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ASYMPTOTICALLY OPTIMAL CONTROLS FOR
TIME-INHOMOGENEOUS NETWORKS∗
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Abstract. A framework is introduced for the identification of controls for single-class time-
varying queueing networks that are asymptotically optimal in the so-called uniform acceleration
regime. A related, but simpler, first-order (or fluid) control problem is first formulated. For a class
of performance measures that satisfy a certain continuity property, it is then shown that any sequence
of policies whose performances approach the infimum in the fluid control problem is asymptotically
optimal for the original network problem. Examples of performance measures with this property
are described, and simulations implementing asymptotically optimal policies are presented. The use
of directional derivatives of the reflection map for solving fluid control problems is also illustrated.
This work serves to complement a large body of literature on asymptotically optimal controls for
time-homogeneous networks.
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1. Introduction. Most real-world queueing systems evolve according to laws
that vary with time. The expository paper [32] outlines the applications of time-
varying stochastic networks to telecommunications. In the context of computer engi-
neering, these networks arise in the fields of power aware scheduling and temperature
aware scheduling (see, e.g., [3, 44, 45]) and the design of web servers (see, e.g., [9]).
These networks also arise in a range of other applications (see, e.g., [22, 7, 21, 27, 43]).
Work that focuses on time-dependent phase-type distributions can be found in [36, 37]
and references therein.

The focal point of the present paper is the rigorous study of certain aspects of the
stochastic optimal control of time-inhomogeneous queueing networks. In most cases,
an exact analytic solution is not available. Instead, we use an asymptotic analysis to
gain insight into the design of good controls. Specifically, we embed the actual system
into a sequence of systems with rates tending to infinity and look for a sequence of
controls that are asymptotically optimal (in the sense to be described precisely in
Definition 3.1).

In many cases, the identification of a class of asymptotically optimal sequences
of controls is facilitated by first solving related, but simpler, first-order (or fluid)
and/or second-order control problems. The first-order problems arise from functional
strong law of large numbers (abbreviated FSLLN) limits of the original systems (see,
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e.g., Theorem 2.1 of [30]) and lead to deterministic control problems. Second-order
problems, additionally, take into account fluctuations around the FSLLN limits.

The methodology of using fluid and diffusion control problems to identify
asymptotically optimal controls for queueing networks is fairly well developed in the
time-homogeneous setting. In the time-homogeneous case, the second-order approx-
imation of a queueing network is usually given by a reflected diffusion, leading to a
single reflected diffusion control problem. Historically, asymptotic limit theorems were
first established to shed insight into the performance of these networks under various
scheduling disciplines. Inspired by these limit theorems, a “formal” limiting control
problem was then proposed (say, the Brownian control problem (BCP) for systems
in heavy traffic; see, e.g., [49] for references on this subject). Only subsequently were
rigorous theorems established in specific settings to link the solution of the limiting
control problem to the so-called prelimit control problem (see [4, 5, 6] for examples).
Other references in this context include [13, 17, 33, 34, 35] for the use of fluid control
problems and [1, 23, 25, 29] for the use of diffusion control problems.

1.1. Time-inhomogeneous networks—Performance analysis. Thus far,
the study of time-inhomogeneous networks has mainly concentrated on performance
analysis. The seminal paper of Mandelbaum and Massey [30] is the cornerstone of
the rigorous approach to the identification of both first-order and second-order ap-
proximations for the Mt/Mt/1 queue under the uniform acceleration regime. The
authors of [30] employ the theory of strong approximations (see, e.g., [10, 11, 20])
to develop a Taylor-like expansion of sample paths of queue lengths, establishing an
FSLLN and a functional central limit theorem (FCLT). Furthermore, explicit forms
of the first-order (in the almost sure sense) and second-order (in the distributional
sense) approximations of the queue lengths are identified. Chapter 9 of [47] (see also
Theorem 3.2 of [31]) relaxes certain technical assumptions imposed in [30] and ex-
hibits more general results. The second-order approximation obtained in [30] can be
viewed as a directional derivative of the one-sided reflection map (with respect to an
appropriate topology on the space of functions). With a view towards establishing
analogous approximations for networks with time-inhomogeneous arrival and service
rates, properties of directional derivatives of multidimensional reflection maps corre-
sponding to a general class of queueing networks were established in [31]. The article
[31] also contains an intuitive introduction into this theory, as well as an overview of
related references.

1.2. Time-inhomogeneous networks—Optimal control. In the domain of
time-inhomogeneous networks, while heuristics for designing controls were proposed
by Newell [41], there is relatively little rigorous work. A noteworthy example of an
optimal control problem with a fluid model in the time-inhomogeneous setting is given
in [8], where the authors study a particular optimal resource allocation problem for
a (stochastic) fluid model with multiple classes, and a controller who dynamically
schedules different classes in a system that experiences overload. To the best of the
authors’ knowledge, there are no general results in the time-inhomogeneous setting
that rigorously show convergence of value functions of the prelimit control problems
to the value function of a limiting control problem. As mentioned above, even for
the time-homogeneous setting, a general theorem of this nature was obtained only
relatively recently [5, 6]. In fact, even a concept akin to the notion of fluid-scale
asymptotic optimality described in [35] for time-homogeneous networks appears not
to have been formulated in the time-inhomogeneous setting.

One of the main aims of this paper is to take a step towards building a useful
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framework for the asymptotic optimal control of time-inhomogeneous networks. The
specific types of controls we focus on are arrival and/or service rates in time-varying
single-class queueing networks. Our goal is to develop a general methodology for the
identification of high-performance controls for a time-varying network, based on an
optimal control analysis of a related (fluid) approximation. While this philosophy
is similar to that used for time-homogeneous networks, the analysis is significantly
more involved. To begin with, the nature of the asymptotic approximation has to
be modified so as to capture the time-varying behavior. In particular, the so-called
uniform acceleration technique is used to embed the particular queueing system into
a sequence of systems, which, once properly scaled, converges to a deterministic fluid
limit system in the strong sense. We refer to the systems in this sequence with
uniformly accelerated rates as the prelimit systems. With the view that optimal
control problems for the fluid limit are typically more tractable than for the prelimit,
we wish to answer the following question:

Can we identify a broad class of performance measures for which the solution of the
fluid control problem suffices to construct asymptotically optimal sequences of

controls?

The phrase “suffices to construct” above can be interpreted in many ways. For in-
stance, one may resolve to use exactly a policy that is optimal for the fluid control
problem when controlling the prelimit systems, one may try to express optimal poli-
cies for the fluid control problem in terms of a state dependent (feedback) rule and
then use this rule to control the prelimit systems, or one may opt for a heuristic way
to “tweak” optimal controls for the fluid problem to perform well in the prelimit.
We choose to focus on (a generalization of) the first of the above-mentioned options.
More precisely, we refer to any sequence of policies whose performances in the fluid
system converge to the optimum value for the fluid system as a fluid-infimizing se-
quence, and we seek to identify broad classes of performance measures for which any
fluid-infimizing sequence of disciplines is also asymptotically optimal. The main the-
oretical results of this paper are Theorems 5.4 and 5.5, which provide two alternative
sufficient conditions for performance measures to have this property, with the latter
condition assuming the existence of an optimal control for the fluid problem.

Although such a connection between the fluid and prelimit control problems may
appear intuitive, in section 8.2 we describe several reasonable situations when this
fails to hold. This underscores the need for a rigorous analysis to determine when this
intuition is indeed valid. We also note that the task of identifying an optimal policy
for the fluid control problem is not always straightforward. One approach, exploiting
the results of [31] on directional derivatives of the oblique reflection map (ORM), is
illustrated in section 7.2.3. This calculus of variations–based technique may be of
independent interest.

1.3. Outline of the paper. The paper is organized as follows. The general
stochastic optimal control problem of interest is presented in section 2, and the notion
of asymptotic optimality is formulated in section 3. The related fluid control problem
is described in section 4. The identification question posed above is formalized via
the notion of fluid-optimizability of performance measures in section 5, where our
main results are also stated and proved. Section 6 is dedicated to a description of
relevant fluid-optimizable performance measures involving aggregate Lipschitz holding
costs. Two examples of network control problems with fluid-optimizable performance
measures are presented in section 7. For each example, the fluid control problem
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is solved, the solution is used to construct an asymptotically optimal sequence of
controls, and simulations that capture the effect of these controls on the original
network problem are also presented. Concluding remarks and, in particular, examples
where the correspondence between the fluid and original control problems fails to hold,
are given in section 8. All auxiliary technical results are gathered in the appendices.

1.4. Notation and technical paraphernalia. The following (standard) nota-
tion will be used throughout the paper:

• T ∈ (0,∞) denotes the fixed time horizon;
• R̄ = R ∪ {−∞,+∞};
• L0

+(Ω,F ,P) denotes the set of all (P-a.s.-equivalence classes of) nonnegative
random variables on the probability space (Ω,F ,P);

• meas(·) denotes Lebesgue measure on R;
• L1[0, T ] denotes the set of all integrable functions defined on [0, T ] (with
respect to Lebesgue measure);

• L1
+[0, T ] denotes the set of all nonnegative functions in L1[0, T ];

• C[0, T ] is the set of all continuous functions x : [0, T ] → R;
• I : (L1[0, T ])k → (C[0, T ])k is the (integral) mapping defined by

It(f) =
(∫ t

0

f1(s)ds, . . . ,

∫ t

0

fk(s)ds

)
, t ∈ [0, T ],

with f = (f1, . . . , fk) ∈ (L1[0, T ])k;
• D[0, T ] denotes the set of all real-valued right-continuous functions on [0, T ]
with finite left limits at all points in (0, T ];

• D↑[0, T ] denotes the subset of D[0, T ] containing all nondecreasing functions;
• D↑,f [0, T ] stands for the subset of D↑[0, T ] containing functions with at most
finitely many jumps;

• ‖·‖T , defined by ‖x‖T = supt∈[0,T ] |x(t)| for x ∈ D, is the uniform convergence
norm on the space D[0, T ];

• B(Y ) denotes the Borel σ-algebra on the topological space Y .
For the sake of completeness, we provide the following definitions to be used in

what follows.
Definition 1.1. Let R ∈ Rκ×κ have positive diagonal elements, and let x be

in (D[0, T ])κ. We say that a pair (z, l) ∈ (D[0, T ])κ × (D↑[0, T ])
κ solves the oblique

reflection problem (ORP) associated with the constraint matrix R for the function x
if x(0) = z(0) and if for every t ∈ [0, T ],

(i) z(t) ≥ 0;
(ii) z(t) = x(t) +R l(t);

(iii)
∫ t

0 1[zi(s)>0] dl
i(s) = 0 for i = 1, . . . , κ.

Given a matrix R, if for every x ∈ (D[0, T ])κ there exists a unique pair (z, l) as above,
we define the oblique reflection map Γ : (D[0, T ])κ → (D[0, T ])κ as Γ(x) = z for every
x ∈ (D[0, T ])κ.

Motivated by the study of single-class open queueing networks, for a particular
class of matrices R, existence and uniqueness of the ORM on the space of continuous
functions was proved in the seminal paper [24]. The results in [24] can be directly ex-
tended to càdlàg functions to support the above definition (see, for example, Theorem
2.1 in [15]). Generalizations of the ORM that are useful for more general networks
are considered in [2, 14, 15, 16, 42] and references therein. Explicit formulas for
the solution map associated with certain one-dimensional problems can be found in
[28] and [46].
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2. Optimal control of time-inhomogeneous, single-class queueing net-
works. The main goal of the present paper is to elucidate the relationship between
fluid optimality and asymptotic optimality (both to be defined precisely in what fol-
lows) in the case of single-class, open, time-varying queueing networks with a fixed
finite number κ of stations (nodes) and fixed routing dynamics, operated under the
FIFO service discipline. The primitive data and dynamical equations governing such
a network are introduced in sections 2.1 and 2.2. The class of performance measures
under consideration is described in section 2.3.

