 6, 7 and 8 have been applied on the bolus 
segment. 
 
 

Numerical method 
 

The numerical method to solve the equation of pressure is based 
on predictor-corrector approximation method. Pressure in Figure 1 
is experimentally obtained from manometric analysis in the 

literature. This is denoted as pe(x, 0) at t = 0 s and L = 10 cm. To 
calculate pressure distribution (p(x, t)) from equation (3), b1, b2, p0 
and p1 should be known. Equation (3) can be rewritten as follow: 
 

 𝑝 𝑥𝑖 , 𝑡𝑗  = 𝑝0𝑘 + 𝑝1𝑘 sech 
𝑏1𝑘(𝑥𝑖 − 𝑐𝑡𝑗 ) − 𝑏2𝑘

𝐿
  

        (9) 

 
Step 1: Selection of initial values 

 

Experimentally found pressure (𝑝𝑒)  

for ; 𝑝𝑒 𝑥𝑖 , 0 = 𝑝(𝑥𝑖 , 0)  
𝑏1 = 1  
𝑏2 = 0  
𝑝0 = 0  

 

Equation (9) is rearranged to calculate the initial value of  as: 

 

 
 

Step 2: Calculation of  

 

Selected initial values of coefficients are substituted in equation (9),  

and  are calculated. 

 

Step 3: Relative error of approximation 
 

Relative error () of approximation is found by applying equation 

(10). Note that the relative error is unrelated to convergence in the 
algorithm but instead to the step size and approximation of the 
actual function. The step size is selected relatively small in order to 
get a good approximation. 
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Iteration process is repeated until the guesses converge within 
desired relative error. Finally, the best approximation is obtained 
after 50 iterations and the values in Table 1 are obtained. Equation 
(3) is rearranged by replacing coefficients with numerical values 
and analytical calculation is done; so, analytical pressure is 
calculated. 

Analytical and experimental pressure distributions along the 
esophagus are illustrated with analytical and experimental boluses 
(wall shapes) in Figure 3. Bolus can be already calculated 
analytically in the literature. However, analytical calculation of 
polynomial pressure form could not be found in the literature. 
Findings of our new model show that polynomial form of pressure 

distribution along the esophagus can be calculated successfully. 
Schematic comparisons of analytical and experimental findings 
(Figure 3) show that results are overlapped in almost best fit.  
Relative error may be seen in Figure 4 with error distribution along 
the esophagus (x direction). 
 

 

Pressure distribution 
 

Normal esophageal peristalsis involves a single wave of 
active muscle contraction preceded by a single wave of 
muscle relaxation; therefore, the bolus is isolated within a 
single peristaltic wave. The dominant characteristic of 
bolus transport is apparently seen in Figure 1 as the 
complete stripping of the bolus from the esophageal 
lumen by a progressive contraction wave of sufficient 
force to maintain closure in the tail segment as it passes 
along the esophagus. To model this primary transport 
characteristic of esophageal musculature, it is considered 
that an idealized peristaltic wave in which the shape of 
the tail region and the wave speed are not varied as the 
contraction wave passes along the esophageal lumen. 

A single peristaltic contraction wave which is traveling 
along the esophagus is illustrated in Figure 5. Detailed 
variations in pressure amplitude are not modeled. At 
Figure 3 (a), t = 0 s, pressure distribution and single bolus  
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Figure 3. Schematic illustrations of computed (analytical) pressure distributions 

from new model, analytical bolus (wall shape) from equation (2), experimental 
pressure distributions and bolus (wall shape) from Ren at al., (1993). 

 
 
 

 
 

Figure 4. Relative error (). 
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Figure 5. Pressure distribution along the esophagus (tube) at eight time instants in one 

wave period with one wave in the esophagus (tube). (a) t = 0 s; (b) t = 0.5 s, (c) t = 1 s, 

(d) t = 1.5 s, (e) t = 2 s, (f) t = 2.5 s, (g) t = 3 s, (h) t = 3,5 s. The solid lines are pressure 
distributions along the esophagus (tube), and the dashed lines are the corresponding 
boluses (wall shapes). The wave travels with wave speed, 2 cm/s, from left to right.  
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Figure 6. Spatial and temporal illustrations of pressure distribution. 

 
 
 
are seen, and it travels with wave speed 2 cm/s from left 
to right and movement of both pressure wave and bolus  
are also observed in Figures 5b, c, d, e, f, g and h. 
Spatial and temporal variation of pressure distribution is 
illustrated in Figure 6. 

The methodology of this study involves combining 
mathematical modeling with biological data. The concept 
is to embed the essential dynamical principles required to 
properly characterize esophageal bolus transport into a 
mathematical model from which intraluminal geometry 
variations may be directly related to intraluminal pressure 
variations and then to develop mathematical model to 
capture the global characteristics of videofluoroscopic 
and concurrent manometric data from specific case 
studies. The global characteristics of a specific 
esophageal study are properly calculated (Figures 5 and 
6), the temporal variations in the intraluminal geometry – 
pressure relationship can be obtained in detail. 
 
 
CONCLUSIONS 
 
The mechanics of the swallowing process and bolus 
transport was needed for proper mathematical model to 
calculate global variations. So, a new mathematical 
model is developed to successfully calculate pressure 
distribution along the esophagus. The model is applied to 
a single contraction wave of normal swallowing in the 

esophagus. Analytical calculation from the new model on 
pressure distribution is in qualitative agreement with 
experimental observations. The crucial conclusions to 
draw from results are that this model is qualified to 
calculate some biological situations where a single wave 
travels down the length of an organ (for example, 
esophagus, and ureter) of finite dimension. On the other 
hand, it is going to help to develop more realistic 
mathematical expression to explain other variations of 
peristaltic transport in the esophagus and ureter. 
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