2.1. Primitive data. Assuming that each station is initially empty and has
infinite waiting room, the dynamics of any such network are determined by a pair of
processes (E,S) defined on a probability space (Ω,F ,P), where

• E = (Ei, i = 1, 2, . . . , κ) ∈ (D↑,f [0, T ])
κ stands for the vector of (cumulative)

exogenous arrivals to each of the κ stations;
• S = (Si,j , i = 1, 2, . . . , κ, j = 1, 2, . . . , κ + 1) ∈ (D↑,f [0, T ])

κ2+κ denotes
the κ × (κ + 1) matrix of (cumulative) potential service completions in the
κ stations; i.e., for all pairs of indices (i, j) ∈ {1, 2, . . . , κ}2 the entry Si,j in
the matrix stands for the process of (cumulative) potential services at the ith
station that would be routed to the jth station and, for i = 1, . . . , κ, Si,κ+1

represents the (cumulative) number of jobs that would complete service at
station i and leave the network if the ith station were always busy.

In this paper, we focus on the case when E and S are constructed from Poisson
point processes (PPPs), with rates determined by the functions λ = (λ1, . . . , λκ) ∈
(L1

+[0, T ])
κ and μ = (μ1, . . . , μκ) ∈ (L1

+[0, T ])
κ, and a “routing” matrix P = (pij ;

1 ≤ i, j ≤ κ) in the manner described below. For a thorough and concise treatment
of PPPs, the reader should consult [26]. The component functions of λ represent
the time-varying rates of exogenous arrivals to their respective nodes, while the com-
ponent functions of μ correspond to the rates of potential services at each of the
κ stations. Transitions from a station i to another station j are not deterministic;
they are governed by the probabilities encoded in the matrix P = (pij ; 1 ≤ i, j ≤ κ) as
follows: once a job is completed at the ith station, it queues up at the jth station with
probability pij . The job leaves the network altogether with probability 1−

∑κ
j=1 pij .

We assume that matrix P ∈ Rκ×κ has spectral radius strictly less than 1.
Remark 2.1. The above condition on P implies that the constraint matrix R =

I − PT associated with the routing matrix P , in the sense of Remark 1.1 of [31],
satisfies the [H-R] condition of Definition 1.2 of [31]. This assumption ensures that
the ORP associated with R admits a unique solution and that the associated reflection
mapping, which we denote by ΓP , is Lipschitz continuous. For more details, the reader
is directed to Theorem 3.1 of [31].

Suppose the primitive data (λ,μ, P ) are given, and let ζ = (ζ1, . . . , ζκ) and
ξ = (ξ1, . . . , ξκ) be independent vectors of mutually independent PPPs on the domains
S := [0, T ]× [0,∞) and S ′ := [0, T ]× [0,∞)× [0, 1], respectively, with mean intensity
measures dt×dx and dt×dx×dy. For each k ∈ {1, 2, . . . , κ}, the process of exogenous
arrivals to the kth station is given by

(2.1) Ek
t = Ek

t (λ)
.
= ζk{(s, x) : s ≤ t, x ≤ λk(s)} for every t ∈ [0, T ].

Analogously, we model the potential service process at the kth station representing
the jobs that would transition on completion into the jth station as

(2.2) Sk,j
t = Sk,j

t (μ)
.
= ξk

{
(s, x, y) : s ≤ t, x ≤ μk(s),

j−1∑
i=1

pki < y ≤
j∑

i=1

pki

}
,
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and the jobs that would leave the network as

(2.3) Sk,κ+1
t = Sk,κ+1

t (μ)
.
= ξk

{
(s, x, y) : s ≤ t, x ≤ μk(s),

κ∑
i=1

pki < y ≤ 1

}

for t ∈ [0, T ].
Remark 2.2.

(i) We assume that the routing matrix P is fixed throughout, and we do not
emphasize the dependence of the process S on P in the notation.

(ii) Note that the above definitions can be naturally extended to the case of
random rates (λ,μ) that are defined on the same probability space (Ω,F ,P)
and take values in (L1

+[0, T ])
2κ. We will need this extension in what follows.

2.2. Dynamic equations. We now show how the evolution of the network
model can be uniquely determined from the primitive data (λ,μ, P ) and associated
processes (E,S). Consider the following system of equations:

S̃k,j
t = ξk

{
(s, x, y) : s ∈ Bk

t , x ≤ μk(s),

j−1∑
i=1

pki < y ≤
j∑

i=1

pki

}
,

Bk
t = {s ≤ t : Zk

s > 0},

Zk
t = Ek

t +

κ∑
j=1

S̃j,k
t −

κ+1∑
j=1

S̃k,j
t , k = 1, . . . , κ, t ∈ [0, T ],

(2.4)

where
• Bt = (B1

t , . . . , B
κ
t ) is a vector of stochastic processes on [0, T ] with values in

B([0, T ]); for every k and t, the set Bk
t stands for the period up to time t

during which the kth queue in the system was not empty;

• S̃t = (S̃k,j
t , 1 ≤ k ≤ κ, 1 ≤ j ≤ κ+ 1) ∈ (D↑,f [0, T ])

κ+κ2

denotes the matrix
of random processes of actual service completions in the κ stations indexed
by k, depending on whether they depart to a station j = 1, . . . , κ or leave the
network (for j = κ+ 1);

• Zt = (Zk
t , k = 1, 2, . . . , κ) ∈ (D[0, T ])κ stands for the vector of queue-length

processes in the κ stations.
It can be shown that system (2.4) uniquely describes the dynamics of an open

network using the principle of mathematical induction on the number of stopping
times representing the times of arrivals or potential departures from the stations.
With probability one, there are at most a finite number of such events during the time
interval [0, T ] because the stochastic processes modeling the times of these events are
PPPs; hence, the principle of mathematical induction is applicable. Recalling that
all the PPPs above are assumed to be mutually independent, with probability one
there are no two stopping times in the inductive scheme that happen simultaneously.
So, the resulting solution to the system (2.4) is unique with probability one. It is
worth noting that the above construction departs from the one commonly used for
time-homogeneous systems. Here, one keeps track of the entire set of times when a
station is empty and loss of service is possible, and not only of the length of that time.

Moreover, in the case of a feedforward network (i.e., for P being a strictly upper-
triangular 0-1 matrix), the progression of completed jobs through the system becomes
deterministic. So, Z admits an alternative representation in terms of the so-called
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netput process X = (X(1), . . . , X(κ)), which is defined by

(2.5) X i
t
.
= Ei

t −
κ+1∑
j=1

Si,j
t +

κ∑
j=1

Sj,i
t , t ∈ [0, T ], i = 1, . . . , κ.

The routing matrix P associated with a feedforward network has spectral radius zero.
Hence, the associated constraint matrix R = I − P satisfies the [H-R] condition (see
Definition 1.2 of [31]), and Theorem 3.1 of [31] can be used to show that Z satisfies

(2.6) Z = ΓP (X),

where ΓP denotes the multidimensional ORM associated with P , as stated in Re-
mark 2.1.

2.3. The optimal control problem. The performance of a given network can
be viewed as a function J : (D↑,f [0, T ])

2κ+κ2→ R that maps (E,S) to the real-valued
performance measure of interest. The formal definition, which imposes additional
technical conditions, is as follows.

Definition 2.3. Any mapping J : (D↑,f [0, T ])
2κ+κ2→ R that is bounded from

below and Borel measurable, with (D↑,f [0, T ])
2κ+κ2

endowed with the Borel σ-algebra
in the uniform topology, is called a performance measure.

When (E,S) are constructed from the primitive data (λ,μ, P ) as described in
section 2.1, for fixed P , the rates (λ,μ) represent the only ingredient of the modeling
equations that can (potentially) be varied by the controller. It is reasonable to assume
that the controller can observe the system but cannot predict its future behavior.
Technically, admissible controls must be nonanticipating, i.e., predictable with respect
to the filtration {Ht} defined by

(2.7) Ht
.
= σ(ζ(A) : A ∈ B(([0, t]× [0,∞))κ))

∨ σ(ξ(B) : B ∈ B(([0, t]× [0,∞)× [0, 1])κ)).

In addition, we allow for the incorporation of certain exogeneous constraints that may
have to be imposed on the set of rates that the controller can choose at any given
time. Let A stand for the subset of (L1

+[0, T ])
2κ containing the rates that respect

these constraints, and let A denote the set of all {Ht}-predictable random processes
whose trajectories take values in A. We refer to the set A as the set of deterministic
admissible controls and to the set A as the set of admissible controls.

Remark 2.4. The above notion of admissibility implies that the controller has full
information of the past and present of a run of the system. This means that the con-
straints imposed on the admissible control policies are, by construction, quantitative.
In this paper, we do not consider optimal control problems that involve constraints
based on the information available (e.g., cases of delayed information of the state of
the system). However, we do address the extreme case of lack of information on the
evolution of the system when we consider deterministic (i.e., not state dependent)
controls.

For any (λ,μ) ∈ A, we can define E(λ) = (E1(λ), . . . , Eκ(λ)) and S(μ) =
(S1(μ), . . . , Sκ(μ)) via (2.1), (2.2), and (2.3), though now λ and μ are stochastic (as
opposed to deterministic) processes (see Remark 2.2(ii)). It is natural to consider the
following control problems: given a performance measure J , identify

(2.8) inf
(λ,μ)∈A

J(E(λ),S(μ)),
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where the minimum is in the almost sure sense, or identify

(2.9) inf
(λ,μ)∈A

E[J(E(λ),S(μ))],

assuming the expectation above is well defined, and the associated (sequences of)
infimizing controls. A concrete example of such an optimal control problem is provided
in section 6. Henceforth, we shall consider the performance measure J as being
arbitrary but fixed.

3. Definition of asymptotically optimal controls. Unfortunately, in most
situations of interest, the control problems introduced in (2.8) and (2.9) are not ex-
plicitly solvable. Instead, in this section, we consider a sequence of “uniformly ac-
celerated” systems and study the related problem of identifying an asymptotically
optimal sequence of controls (in the sense of Definition 3.1 below). As will be shown
in section 5, for a large class of performance measures that satisfy a certain continuity
condition, this problem reduces to the (typically easier) problem of solving a related
deterministic optimal control problem (the fluid control problem introduced in sec-
tion 4). Moreover, as discussed in section 7, the asymptotically optimal sequence of
controls can be used to identify near-optimal controls for systems whose parameters
lie in the appropriate asymptotic regime.

LetA be the set of admissible controls defined in section 2.3. With any given rout-
ing matrix P , we associate a sequence of performance measures {Jn}n corresponding
to a sequence of networks with routing matrix P and with “uniformly accelerated”
rates. More precisely, we define the mapping Jn : A → L0

+(Ω,F ,P) by

(3.1) Jn(λ,μ)
.
= J

(
1
nE(nλ), 1

nS(nμ)
)

for every (λ,μ) in A,

with E(nλ) and S(nμ) defined as in (2.1), (2.2), and (2.3). Given a performance
measure J and a resulting sequence {Jn}n of performance measures associated with
a sequence of uniformly accelerated systems, as defined in (3.1), we loosely formulate
an asymptotically optimal control problem as follows:

Identify an admissible sequence whose performance, in the limit, is no worse than
the performance of any other admissible sequence.

Here, an admissible sequence of controls refers to an element of the space AN of all
sequences of admissible controls. The following definition formalizes the meaning of
the solution of the asymptotically optimal control problem loosely posed above.

Definition 3.1. We say that an admissible sequence {(λ∗
n,μ

∗
n)}n∈N in AN is

(i) asymptotically optimal if

lim inf
n→∞

[Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n)] ≥ 0, P-a.s. for all {(λn,μn)}n∈N ∈ AN;

(ii) average asymptotically optimal if E[Jn(λ
∗
n,μ

∗
n)] <∞ for all n ∈ N and

lim inf
n→∞

E[Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n)] ≥ 0 for all {(λn,μn)}n∈N ∈ AN.

We now state an elementary, but useful, consequence of Definition 3.1.
Lemma 3.2. Let {(λ∗

n,μ
∗
n)}n∈N be an admissible sequence.

(i) Suppose that {J∗
n}n∈N is a sequence of random variables defined on (Ω,F ,P)

such that

(3.2) lim inf
n→∞

[Jn(λn,μn)− J∗
n] ≥ 0, P-a.s. for all {(λn,μn)}n∈N ∈ AN
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and

(3.3) lim
n→∞

[Jn(λ
∗
n,μ

∗
n)− J∗

n] = 0, P-a.s.

Then {(λ∗
n,μ

∗
n)}n∈N is (strongly) asymptotically optimal.

(ii) Suppose that {J̃∗
n}n∈N is a sequence of real numbers such that

lim inf
n→∞

(
E[Jn(λn,μn)]− J̃∗

n

)
≥ 0 for all {(λn,μn)}n∈N ∈ AN

and

lim
n→∞

(
E[Jn(λ

∗
n,μ

∗
n)]− J̃∗

n

)
= 0.

Then {(λ∗
n,μ

∗
n)}n∈N is average asymptotically optimal.

4. A simpler optimal control problem. In section 4.1, we describe a fluid
version of the network equations considered in section 2.2. In view of Theorem A.1,
the fluid network is the FSLLN limit of a uniformly accelerated sequence of queueing
networks. In section 4.2, we present the fluid control problem.

4.1. Fluid network equations. Given a routing matrix P and (λ,μ) ∈ A, a
continuous or “fluid” analogue of the network equations introduced in section 2.2 is

(4.1) X̄t
.
= It(λ)− (I −Q)It(μ), Z̄t

.
= ΓP (X̄)t, t ∈ [0, T ],

where
• I denotes the κ× κ-dimensional identity matrix;
• Q = P τ stands for the transpose of the fixed routing matrix P ;
• X̄ ∈ (C[0, T ])κ is the vector of mean netput processes in the κ stations;
• ΓP : (D↑[0, T ])

κ → (D↑[0, T ])
κ is the ORM generated by the ORP associated

with the routing matrix P .
Recall from the definition of I(·) given in section 1.4 that I(λ) and I(μ) lie in
(C[0, T ])κ and, by (2.1), (2.2), and (2.3), represent the mean cumulative exogeneous
arrivals to and mean cumulative potential service completions in the κ stations, re-
spectively.

4.2. Fluid limit performance measure. Given the definition of the sequence
of performance measures {Jn}n∈N in (3.1), the appropriate analogue of the perfor-
mance measure in the fluid system is the mapping J̄ : A → R given by

(4.2) J̄(λ,μ)
.
= J(I(λ), diag(I(μ))P̂ ) for every (λ,μ) ∈ A,

where P̂ is a κ×(κ+1) matrix obtained by appending the column vector (1−
∑κ

i=1 pki,
1 ≤ k ≤ κ) to the routing matrix P , and A is the set of deterministic admissible
controls.

The fluid control problem can be formulated as follows: find

(4.3) J̄∗ .
= inf

(λ,μ)∈A
J̄(λ,μ),

and identify an associated sequence of infimizing controls.
Definition 4.1. A sequence {(λ∗

n,μ
∗
n)}n∈N ∈ A is said to be fluid infimizing if

lim
n→∞

J̄(λ∗
n,μ

∗
n) = J̄∗ = inf

(λ,μ)∈A
J̄(λ,μ).
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In particular cases where the optimal value in the fluid control problem is attained,
the following definition makes sense.

Definition 4.2. A policy (λ∗,μ∗) ∈ A is said to be optimal for the fluid control
problem if

J̄(λ∗,μ∗) = J̄∗ = inf
(λ,μ)∈A

J̄(λ,μ).

If an optimal policy for the fluid control problem exists, then a sequence of policies
that are identically equal to this optimal policy is clearly fluid infimizing.

5. A criterion for identification of asymptotically optimal controls.

5.1. The notion of fluid-optimizability. The fluid control problem is typi-
cally significantly easier to analyze than the original control problems described in
(2.8) and (2.9). It is, therefore, natural to pose the following question:

Under what conditions on the performance measure J will fluid-infimizing sequences
be (average) asymptotically optimal?

Theorems 5.4 and 5.5 below provide sufficient conditions for an affirmative answer to
this question, which is rigorously phrased in terms of the following notion.

Definition 5.1. Let J : (D↑,f [0, T ])
2κ+κ2→ R be a performance measure, and

let {(λ∗
n,μ

∗
n)}n∈N in A be an associated fluid-infimizing sequence in the sense of

Definition 4.1. If

(5.1) lim inf
n→∞

[Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n)] ≥ 0, P-a.s. for all {(λn,μn)}n∈N ∈ AN,

we say that the performance measure J is fluid optimizable. The performance measure
J is called average fluid optimizable if

(5.2) lim inf
n→∞

E[Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n)] ≥ 0 for all {(λn,μn)}n∈N ∈ AN.

Remark 5.2. Let Vn be the optimal value or performance in the nth system:

(5.3) Vn
.
= inf

(λ,μ)∈A
Jn(λ,μ).

As shown below, it is almost an immediate consequence of the definition that if J is
fluid optimizable, then for any fluid-infimizing sequence {(λ∗

n,μ
∗
n)}n∈N,

(5.4) lim
n→∞

[Vn − Jn(λ
∗
n,μ

∗
n)] = 0.

Indeed, by the definition of Vn, for any fluid-infimizing sequence {(λ∗
n,μ

∗
n)}n∈N,

lim sup
n→∞

[Vn − Jn(λ
∗
n,μ

∗
n)] ≤ 0.

On the other hand, for each n ∈ N, let (λ̃n, μ̃n) ∈ A be such that Vn ≥ Jn(λ̃n, μ̃n)−
1/n. Then, because J is fluid optimizable, by (5.1),

lim inf
n→∞

[Vn − Jn(λ
∗
n,μ

∗
n)] ≥ lim inf

n→∞

[
Jn(λ̃n, μ̃n)−

1

n
− Jn(λ

∗
n,μ

∗
n)

]
≥ 0.
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5.2. Main results. For the remainder of the paper, we assume that the con-
straint set satisfies the following mild assumption.

Assumption 5.3. The constraint set A is bounded in the space (L1
+[0, T ])

2κ; i.e.,
there exists a constant M such that, for every μ = (μ1, . . . , μ2κ), IT (μk) < M for
k = 1, . . . , 2κ.

We now state the first main result of the paper.
Theorem 5.4. If the mapping J : (D↑,f [0, T ])

2κ+κ2→ R is uniformly continuous

with respect to the uniform topology on (D↑,f [0, T ])
2κ+κ2

, then J is fluid optimizable
and, P-a.s.,

(5.5) lim
n→∞

Jn(λ
∗
n,μ

∗
n) = J̄∗.

Proof. Let {(λn,μn)}n∈N be any admissible sequence in A. We first claim that if
J is uniformly continuous with respect to the uniform topology, then P-a.s.,

(5.6) lim
n→∞

∣∣Jn(λn,μn)− J̄(λn,μn)
∣∣ = 0.

We defer the proof of the claim and, instead, first show that the theorem follows from
this claim. By (5.6) and the definition (4.3) of J̄∗, it follows that

lim inf
n→∞

[
Jn(λn,μn)− J̄∗] = lim inf

n→∞

[
J̄(λn,μn)− J̄∗] ≥ 0.

This shows that condition (3.2) of Lemma 3.2 is satisfied by the constant sequence
J∗
n = J̄∗, n ∈ N. On the other hand, let {(λ∗

n,μ
∗
n)}n∈N be a fluid-infimizing sequence,

and note that, by definition, P-a.s., limn→∞ J̄(λ∗
n,μ

∗
n) = J̄∗. Together with the fact

that (5.6) holds with {(λn,μn)}n∈N set equal to the sequence {(λ∗
n,μ

∗
n)}n∈N, this

implies that (5.5) is satisfied. This implies that the constant sequence {J∗
n = J̄∗}n∈N

satisfies condition (3.3) and, hence, by Lemma 3.2, it then follows that {(λ∗
n,μ

∗
n)}n∈N

is (strongly) asymptotically optimal. This shows that J is fluid optimizable.
It remains only to establish the limit (5.6). Fix an arbitrary δ > 0. Due to

the uniform continuity of J , there exists a positive constant ε(δ) such that for every

x, y ∈ (D↑,f [0, T ])
2κ+κ2

, ‖x − y‖T < ε(δ) ⇒ |J(x) − J(y)| < δ. Hence, for every n,
recalling the definitions (3.1) and (4.2) of Jn and J̄ , respectively, we see that

P[|Jn(λn,μn)− J̄(λn,μn)| > δ]

= P

[∣∣∣J( 1nE(nλn),
1
nS(nμn))− J(I(λn), diag(I(μn)) · P̂ )

∣∣∣ > δ
]

≤ P

[∥∥∥ 1
n (E(nλn),S(nμn))− (I(λn), diag(I(μn)) · P̂ )

∥∥∥
T
> ε(δ)

]
.

(5.7)

By Lemma A.2 the arrival and service processes above are all identical in distribution
to the Poisson processes with the appropriately chosen rates. So, we can use the sub-
martingale inequality and the expression for the fourth moment of a Poisson random
variable (see the proof of Lemma A.3 for a similar procedure) to further bound the
last expression in (5.7) by

2κ

n4ε(δ)4
(3n2K2

n + nKn),

where Kn = max1≤i≤κ(IT ((λn)i) ∨ IT ((μn)i)). Now, due to Assumption 5.3, the
sequence {Kn}n∈N is uniformly bounded from above by a constant, and so

∞∑
n=1

P[|Jn(λn,μn)− J̄(λn,μn)| > δ] <∞.
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Since the choice of δ was arbitrary, an application of the Borel–Cantelli lemma com-
pletes the proof of (5.6) and, hence, of the theorem.

When an optimal policy for the fluid control problem exists, we establish an alter-
native sufficient condition for fluid-optimizability, in which the uniformity assumption
is removed but a stronger form of continuity is now required—specifically, with respect
to the M ′

1 product topology, which is a stronger assumption since the M ′
1 topology is

weaker than the uniform topology. For the definition of the M ′
1 topology as well as a

discussion of its basic properties, the reader is referred to section 13.6.2 of [48].
Theorem 5.5. Suppose that there exists a policy (λ∗,μ∗) ∈ A that is optimal for

the fluid control problem and that J is continuous with respect to the uniform topology
on (D↑,f [0, T ])

2κ+κ2

. Then, P-a.s.,

(5.8) lim
n→∞

Jn(λ
∗,μ∗) = J̄(λ∗,μ∗) = J̄∗.

If in addition J is continuous with respect to the productM ′
1 topology on (D↑,f [0, T ])

2κ+κ2

,
then J is fluid optimizable.

Proof. The FSLLN result established in Theorem A.1 shows that P-a.s.,∥∥ 1
nE(nλ∗)− I(λ∗)

∥∥
T
→ 0,

∥∥∥ 1
nS(nμ

∗)− diag(I(μ∗))P̂
∥∥∥
T
→ 0.

Together with the definitions (3.1) and (4.2) of Jn and J̄ , respectively, as well as the
continuity of J with respect to the uniform topology, this implies that P-a.s.,

lim
n→∞

∣∣Jn(λ∗,μ∗)−J̄(λ∗,μ∗)
∣∣ = lim

n→∞

∣∣J ( 1nE(nλ∗), 1
nS(nμ

∗)
)
−J (I(λ∗), I(μ∗))

∣∣ = 0,

and (5.8) follows.
Next, we turn to the proof of the fluid-optimizability of J under the stronger

continuity assumption with respect to the M ′
1 topology. Fix an ω for which (5.8)

holds (all random quantities in the remainder of the proof will be evaluated at that ω
without explicit mention). Let {(λn,μn)} be an arbitrary admissible sequence. Then,
due to (5.8) and the fact that (λ∗,μ∗) is optimal for the fluid control problem, the
left-hand side of (5.1) satisfies

lim inf
n→∞

[Jn(λn,μn)− Jn(λ
∗,μ∗)] = lim inf

n→∞
[Jn(λn,μn)− J̄(λ∗,μ∗)]

≥ lim inf
n→∞

[Jn(λn,μn)− J̄(λn,μn)].(5.9)

Without loss of generality, we can assume that the right-hand side of (5.9) is finite.
Indeed, if this assumption is not satisfied, then inequality (5.1) immediately holds.
Let {(η�, ν�)}�∈N denote the subsequence of pairs {(λn�

,μn�
)}�∈N along which the

limit inferior above is attained as the proper limit. Since Assumption 5.3 implies that
the sequence {(η�, ν�)}�∈N is uniformly bounded in (L1

+[0, T ])
2κ, by Lemma B.1 there

exists a further subsequence {(η�m , ν�m)}m∈N and a function F ∈ (D↑,f [0, T ])
2κ+κ2

such that (I(η�m), diag(I(ν�m))P̂ ) → F as m → ∞, in the product M ′
1 topology on

(D↑,f [0, T ])
2κ+κ2

. The assumed continuity of J in the product M ′
1 topology and the

definition of J̄ given in (4.2) yields

lim
m→∞

J̄(η�m , ν�m) = lim
m→∞

J(I(η�m), diag I(ν�m)P̂ ) = J(F ).

On the other hand, by Theorem A.1, the components of the random vector ( 1nE(ne),
1
nS(ne)) converge to the identity function e on [0, T ] in the uniform topology. So, we
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can utilize Lemma B.3, with 1
n�m

Ei(n�me) (respectively,
1

n�m
Si,j(n�me)) playing the

role of Yn in the lemma, and ηin�m
(respectively, νi�m) corresponding to the νn in the

lemma, for i ∈ {1, . . . , κ} and j ∈ {1, . . . , κ+ 1}, to conclude that

( 1
n�m

E(n�mη�m), 1
n�m

S(n�mν�m)) → F as m→ ∞

in the product M ′
1 topology. Hence, by the assumed continuity of J ,

lim
m→∞

Jn�m
(η�m , ν�m) = J(F ).

We conclude that the right-hand side of (5.9) is zero, which completes the proof of
the fluid-optimizability of J .

As an immediate consequence of Theorems 5.4 and 5.5, we have the following.
Corollary 5.6. If either J is uniformly continuous with respect to the uniform

topology on (D↑,f [0, T ])
2κ+κ2

, or an optimal policy for the fluid control problem exists

and J is continuous with respect to the product M ′
1 topology on (D↑,f [0, T ])

2κ+κ2

, then

(5.10) lim
n→∞

Vn = J̄∗.

If, in addition, J is uniformly bounded, then it is also average fluid optimizable.
Proof. Let {(λ∗

n,μ
∗
n)}n∈N be a fluid-infimizing sequence. Under the first set of

hypotheses of the corollary, Theorems 5.4 and 5.5 show that J is fluid optimizable.
Hence, by (5.4) of Remark 5.2, the limits of Vn and Jn(λ

∗
n,μ

∗
n), as n→ ∞, coincide.

On the other hand, by (5.5) of Theorem 5.4 and (5.8) of Theorem 5.5, the limit of
Jn(λ

∗
n,μ

∗
n) is J̄

∗, and thus (5.10) follows.
Now suppose that, in addition, J is uniformly bounded (say, by a finite constant

L). Then for any admissible sequence {(λn,μn)}n∈N ∈ An,

Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n) = J( 1

nE(nλn),
1
nS(nμn))− J( 1nE(nλ∗

n),
1
nS(nμ

∗
n)) ≥ −2L.

Fatou’s lemma and the fluid-optimizability of J (i.e., inequality (5.1)) then show that

lim inf
n→∞

E[Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n)] ≥ E

[
lim inf
n→∞

(Jn(λn,μn)− Jn(λ
∗
n,μ

∗
n))
]
≥ 0,

which proves that J is average fluid optimizable.
Remark 5.7. It may be intuitive to expect that policies that are optimal for the

fluid control problem provide near-optimal policies for the original control problem,
at least for some performance measures (see, e.g., [38, 39, 40]). However, the need for
a rigorous approach such as the one provided in this paper is underscored by the fact
that this may fail to hold in several natural situations. For further discussion of this
issue, see section 8.2.

6. A fluid-optimizable performance measure. In this section, we provide
an example of an optimal control problem with a performance measure that is fluid
optimizable. For the purposes of this example, we assume that the open network has κ
stations and a 0-1 strictly upper-triangular routing matrix P (i.e., it is feedforward and
with deterministic routing). We consider a performance measure involving so-called
holding costs (also referred to as congestion costs) at every station in the network,
which are given in terms of nondecreasing functions of the queue lengths, as well
as a reward for completion of jobs over a finite interval [0, T ]. The controller’s goal
is to balance the holding cost penalty with the profit generated by the completed
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jobs. Cost structures similar to ours arise in inventory control and are quite standard
(see, e.g., Chapter 7 of [23] or page 60 of [50]). For more recent examples of similar
cost functions, the reader is directed to [18] and [19] (and references therein). Due
to the fact that we consider a finite time-horizon [0, T ], there is no discounting or
time-averaging of the holding cost.

6.1. The performance measure. Let hk : R+ → R+, k = 1, . . . , κ, be lo-
cally Lipschitz functions representing the holding costs at the κ stations in the open
network. The total holding cost accumulated over the time period [0, T ] is

(6.1) h(E,S) =

κ∑
k=1

∫ T

0

hk(Zk
t ) dt for every (E,S) ∈ (D↑,f [0, T ])

2κ+κ2

,

where Z = (Z1, Z2, . . . , Zκ) is the queue-length vector defined in (2.4). In this context
(recall (2.6)), the vector Z admits the representation

(6.2) Z = ΓP (X), X = E− (I − P τ )S,

where ΓP is the ORM associated with the routing matrix P (see Definition 1.1), and

S = (Sk, 1 ≤ k ≤ κ) with Sk =
∑κ+1

i=1 S
k,i.

Let the profit generated by the completion of jobs during the time interval [0, T ] be
given by a Lipschitz continuous function p : R+ → R+. We introduce the performance

measure J : (D↑,f [0, T ])
2κ+κ2→ R as

(6.3) J(E,S) = h(E,S)− p

(
κ∑

k=1

Ek
T −

κ∑
k=1

Zk
T

)
.

Lemma 6.1. The mapping J defined in equality (6.3) is Lipschitz continuous on

(D↑,f [0, T ])
2κ+κ2

with respect to the uniform metric. If, in addition, Assumption 5.3
is satisfied, J is a fluid-optimizable performance measure.

Proof. Due to the Lipschitz continuity of both the mapping p and the ORM (see
Theorem 3.1 of [31]), it suffices to verify the uniform continuity of h.

Consider (E,S) and (Ẽ, S̃) in (D↑,f [0, T ])
2κ+κ2

. Then an application of the triangle
inequality yields

|h(E,S)− h(Ẽ, S̃)| ≤
κ∑

k=1

∫ T

0

∣∣∣hk(Zk
t )− hk(Z̃k

t )
∣∣∣ dt,

where Z = (Z1, Z2, . . . , Zκ) and Z̃ = (Z̃1, Z̃2, . . . , Z̃κ) represent the queue-length
vectors of (2.4) associated with pairs (E,S) and (Ẽ, S̃), respectively.

For every k and t, due to the Lipschitz continuity of hk, we have

|hk(Zk
t )− hk(Z̃k

t )| ≤ Ck|Zk
t − Z̃k

t | ≤ Ck‖Zk − Z̃k‖T ,

where Ck stands for the Lipschitz constant of the mapping hk. By (6.2) and the
Lipschitz continuity of ΓP (see Theorem 14.3.4 of [48]), we have

‖Zk − Z̃k‖T ≤ K(‖E− Ẽ‖T ∨ ‖S− S̃‖T ) for every k.

Combining the last three inequalities, we deduce that the mapping h is indeed Lip-
schitz and, thus, uniformly continuous with respect to the uniform topology on
(D↑,f [0, T ])

2κ+κ2

.
In the presence of Assumption 5.3, we invoke Theorem 5.4 to conclude that the

performance measure J is fluid optimizable.
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7. Applications of fluid-optimizability criteria. In this section, we illus-
trate how the concept of fluid-optimizability can be applied to study two settings of
the general network optimal control problem described in section 6. In each setting,
the optimal policy for the fluid control problem is explicitly determined and then
used to design (near-optimal) controls for a given “prelimit” system. Following the
results of section 5, in order to analyze each control problem, we will embed it into a
sequence of “uniformly accelerated” systems, with the Nth term in the sequence (for
some chosen fixed integer N) representing the actual system. The sign ˆ used in the
parameters, functions, and processes below (see section 7.2.1) refers to the fact that
these quantities correspond to the actual network control problem of interest. For
instance, in the notation used in section 5, the actual arrival rate λ̂ equals λN for an
appropriately chosen index N .

In the case of heavy-traffic approximations of time-homogeneous systems, the
systems can be indexed by the load ρ, which converges to 1, and so the index to be
assigned to any “prelimit” system is automatically determined by the load of that
system (for an application of this principle, see section 2.3.1 of [48]). In contrast, for
time-inhomogeneous systems approximated using uniform acceleration, there is no
natural correspondence between the prelimit system and the index in the sequence.
As a result, there are many choices of index possible or, equivalently, many ways in
which to embed the actual system of interest into the sequence of uniformly accelerated
systems. While the optimal choice of index is an important subject for future research,
in sections 7.1.4 and 7.2.4 we show, with the help of simulations, the effect of different
choices of the index. The simulations also serve to illustrate the fluid-optimizability
result of Theorems 5.4 and 5.5.

7.1. A single-station example.

7.1.1. The optimal control problem. Consider a single station with a given
service rate μ ∈ L1

+[0, T ]. Using the notation set up in section 6.1, suppose that
the strictly increasing, Lipschitz continuous holding cost function h1 is such that
h1(0) = 0, and that the profit function p is the identity function. We wish to minimize
J by varying the arrival rate.

Viewing this as a model of inventory control in which there is a storage (holding)
cost at the service station but revenue is earned for each product that leaves the
system to meet demand, it is natural to assume that the cumulative mean arrivals
of materials into a production station do not greatly exceed the available cumulative
service. So, we define the constraint set as

A = {(λ1, μ1) ∈ (L1
+[0, T ])

2 : IT (λ1) ≤ 2IT (μ), μ1 = μ}.

7.1.2. The related fluid control problem. As described in section 4.2, the
fluid performance measure is

J̄(λ) =

∫ T

0

h1(Z̄1
t (λ)) dt − (IT (λ)− Z̄1

T (λ)) for every λ ∈ A,

where we suppress the given parameter μ from the notation and set X̄1
t (λ) = It(λ−μ)

and Z̄1
t (λ) = Γ(X̄1(λ))t for λ ∈ L1

+[0, T ], with Γ denoting the reflection map asso-
ciated with the single queue (i.e., the standard one-sided reflection map on [0,∞)).
The fluid control problem consists of minimizing J̄ across λ ∈ A.
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7.1.3. Solution of the fluid control problem. Intuitively, it appears to be
sensible to make the arrival rate match the service rate throughout the time interval
[0, T ]. This maximizes the throughput while leaving the queue empty and the holding
cost nil at all times. Indeed, we have the following result.

Lemma 7.1. The policy λ∗ = μ is fluid optimal for the above fluid control problem.
Proof. The fluid performance measure J̄ admits the following lower bound for

every λ ∈ L1
+[0, T ]:

J̄(λ) =

∫ T

0

h1(Z̄
1
t (λ)) dt− (IT (λ) − Z̄1

T (λ)) ≥ −IT (λ) + X̄1
T (λ) = −IT (μ).

Since λ∗ = μ, we obtain

Z̄1
t (λ

∗) = X̄1
t (λ

∗) = It(λ∗ − μ) = 0 for all t ∈ [0, T ].

Thus, J̄(λ∗) = −IT (λ∗) = −IT (μ). The policy λ∗ = μ attains the lower bound and
is, hence, optimal for the fluid control problem.

7.1.4. Embedding and simulations. To illustrate the performance when the
optimal policy obtained above is used in the prelimit, we ran simulations of the
prelimit systems when the optimal policy for the fluid control problem is implemented.
All the simulations were conducted in C++, and the graphs were produced by R. We
ran simulations of the prelimit systems for a time horizon T = 1 and for two choices
of the given service rate: the constant service rate μ ≡ 1 and the periodic service rate
μ(t) = 1+sin(10t) for t ∈ [0, T ]. In both cases, the holding cost function was taken to
be the identity. We present the histograms of the costs produced by 1000 simulation
runs for these coefficients, along with the sample summary statistics. The histograms
of the costs in the case of the constant service rate are depicted in Figure 1, and those
in the case of the periodic μ are shown in Figure 2.

As is readily seen, the histogram means are approaching the optimal value for the
fluid control problem (recall (5.10) of Corollary 5.6), although this approach appears
to be slow (see Remark 7.2 below for more discussion on this issue). It is worth
noting that this approach is slightly faster in the case of the constant given service
rate, indicating that fluctuations in the rate have an adverse effect on the speed of
convergence. It would be of interest to investigate in future work the appropriate
notion/measure of fluctuations and its effect on the convergence. Also, the shapes of
the histograms are somewhat skewed, possibly as a result of the effect of reflection
(the optimal policy for the fluid control problem produces heavy traffic, i.e., constant
upward pushing). The summary statistics are collected in Tables 7.1 and 7.2 for
constant and periodic service rates, respectively.

Remark 7.2. The approach of the simulated values to the theoretical limiting
cost is rather slow. So, we included the results of taking a large uniform acceleration
coefficient of 10,000 (see Figure 3). We believe that this is due to the effect of the
system being continuously in heavy traffic (under the optimal policy for the fluid
control problem). In such situations, the time-mesh should be quite fine because
when the uniform acceleration coefficient is large, there is a high probability of an
arrival and/or potential departure in any given interval in the time-mesh. Due to the
discretization of time, the simulation will set the time of that jump in the simulated
process to be the next node in the partition of the interval [0, T ]. Hence, one needs
to be careful to choose a fine enough mesh-size (possibly at the cost of the speed of
simulation). We chose the length of every subinterval in the partition to be 10−6.
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Fig. 1. Single station. Histograms of costs realized for the service rate μ ≡ 1 and for uniform
acceleration coefficients n = 50, 100, 1000. The optimal value of the fluid control problem is −1.
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Fig. 2. Single station. Histograms of costs realized for the service rate μ(t) = 1 + sin(10t)
and for uniform acceleration coefficients n = 50, 100, 1000. The optimal value of the fluid control
problem is 1.1− cos(10) ≈ −1.184.

Table 7.1

Single station. Summary statistics for 1000 simulations of the cost in the case of μ ≡ 1 and
for the acceleration coefficients listed in the first column.

Accel. coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 -1.2460 -0.9084 -0.8331 -0.8267 -0.7444 -0.4740
100 -1.1380 -0.9373 -0.8821 -0.8834 -0.8276 -0.6391
1000 -1.0380 -0.9815 -0.9640 -0.9632 -0.9457 -0.8605

Table 7.2

Single station. Summary statistics for 1000 simulations of the cost in the case of μ(t) =
1 + sin(10t) and for the acceleration coefficients listed in the first column.

Accel. coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 -1.402 -1.093 -1.007 -1.001 -0.913 -0.517
100 -1.327 -1.127 -1.059 -1.060 -0.993 -0.770
1000 -1.234 -1.166 -1.146 -1.145 -1.125 -1.043
10000 -1.214 -1.191 -1.184 -1.183 -1.176 -1.154

7.2. A tandem queue example. In this section, we look at a control problem
involving a tandem queue. We expand the analysis conducted in the above example in
the sense that we explicitly describe two possible embeddings of the actual system into
the sequence of uniformly accelerated systems and compare the simulation results.
Recall that the ˆ symbol will be used for the processes, functions, and constants
associated with the actual system to be controlled.
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Fig. 3. Single station. Histogram of costs in the optimal control problem aimed at balancing
the holding cost and the throughput, realized for μ(t) = 1+sin(10t) and for the uniform acceleration
coefficient n = 10,000.

7.2.1. The optimal control problem. Consider a tandem queue, with the
processes Ê and Ŝ of exogenous arrivals and potential services at the first and second
station, respectively, modeled using PPPs and rates λ̂, μ̂ ∈ (L1

+[0, T ])
2 as in (2.1),

(2.2), and (2.3) (with obvious modifications in the notation). For simplicity, we assume

that there are no exogenous arrivals to the second station, i.e., that λ̂2 ≡ 0. The

service rate μ̂1 in the first station serves as the control, while λ̂1 and μ̂2 are taken
to be known (one can assume that λ̂1 and μ̂2 can be estimated through statistics
of previous runs of the system). The actual performance measure that we wish to
minimize is the aggregate holding cost in both stations, defined by

Ĵ(Ê, Ŝ) =

∫ T

0

(ĥ1(Ẑ1
t ) + ĥ2(Ẑ2

t )) dt

for (Ê, Ŝ) ∈ (D↑,f [0, T ])
2 × (D↑,f [0, T ])

6, where

• Ẑi denotes the queue length of the ith queue in the tandem for i = 1, 2,
associated with the arrival and service processes (Ê, Ŝ);

• ĥ1 : R+ → R+ is given by ĥ1(x) = ĉ1x2 for every x ∈ R+, with ĉ1 > 0
constant;

• ĥ2 : R+ → R+ is given by ĥ2(x) = ĉ2x for every x ∈ R+ and for a certain

constant 0 < ĉ2 < IT (λ̂1).
Note that Ĵ is a special case of the performance measure given in section 6 with

p = 0. The following constraint on μ̂1 ensures that admissible policies do not have
more (mean) cumulative service available than there are (mean) cumulative arrivals:

(7.1) IT (μ̂1) ≤ IT (λ̂1).

Remark 7.3. The above setup can be envisioned as an example of inventory
control in a manufacturing system with two phases (one for each station in the tandem
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queue) and with separate storage facilities (buffers) at each station at which holding

costs corresponding to functions ĥ1 and ĥ2 of the queue lengths are incurred. The
controller’s goal is to minimize the total holding cost Ĵ by varying the service in the
first station; the arrivals to the first station can be understood to depend on the arrival
of either raw materials or partially completed products from the previous production
phase, while the service at the second station could be taken to depend on the demand
for the (partially) finished product.

Recalling the construction of a uniformly accelerated sequence of systems de-
scribed in section 3, let us refer to the arrival and service rates in the first system
in the sequence as “basic” and denote them by λ and μ (as in section 3). With an
integer N serving as the embedding constant fixed, in order for the actual system to
correspond to the Nth system in the sequence, the basic arrival rate and the basic

service rate μ should be given by λ = 1
N λ̂ and μ = 1

N μ̂. Moreover, the performance
measure J takes the form

(7.2) J(E,S) =

∫ T

0

(h1(Z1
t ) + h2(Z2

t )) dt for (E,S) ∈ (D↑,f [0, T ])
2 × (D↑,f [0, T ])

6,

with hi, i = 1, 2, given by h1(x) = N2ĉ1x2 and h2(x) = Nĉ2x for every x ∈ R+,
and where, for i = 1, 2, Zi denotes the queue length of the ith queue in the tandem
associated with (E,S) (as defined via (2.1), (2.2), and (2.3) for n = 1 and the basic
arrival and service rates above). Indeed, with these definitions, it is easily seen that
Ĵ(Ê, Ŝ) = JN (λ,μ), where JN is the performance measure of the Nth system in the
sequence, defined in terms of J via (3.1).

In addition, using the notation introduced in section 2.3, we can translate the
constraint (7.1) pertaining to the actual system into the following constraint on the
basic controls.

Assumption 7.4. The constraint set is

A = {(λ,μ) ∈ (L1
+[0, T ])

2 × (L1
+[0, T ])

2 : λ1, μ2 fixed as above,

λ2 ≡ 0, IT (μ1) ≤ IT (λ1)}.

7.2.2. The related fluid control problem. Since h is fluid optimizable, it
follows from Definitions 3.1 and 4.2 that to identify a strongly asymptotically optimal
sequence for a control problem with h defined in (6.1) as performance measure, it suf-
fices to analyze the corresponding fluid control problem. We illustrate this procedure
for the control problem introduced in section 7.2.1, using a calculus of variations type
technique that may be more generally applicable.

Consider a fluid tandem queue, with a given deterministic exogenous arrival rate
to the first station denoted by λ ∈ L1

+[0, T ] and a given deterministic service rate in
the second station denoted by μ2 ∈ L1

+[0, T ]. Assume that there are no exogenous
arrivals to the second station. Our fluid control problem consists of minimizing the
aggregate holding cost in this system by varying the service rate μ in the first station
across A. In view of (4.2) and (7.2), we define the fluid-limit holding cost as

(7.3) h̄(μ) =

∫ T

0

[
h1(Z̄1

t (μ)) + h2(Z̄2
t (μ))

]
dt

for every μ such that IT (μ) ≤ IT (λ) with hi : R+ → R+, i = 1, 2, given by h1(x) =
c1x2 and h2(x) = c2x for every x ∈ R+, where we set c1 = N2ĉ1 and c2 = Nĉ2 to
simplify the notation, whereas Z̄i(μ), i = 1, 2, denote the queue lengths in the fluid
tandem queue (as a function of μ).
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7.2.3. Solution of the fluid control problem. In the present section, we
identify a policy that is optimal for the fluid control problem. To keep the calculations
as simple as possible and make transparent the illustration of our calculus of variations
type of approach to the problem, we additionally set μ̂2 ≡ 0. The explicit form of
the directional derivative of the ORM obtained in [31] plays a crucial role in the
calculations. Also, note that the fluid optimal control problem is not trivial. Due to
the convexity of the cost structure in the first station, there is a trade-off between the
marginal costs in the two stations to be considered. Heuristic considerations may lead
one to conjecture that the optimal policy involves a threshold for the queue length in
the first station at which the marginal holding cost in the first station starts to exceed
the marginal holding cost in the second station. More precisely, because the marginal
holding cost in the second station is constant at c2 and the marginal holding cost in
the first station is a linear function of the queue length, we can propose the following
policy: do not serve at all in the first station until the marginal holding cost in the first

station exceeds the level c2 (i.e., once the first queue exceeds C := c2

2c1 ), and then start
matching the arrival rate so that the first queue remains constant at C. We leave it
to the interested reader to formalize the above argument. The proof we provide uses,
instead, a calculus of variations approach involving directional derivatives, because
one of our goals is to propose a method for determining an optimal policy for the
fluid control problem that may be more generally applicable in situations where a
simple heuristic may not be available to conjecture the form of the optimal control.
In order not to impede the flow, we relegate the proof of the following lemma to
Appendix C.

Lemma 7.5. For the function μ∗, defined by

μ∗ .
= λ1[tc,T ] with tc = inf

{
t ∈ [0, T ] : It(λ) > C := c2

2c1

}
,

the admissible policy ((λ, 0), (μ∗, 0)) is fluid optimal for the fluid control problem of
section 7.2.2.

Finally, we have the following corollary, which shows that the optimal value for
the above fluid control problem does not depend on the embedding constant.

Corollary 7.6. The optimal value for the fluid control problem of section 7.2.2
is given by

h̄(μ∗) = ĉ1
∫ t̂c

0

(It(λ̂))2 dt+ ĉ2
∫ T

t̂c

(
It(λ̂)−

Ĉ

2

)
dt,

with t̂c = inf{t > 0 : It(λ̂) > Ĉ := ĉ2

2ĉ1 } and ĉ1, ĉ2, and λ̂ as in section 7.2.1.
Proof. Using the form of the optimal policy for the fluid control problem μ∗

obtained in Lemma 7.5, we have that for every t ∈ [0, T ],

Z̄1
t (μ

∗) = It(λ) ∧ C and Z̄2
t (μ

∗) = (It(λ) − C) ∨ 0.

Hence,

h̄(μ∗) =

∫ tc

0

c1(It(λ))2 dt+
∫ T

tc

[c1 C2 + c2(It(λ)− C)] dt

= c1
∫ tc

0

(It(λ))2 dt+ c2
∫ T

tc

(
It(λ) −

C

2

)
dt.

(7.4)



ASYMPTOTICALLY OPTIMAL CONTROL 631

Histogram of cost

cost

F
re

qu
en

cy

0.15 0.20 0.25 0.30

0
10

20
30

40
50

60

Histogram of cost

cost
F

re
qu

en
cy

0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

0
10

20
30

40

Histogram of cost

cost

F
re

qu
en

cy

0.17 0.18 0.19 0.20 0.21

0
10

20
30

40
50

60
70

Fig. 4. The tandem queue. Histograms of costs realized for the embedding constant of 50,
λ̂(t) = 100(1 + sin(10t)), t ∈ [0, 1], and for uniform acceleration coefficients n = 50, 500, 1000. An
approximate optimal value for the fluid control problem is 0.190846 (calculated using Mathematica).

Recalling that λ = 1
N λ̂, c

1 = N2ĉ1, and c2 = Nĉ2, we obtain

C = Nĉ2

2N2ĉ1 = Ĉ
N ,

tc = inf{t > 0 : It(λ) > C} = inf{t > 0 : It(λ̂) > Ĉ} = t̂c.

With this in mind, the expression for the optimal cost in the fluid control problem of
(7.4) takes the form

h̄(μ∗) = N2ĉ1
∫ t̂c

0

1

N2
(It(λ̂))2 dt+Nĉ2

∫ T

t̂c

1

N

(
It(λ̂)−

Ĉ

2

)
dt

= ĉ1
∫ t̂c

0

(It(λ̂))2 dt+ ĉ2
∫ T

t̂c

(
It(λ̂)−

Ĉ

2

)
dt.

7.2.4. Embedding and simulations. Lemmas 6.1 and 7.5, Assumption 7.4,
and Theorem 5.4, when combined, show that the sequence of controls constructed
from μ̂ is asymptotically optimal. We use this conclusion to design a good control for
the system introduced in section 7.2.1.

We set a time-horizon at T = 1 and conducted the simulations for the periodic
arrival rate λ̂(t) = 100(1 + sin(10t)) for t ∈ [0, T ]. As in the previous section, the
service rate in the second station is set to zero. The constants in the definition of
the holding cost function are set to be ĉ1 = 1/20,000 and ĉ2 = 1/200. We looked at
three uniform acceleration coefficients: n = 50, n = 100, and n = 1000. Examining
the effect of choosing the embedding constant N = 50, we get the fluid performance
measure h̄ defined in (7.3) with constants c1 = 2500ĉ1 = 0.125 and c2 = 50ĉ2 = 0.25.
Using Lemma 7.5, we obtain an optimal control for the fluid control problem of the
form μ̂ = λ1[tc,T ] with tc = inf{t ∈ [0, T ] : It(λ) ≥ 1} and λ(t) = 2(1 + sin(10t)). We
present the histograms of the costs based on 1000 simulation runs for these coefficients,
along with the sample summary statistics. Figure 4 and Table 7.3 summarize the
results of applying the optimal policy μ̂ for the fluid control problem to the prelimit
systems. The embedding index of 50 corresponds to the actual system in the sense of
section 7.2.1, and the outcome of the simulations of the cost of applying the optimal
policy for the fluid control problem to the actual system can be seen in the leftmost
graph in Figure 4.

Next, we look at the embedding constant N = 100 and repeat the simulations
described above for uniform acceleration coefficients n = 50, n = 100, and n = 1000.
This time, the arrival rates to the first station were either the constant arrival rate
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Table 7.3

The tandem queue. Summary statistics for 1000 simulations of the cost in case of the embedding
constant of 50, λ̂(t) = 100(1+sin(10t)), and for the acceleration coefficients listed in the first column.

Accel. coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 0.1221 0.1716 0.1926 0.1950 0.2162 0.3370
500 0.1612 0.1846 0.1912 0.1915 0.1982 0.2299
1000 0.1712 0.1862 0.1906 0.1911 0.1959 0.2158
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Fig. 5. The tandem queue. Histograms of costs realized for the embedding constant of 100,
λ̂ ≡ 100, and for uniform acceleration coefficients n = 50, 100, 1000. The optimal value of the fluid
control problem is 7/48 ≈ 0.14583.

Table 7.4

The tandem queue. Summary statistics for 1000 simulations of the cost in case of the embedding

constant of 100, λ̂ ≡ 100, and for the acceleration coefficients listed in the first column.

Accel. coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 0.0699 0.1235 0.1436 0.1489 0.1683 0.3724
100 0.0823 0.1291 0.1455 0.1479 0.1642 0.2457
1000 0.1206 0.1405 0.1458 0.1460 0.1516 0.1721

λ̂ ≡ 100 or the periodic arrival rate λ̂(t) = 100(1 + sin(10t)), t ∈ [0, T ]. The fluid
performance measure h̄ is again as in (7.3), but with constants c1 = c2 = 0.5. By
Lemma 7.5, the optimal policy for the fluid control problem has the form μ̂ = λ1[tc,T ]

with tc = inf{t ∈ [0, T ] : It(λ) ≥ 1/2} with λ(t) = 1 + sin(10t). The histograms for
n = 50, n = 100, and n = 1000 are shown in Figures 5 and 6. The simulated costs of
employing the optimal policy for the fluid control problem in the actual system are
given in the middle graphs in Figures 5 and 6. The reader interested in comparing
the effects of different embedding constants should compare the leftmost graph in
Figure 4 to the middle graph in Figure 6. The summary statistics are provided in
Tables 7.4 and 7.5.

Figures 7 and 8 show the graphs of the queue lengths as functions of time for a
particular simulation with the uniform acceleration factor n = 1000 and for constant
and periodic arrival rates, respectively. These two figures illustrate the time at which
the optimal service for the fluid limit begins in the first station and starts “matching”
the arrivals to the first station.

Remark 7.7. Note that the simulation results in the present section indeed il-
lustrate the claims of Theorem 5.4 and Corollary 5.6. In particular, the simulation
values become more concentrated around their averages which, in turn, approach the
theoretical optimal value for the fluid control problem, which equals the limit of the
prelimit optimal values.
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Fig. 6. The tandem queue. Histograms of costs realized for the embedding constant of 100,
λ̂(t) = 100(1 + sin(10t)), t ∈ [0, 1], and for uniform acceleration coefficients n = 50, 100, 1000. An
approximate optimal value of the fluid control problem is 0.190846 (calculated using Mathematica).

Table 7.5

The tandem queue. Summary statistics for 1000 simulations of the cost in case of the embedding
constant of 100, λ̂(t) = 100(1 + sin(10t)), and for the acceleration coefficients listed in the first
column.

Accel. coeff. Min. 1st Qu. Median Mean 3rd Qu. Max.

50 0.0941 0.1643 0.1929 0.1987 0.2270 0.4049
100 0.1137 0.1720 0.1924 0.1941 0.2141 0.2947
1000 0.1625 0.1840 0.1908 0.1909 0.1972 0.2261
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Fig. 7. The tandem queue. One trajectory of the queue lengths in the first (increasing in the
beginning) and second (the other curve) stations for the embedding constant of 100, the uniform

acceleration coefficient n = 1000, and λ̂ ≡ 100. The time at which service in the first station begins
is 0.5.

8. Concluding remarks and further research. In this section, we note some
features we encountered in this work that are unique to the time-inhomogeneous setup.
Some of these issues hint at possible directions of future research. Also, we broadly
outline particular problems which were among the topics of [12].

8.1. Important distinctions from the time-homogeneous setup. We
stress some unique properties of asymptotically optimal control of queueing networks
with time-varying rates. We do this by pointing out certain features of optimal con-
trol in the time-homogeneous setting (say, the Brownian control problem (BCP) for
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Fig. 8. The tandem queue. One trajectory of the queue lengths in the first (increasing in the
beginning) and second (the other curve) stations for the embedding constant of 100, the uniform

acceleration coefficient n = 1000, and λ̂(t) = 100(1 + sin(10t)). The time at which service in the
first station begins is approximately 0.3.

systems in heavy traffic; see, e.g., [49] for references on this subject) and comparing
them to the time-inhomogeneous case. In the time-homogeneous context, the only
useful option for the control of a given system is the so-called feedback control, i.e.,
control which observes the system and is dynamically adapted according to the state
in which the system is. Also, to accommodate the information available to the con-
troller, a filtration generated by the stochastic processes driving the model of the
system at hand (reflected diffusions in the BCP case) is constructed. Both of these
issues are illustrated repeatedly throughout the rich literature of optimal control of
time-homogeneous networks.

On the other hand, for the asymptotic analysis in the time-inhomogeneous setting,
it is possible to consider deterministic controls that are prescribed by the controller
in advance of the run of the system and which depend only on the given parameters
of the model of the system. In fact, optimal policies for the fluid control problem are
deterministic, and it is, indeed, sensible to consider their asymptotic optimality (see
section 5). Moreover, to allow for stochastic (state dependent) controls, a novel struc-
ture of the accumulation of information available to the controller must be formulated
to incorporate the past and present of the system. The theory of PPPs proved to be
a convenient modeling tool in this respect (see section 2.1). Both of these points are
by-products of our analysis of the main problem.

Having proposed an asymptotically optimal sequence, we would like to implement
an element of this sequence of controls in the actual system which inspired the problem
in the first place. In the case of BCPs, this connection is more or less straightforward
(see, e.g., section 5.5 of [48] for an overview). On the other hand, in the case of time-
inhomogeneous queues, it is not immediately clear what the appropriate choice of
the index of the actual system when embedded in the prelimit sequence of uniformly
accelerated systems should be. The question of the choice of this index is not trivial,
and we did not attempt to consider it in the present work. However, recalling that
the uniform acceleration method preserves the ratio of arrival and service rates, and
encouraged by the simulation results presented in section 7 (see also Corollary 7.6),
we are hopeful that there is a rich collection of optimal control problems for which
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the choice of the index assigned to the actual system will not strongly influence the
performance of the class of asymptotically optimal controls constructed. A more
rigorous study of this issue would be worthy of future investigation. In the same vein,
it would be interesting to construct a “test” model in which it is possible to solve the
prelimit stochastic optimal control problems and compare the performance of policies
that are optimal for the fluid control problem to the performance of policies that are
optimal for the original control problem.

8.2. Pertinent examples in earlier work. In [12], the following points were
illustrated:

• not all reasonable performance measures are fluid optimizable;
• even if a performance measure is not fluid optimizable, there may be a sub-
stantial family of policies that are optimal for the fluid control problem which
yield asymptotically optimal sequences.

To this end, two examples of stochastic optimal control problems were identified—one
involving a single station and one involving a tandem queue.

In the single-station example, both the corresponding fluid control problem and
the asymptotically optimal control problem were solved. More precisely, a necessary
and sufficient condition for optimality in the fluid control problem, as well as a broad
class of asymptotically optimal sequences of policies, were identified (see Theorem
3.2.5 (page 40) and Theorem 3.4.8 (page 49), respectively, in [12]). Using these
results, it is easy to show that for a certain set of parameters most, but not all, optimal
policies for the fluid control problem are asymptotically optimal. In addition, it is
also possible to construct an example (not studied in [12]) for which there is a unique
optimal policy for the fluid control problem that does not generate an asymptotically
optimal sequence. All of the above results are easily generalizable to the single station
with a feedback loop.

In the tandem queue setup, it was demonstrated that for a certain set of parame-
ters not only is the performance measure in question not average fluid optimizable, but
it is not possible to have an asymptotically optimal sequence that consists of deter-
ministic policies (see section 4.7 (page 91) of [12]). This result indicates that in some
situations, a first-order analysis may not be sufficient to design near-optimal policies,
but a more detailed analysis will be required. This further emphasizes the need for
determining rigorous conditions under which a first-order analysis is sufficient.

Appendix A. The functional strong law of large numbers. In this section,
we present and prove a version of the FSLLN. We emphasize that this result, albeit
very similar in spirit to Theorem 2.1 of [30], is different. Stochastic processes used to
model the exogenous arrival and potential service processes in [30] and in the present
paper are merely identically distributed. However, since the processes involved are
required to converge almost surely, it is necessary to formulate and justify the FSLLN
in the present setting. Recall that our model for the primitive processes in the open
network via PPPs was necessary to keep track of the accumulation of information
available in the associated optimal control problem by means of the filtration {Ht} of
(2.7).

Theorem A.1. Let {μn}n∈N be a bounded sequence in L1
+[0, T ], let p : [0, T ] →

[0, 1] be a deterministic measurable function, and let ξ be a PPP on the domain S :=
[0, T ]× [0,∞) × [0, 1] with Lebesgue measure as the mean intensity measure. Define
the sequence of stochastic processes {Y (n)} as

Y
(n)
t = ξ{(s, x, y) : s ≤ t, x ≤ nμn(s), y > ps}, t ∈ [0,∞), n ∈ N.
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Then, as n→ ∞,

(A.1) ‖ 1
nY

(n) − I((1− p)μn)‖T → 0, P-a.s.

To prove this theorem, we start with an equality in distribution. Its proof is
straightforward but technical and lengthy. However, since we could not find a reference
for the result, we include it here for completeness.

Lemma A.2. Suppose that N is a unit Poisson process, and let μ ∈ L1
+[0, T ]

and p : [0, T ] → [0, 1] be deterministic measurable functions. Furthermore, let ξ be a
PPP on the domain S := [0, T ]× [0,∞)× [0, 1] with Lebesgue measure as the intensity
measure. Define the stochastic process Y as

Yt = ξ{(s, x, y) : s ≤ t, x ≤ μs, y > ps}.

Then we have the following distributional equality:

N(I((1 − p)μ))
(d)
= Y.

Proof. Let ζ denote the PPP on [0, T ] associated with the Poisson process
N(I((1 − p)μ)). On the other hand, consider the point process χ on S obtained
as a ν-randomization of the PPP ξ for the probability kernel ν from S to T := {0, 1}
given by

ν((s, x, y), {1}) = 1{x≤μs y>ps},

ν((s, x, y), {0}) = 1− ν((s, x, y), {0}).

We introduce the point process χ because the point process χ̂ on [0, T ], defined as
χ̂(C) = χ(C × [0,∞)× [0, 1]× {1}) on Borel measurable sets C ⊂ [0, T ], is the PPP
associated with the process Y . By the uniqueness theorem for Laplace transforms and
Lemma 12.1 in [26], the Laplace transform of a point process uniquely determines its
law. Hence, it suffices to prove that ψχ̂(f) = ψζ(f) for every nonnegative, measurable
f , where ψχ̂ and ψζ are the Laplace transforms of point processes χ̂ and ζ, respectively.
By Lemma 12.2 from [26], we have that for every nonnegative, Borel measurable
f : S × {0, 1} → R+

(A.2) ψχ(f) = E[exp(ξ(log(ν̂(e−f ))))],

where ν̂((s, x, y), ·) = δ(s, x, y) ⊗ ν((s, x, y), ·) for every (s, x, y) ∈ S. Let us tem-
porarily fix the function f as above and introduce the function G : S → R as
G = − log(ν̂(e−f)). Using the interpretation of the kernel ν̂ as an operator on the
space of measurable functions, the function G can be rewritten more conveniently as

G(s, x, y) = − log

(∫
T
e−f((s, x, y), t)ν̂((s, x, y), dt)

)

= − log

(∫
T
e−f((s, x, y), t)δ(s, x, y) ⊗ ν((s, x, y), dt)

)

for every triplet (s, x, y) ∈ S. The newly introduced function G allows us to rewrite
(A.2) as

(A.3) ψχ(f) = E[exp(ξ(log(ν̂(e−f ))))].
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Directly from the definition, we conclude that G is Borel measurable. Since f is
nonnegative, we must have that e−f ≤ 1, and since ν is a probability kernel, it is
necessary that ν̂(e−f) ≤ 1. Therefore, G ≥ 0, and we can use Lemma 12.2 from [26]
again to obtain

(A.4) ψχ(f) = E[exp(−ξ(G))] = exp{−ϑ(1− e−G(s, x, y))},

where ϑ is the intensity measure of the process ξ, i.e., ϑ = E[ξ]. Recalling that ξ is a
unit PPP on S, we conclude that

(A.5) ψχ(f) = exp

{
−
∫
[0,1]

∫
R+

∫
[0,T ]

(1− e−G(s, x, y)) ds dx dy

}
.

From the definition of G in terms of f , the expression in (A.5) equals

ψχ(f) = exp

{
−
∫
S
(1− elog(ν̂(e

−f((s,x,y),·)))) ds dx dy

}

= exp

{
−
∫
S

(
1−

∫
T
e−f((s,x,y),t)δs ⊗ ν((s, x, y), dt)

)
ds dx dy

}

= exp

{
−
∫
S

(
1−

∫
T
e−f((s,x,y),t)ν((s, x, y), dt)

)
ds dx dy

}

= exp

{
−
∫
S

(
1− e−f((s,x,y),1)1{x≤μs y>ps} − e−f((s,x,y),0)1{x>μs y≤ps}

)
ds dx dy

}
.

In particular, for all f such that f(·, 0) = 0, we have

ψχ(f) = exp

{
−
∫
S

(
1− e−f((s,x,y),1)1{x≤μs y>ps} − (1− 1{x≤μs y>ps})

)
ds dx dy

}

= exp

{
−
∫
S
1{x≤μs y>ps}(1− e−f((s,x,y),1)) ds dx dy

}
.

(A.6)

Let us define the operator F on real functions on S to real functions on S × T
as F (g)((s, x, y), t) = g(s, x, y)1{1}(t). Then we have, using (A.6), that for every
measurable g : S → R+

(A.7) ψχ(F (g)) = exp

{
−
∫
S
1{x≤μs y>ps}(1− e−g(s,x,y)) ds dx dy

}
.

Claim A.1. For every Borel measurable g : S → R+,

(A.8) ψχ̂(g) = ψχ(F (g)).

In order to prove this ancillary claim, we use “measure theoretic induction.”
1◦ Let g be of the form g = 1B for a Borel set B in [0, T ]. Then we have that

ψχ̂(g) = E[e−χ̂(g)] = E[e−χ̂(B)].

By the definition of χ̂, the above equals

ψχ̂(g) = E[e−χ(B×[0,∞)×[0,1]×{1})] = E[e−χ(1B×[0,∞)×[0,1]×{1})]

= E[e−χ(1B×[0,∞)×[0,1]×T 1D[0,T ]×{1})] = E[e−χ(F (g))] = ψχ(F (g)).
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2◦ Let g be a simple function of the form g =
∑

m≤M cm1Bm , where {cm}Mm=1 are

positive constants, and the sets {Bm}Mm=1 are Borel in [0, T ] and mutually disjoint.
Then the operator F acts on g as

F (g)((s, x, y), t) =

(
M∑

m=1

cm1Bm×[0,∞)×[0,1](s, x, y)

)
1{1}(t)

=

M∑
m=1

cm1Bm×[0,∞)×[0,1](s, x, y)1{1}(t)

=

M∑
m=1

cmF (1Bm×[0,∞)×[0,1])(s, x, y).

(A.9)

Due to the linearity of the integration with respect to χ̂, we get

ψχ̂(g) = E

[
e−

∑M
m=1 cmχ̂(Bm)

]
.

By the definition of χ̂, the above equality gives us

ψχ̂(g) = E

[
e−

∑M
m=1 cmχ̂(Bm×[0,∞)×[0,1]×{ 1})

]
.

Finally, using (A.9) and the linearity of χ, we obtain

ψχ̂(g) = E

[
e−χ(F (g))

]
= ψχ(F (g)).

3◦ Finally, let {gn} be an increasing sequence of functions satisfying the equality
(A.8) and such that gn ↑ g pointwise. By the monotone convergence theorem, we
have both

ψχ̂(g) = lim
n→∞

ψχ̂(gn) and ψχ(F (g)) = lim
n→∞

ψχ(F (gn)).

Since functions gn were chosen so as to satisfy (A.8), the proposed claim (A.8) holds
for every appropriate g. We now have that the Laplace transform of the PPP χ̂ acts
on nonnegative measurable functions g : [0, T ] → R+ in the following way:

(A.10) ψχ̂(g) = exp

{
−
∫
S
1{x≤μs, y>ps}(1− e−g(s)) ds dx dy

}
.

Note that the Laplace transform of the PPP ζ associated with N(I((1−p)μ)) is given
by

(A.11) ψζ(g) = exp

{
−
∫ T

0

μs(1− ps)(1− e−g(s)) ds

}

for every Borel measurable g : [0, T ] → R+.
Claim A.2. For every Borel measurable g : [0, T ] → R+,

(A.12) ψχ̂(g) = ψζ(g).
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Using (A.10) and (A.11), the left-hand side in (A.12) becomes

ψχ̂(g) = exp

{
−
∫
S
1{x≤nμs}1{y>ps}(1− e−g(s)) ds dx dy

}

= exp

{
−
∫ T

0

∫ ∞

0

1{x≤nμs}

∫ 1

0

1{y>ps}(1− e−g(s)) dx dy ds

}

= exp

{
−
∫ T

0

nμs(1 − ps)(1− e−g(s)) ds

}
= ψζ(g).

We continue with an application of the submartingale inequality.
Lemma A.3. For a unit Poisson process N and a sequence {ϕn}n∈N bounded in

L1
+[0, T ] we have

∞∑
n=1

P
[∥∥ 1

nN(nI(ϕn))− I(ϕn)
∥∥
T
> ε
]
<∞ for every ε > 0.

Proof. For every n, it is readily seen that the process N(nI(ϕn)) − I(ϕn) is a
martingale. Thus, we can employ the submartingale inequality to obtain

P

[∥∥∥∥ 1nN(nI(ϕn))− I(ϕn)

∥∥∥∥
T

> ε

]
= P

[
sup

0≤t≤T
(
1

n
N(nIt(ϕn))− It(ϕn))

4 > ε4
]

≤
E
[
(N(nIT (ϕn))− IT (ϕn))

4
]

n4ε4

≤ 3n(IT (ϕn))
2 + IT (ϕn)

n3ε4
.

The summability of the right-hand side of the above inequality yields the claim of the
lemma.

The result stated in Theorem A.1 is an easy consequence of Lemmas A.2 and A.3
combined with the Borel–Cantelli lemma.

Appendix B. Auxiliary fluid-optimizability results. For the definitions and
the properties of the M1 and M ′

1 topologies, the reader is directed to sections 12.3
and 13.6 of [48], respectively.

Lemma B.1. Let the sequence {fn}n∈N be bounded in (L1
+[0, T ])

k. Then, there
exist a function F in (D[0, T ])d and a subsequence {fnk

}k∈N such that I(fnk
) → F

as k → ∞ in the product M ′
1 topology on (D[0, T ])d and, equivalently, in the weak M1

topology on (D(0, T ])d.
Proof. Let {qm} be a sequence containing all rational numbers in the interval

[0, T ] and the endpoint T . Then, the sequence of d-tuples {Iq1(f1
n)} (associated with

the first term q1 of the sequence of rational numbers) has a subsequence {Iq1(f1
n�
)}�

that converges in R. The sequence {Iq1(f2
n�
)}� has a further subsequence that con-

verges in R. We can continue this construction along the remaining components of
the sequence of d-tuples {Iq1(fn)} to obtain a subsequence that converges in Rd. A
continuation of these constructive steps across the elements of {qm} forms a diago-
nalization scheme which produces a sequence {G�} which is a subsequence of {I(fn)}
and which converges at all the points in the set (Q ∩ [0, T ]) ∪ {T } to a limit in Rd.
We define the function F : [0, T ] → Rd by

F (r) = inf
q∈Q∩[r,T ]

lim
�→∞

G�(q).
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The fact that the component functions of the terms in the sequence {G�} are nonde-
creasing implies that the function F is well defined and that for every q ∈ Q ∩ [0, T ],

F (q) = lim
�→∞

G�(q).

Moreover, since F itself has nondecreasing components, all the components of F have
both right and left limits at all points in (0, T ), the right limit at 0, and the left
limit at T . In addition, if necessary, redefining the function F at T as F (T ) =
limt↑T F (t), we can assume that F is left continuous at T . Next, let us extend the
component functions of {G�} and F to the domain [0,∞) so that the extensions are
linear with the unit slope on [T,∞). By this construction, we have ensured that
the sequence of unbounded, nondecreasing component functions of {G�} converges to
the corresponding nondecreasing, unbounded component functions of F on a dense
subset of (0,∞). These are precisely the conditions of Theorem 13.6.3 of [48]. So, we
conclude that

G� → F in the product M ′
1 topology on (D[0,∞))d.

Using the fact that T is a continuity point of F , we can restrict the domain of the
functions above and assert that

G� → F in the product M ′
1 topology on (D[0, T ])d.

Since by Theorem 12.5.2 of [48] the weakM1 topology coincides with the product
M1 topology on (D[0, T ])d, it suffices to again utilize Theorem 13.6.3 of [48] to conclude
that the components of {G�} converge to the components of F in the M1 topology
on (D(0, T ])d.

Remark B.2. We draw attention to the fact that the necessity of the choice of the
M ′

1 topology in Lemma B.1 stems from the possibility of a jump at 0 of the limiting
function F . Unless we either relax the choice of topology from the more conventional
M1 toM

′
1 or restrict the domain of the converging subsequences, we can have no hope

of obtaining a “relative-compactness-like” result such as the one in Lemma B.1.
We proceed with a simple lemma regarding the convergence in M ′

1 of the compo-
sition of functions from two particular convergent sequences.

Lemma B.3. Let {Yn} and {νn} be sequences in D↑[0, T ] satisfying

Yn → e in the M ′
1 topology on D↑[0, T ] and

νn → ν in the M ′
1 topology on D↑[0, T ]

for some function ν ∈ D↑[0, T ] which is left continuous at T and where e denotes the
identity function on the interval [0, T ]. Then, we have

Yn ◦ νn → ν in the M ′
1 topology on D↑[0, T ].

Proof. It is convenient to reduce the discussion of M ′
1 convergence D↑[0, T ] to the

discussion of convergence in the M1 topology of restrictions of functions in D↑[0, T ]
to D↑[ε, T ], ε > 0. To substantiate this statement, recall the manner in which the
functions in the proof of Lemma B.1 were extended, and also recall the equivalence
relationship of Theorem 13.6.3 in [48] and the fact that all the (linear, increasing
extensions of) the functions in the present lemma conform to the conditions outlined
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therein. Then, one can invoke the definition of the M1 topology for functions on
noncompact domains from page 414 of [48]. In summary, it suffices to verify that

Yn ◦ νn → ν in the M1 topology on D↑[ε, T ]

for ε that are positive continuity points of ν. The last claim is a direct consequence
of Theorem 13.2.4 in [48], which completes the proof.

Appendix C. The optimal policy for the tandem queue fluid control
problem. This section contains the formal proof of Lemma 7.5.

Suppose that a policy that is optimal for the fluid control problem exists and
denote it by μ∗. We shall first argue that the following claim holds.

Claim C.1. Without loss of generality, we can assume It(μ∗) ≤ It(λ) for all
t ∈ [0, T ].

Proof of Claim C.1. Suppose, to the contrary, that the proposed inequality is
violated. The queue lengths in the fluid system must satisfy the equations (4.1). It
can be shown that the queue length in the first station, when any μ ∈ L1

+[0, T ] is the
service employed there, can be rewritten as

(C.1) Z̄1
t (μ) = It(λ− μ) +

∫ t

0

(−λ(s) + μ(s))+1[Z̄1
s (μ)=0] ds, t ∈ [0, T ],

while the queue length in the second station equals

(C.2) Z̄2
t (μ) = It(μ)−

∫ t

0

(−λ(s) + μ(s))+1[Z̄1
s (μ)=0] ds, t ∈ [0, T ].

Let us define μ̌ ∈ A as

μ̌(t) = μ∗(t)− (−λ(t) + μ∗(t))+1[Z̄1
t (μ

∗)=0], t ∈ [0, T ].

Then, by (C.1), Z̄1(μ̌) = It(λ)− It(μ̌) = Z̄1
t (μ

∗) ≥ 0, and by (C.2), Z̄2
t (μ̌) = It(μ̌) =

Z̄2
t (μ

∗) for every t. Hence, h(μ∗) = h(μ̌), while μ̌ satisfies the desired inequality.
Let us return to the proof of the lemma, assuming that μ∗ satisfies the inequality in

Claim C.1. If μ∗ is optimal for the fluid control problem, we refer to every perturbation
Δμ ∈ L1[0, T ] (which is not necessarily nonnegative or an admissible policy itself)
such that μ∗ + εΔμ ∈ A for all sufficiently small ε > 0 as an admissible perturbation.
Then, for every admissible perturbation Δμ and for every constant ε > 0 such that
μ∗ + εΔμ ∈ A, we must have

(C.3) h̄(μ∗ + εΔμ)− h̄(μ∗) ≥ 0.

From (C.1) and (C.2) for Z̄, it is clear that for any μ ∈ A that satisfies the condition
of Claim C.1,
(C.4)
Z̄(μ) = (Z̄1(μ), Z̄2(μ)) = Γ(X̄(μ)) = Γ(I(λ − μ), I(μ− μ2)) = Γ(I(λ− μ), I(μ)).

Therefore, setting χ = (I(−Δμ), I(Δμ)), we can write

1
ε (Z̄(μ

∗ + εΔμ)− Z̄(μ∗)) = ∇ε
χΓ(X̄(μ∗)),

where, as in [31], we adopt the notation

∇ε
χΓ(ψ)

.
= 1

ε [Γ(ψ + εχ)− Γ(ψ)]
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for any càdlàg ψ. Using the definition of h̄ given in (7.3) and observing that h1(x +
Δx) − h1(x) = c1Δx(2x + Δx) and h2(x + Δx) − h2(x) = c2Δx, we see that (C.3)
holds if and only if

1

ε

∫ T

0

[
c1(Z̄1

t (μ
∗ + εΔμ)− Z̄1

t (μ
∗))(Z̄1

t (μ
∗ + εΔμ) + Z̄1

t (μ
∗))

+ c2(Z̄2
t (μ

∗ + εΔμ)− Z̄2
t (μ

∗))
]
dt ≥ 0.

(C.5)

It follows from Theorem 1.1 in [31] that, as ε ↓ 0, the pointwise limit of ∇ε
χΓ(X̄(μ∗))

exists and is given explicitly by

∇χΓ(X̄(μ∗)) = lim
ε↓0

∇ε
χΓ(X̄(μ∗)) = χ+ (γ1,−γ1 + γ2),

where

γ1(t) = sup
s∈Φ1(t)

[Is(Δμ)]+, γ2(t) = sup
s∈Φ2(t)

[−Is(Δμ) + γ1(s)]+,

and Φi(t)
.
= {s ≤ t : Z̄i

s(μ
∗) = 0} = {s ≤ t : X̄ i

s(μ
∗) = 0}, i = 1, 2, for every

t ∈ [0, T ]. Here, the latter equality for the sets Φi(t), i = 1, 2, t ∈ [0, T ], is implied by
the properties of the ORM (see Theorem 1.1 in [31]) and Claim C.1.

Therefore, for every admissible perturbation Δμ, taking limits as ε ↓ 0 in (C.5),
we see that

(C.6)

∫ T

0

[
(Z̄1

t (μ
∗)− C)(−It(Δμ) + γ1(t)) + Cγ2(t)

]
dt ≥ 0,

with C := c2

2c1 . Define the time instances

t0 = inf{t ∈ [0, T ] : It(μ∗) > 0} and tc = inf{t ∈ [0, T ] : It(λ) > C}.

Due to the assumption that μ2 ≡ 0, and Claim A.1, we immediately conclude that
Φ2(t) = [0, t ∧ t0] for every t ∈ [0, T ]. We now claim the following.

Claim C.2. tc ≤ t0.
Proof of Claim C.2. Consider an admissible perturbation Δμ such that Δμ(t) ≤ 0

for all t ∈ [0, T ] and Δμ(t) = 0 for every t ∈ [0, t0]. Then, γ1 ≡ 0 and γ2(t) =
sups∈[0,t∧t0] [−Is(Δμ)] = 0. Therefore, (C.6) reduces to

∫ T

0

[
(Z̄1

t (μ
∗)− C)(−It(Δμ))

]
dt =

∫ T

t0

[
(Z̄1

t (μ
∗)− C)(−It(Δμ))

]
dt ≥ 0.

Since −It(Δμ) ≥ 0 and the above inequality must hold for all such Δμ, we conclude
that Z̄1

t (μ
∗) = It(λ− μ∗) ≥ C for all t ≥ t0, which establishes the claim.

We now show that, in fact, the following holds.
Claim C.3. tc = t0.
Proof of Claim C.3. Let us assume that tc < t0 and consider an arbitrary admis-

sible perturbation Δμ ≥ 0. Then, γ1(t) = Im1(t)(Δμ), where m
1(t) := supΦ1(t) for

every t ∈ [0, T ]. So,

γ2(t) = sup
s∈Φ2(t)

[−Is(Δμ) + γ1(s)]+ = sup
s∈Φ2(t)

[−Is(Δμ) + Im1(s)(Δμ)]
+.
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By definition, m1(s) ≤ s for every s, and so, recalling that Δμ ≥ 0, we conclude that
γ2 ≡ 0. Thus, the inequality (C.6) can be rewritten as

∫ T

0

[
(Z̄1

t (μ
∗)− C)(−It(Δμ) + Im1(t)(Δμ))

]
dt ≥ 0

for every admissible perturbation Δμ ≥ 0. Therefore,

∫ T

0

∫ T

0

[
(Z̄1

t (μ
∗)− C)(−1[m1(t),t](u))Δμ(u)

]
du dt ≥ 0

for every admissible perturbation Δμ ≥ 0. Due to Fubini’s theorem, the above in-
equality yields

∫ T

0

Δμ(u)

(∫ T

0

[
(Z̄1

t (μ
∗)− C)(−1[m1(t),t](u))

]
dt

)
du ≥ 0

for every admissible perturbation Δμ ≥ 0. We define the function F : [0, T ] → R+ as

F (u) =

∫ T

0

[
(Z̄1

t (μ
∗)− C)(−1[m1(t),t](u))

]
dt

and deduce that F (u) ≥ 0, u-a.e. However, for every u ∈ (tc, t0), using Claim C.2,
the fact that −1[0,tc](u) = −1[t0,T ](u) = 0, and It(λ) > C for every t > tc, we have

F (u) =

∫ t0

0

[
(Z̄1

t (μ
∗)− C)(−1[0,t](u))

]
dt =

∫ t0

tc

[
(It(λ) − C)(−1[0,t](u))

]
dt ≤ 0.

This leads to a contradiction, and so Claim C.3 follows.
To conclude the proof of the lemma, it suffices to show the next claim.
Claim C.4. μ∗(t) = λ(t) for almost every t ≥ t0.
Proof of Claim C.4. Let us assume that there exists a pair of time instances

t1 < t2 such that t0 < t1 and Z̄1
t (μ

∗) > C for every t ∈ (t1, t2). Note that Φ1(t) ⊆
[0, t0) ⊂ (t1, t2)

c and recall that Φ2(t) = [0, t∧ t0] for every t. Consider any admissible
perturbation Δμ such that Δμ(t) = 0 for every t ∈ (t1, t2)

c, It1(Δμ) = It2(Δμ) = 0,
and It(Δμ) > 0 for every t ∈ (t1, t2). Then, for such a function Δμ, γ1(t) = γ2(t) = 0
for all t. Thus, the left-hand side of the inequality (C.6) reads as

∫ t2

t1

[
(Z̄1

t (μ
∗)− C)(−It(Δμ))

]
dt.

From the choice of Δμ and the definition of t1 and t2, we conclude that the above
expression must be strictly negative, which contradicts the inequality (C.6). Thus,
Z̄1
t (μ

∗) ≤ C for every t ∈ (t0, T ).
On the other hand, it has already been shown (see the last line of the proof

of Claim C.2) that Z̄1
t (μ

∗) ≥ C for every t ∈ (t0, T ). Combining the above two
inequalities, we conclude that Z̄1

t (μ
∗) = C for t ∈ (t0, T ). So, μ∗(t) = λ(t) for

almost every t ∈ (t0, T ). This proves Claim C.4 and, thus, concludes the proof of the
lemma.
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