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1,2

Sophie Camilleri-Broët,
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Abstract

The role of adjuvant chemotherapy in patients with stage IB
non–small-cell lung cancer (NSCLC) is controversial. Identi-
fying patient subgroups with the greatest risk of relapse and,
consequently, most likely to benefit from adjuvant treatment
thus remains an important clinical challenge. Here, we
hypothesized that recurrent patterns of genomic amplifica-
tions and deletions in lung tumors could be integrated with
gene expression information to establish a robust predictor
of clinical outcome in stage IB NSCLC. Using high-resolution
microarrays, we generated tandem DNA copy number and
gene expression profiles for 85 stage IB lung adenocarcino-
mas/large cell carcinomas. We identified specific copy
number alterations linked to relapse-free survival and
selected genes within these regions exhibiting copy num-
ber–driven expression to construct a novel integrated
signature (IS) capable of predicting clinical outcome in this
series (P = 0.02). Importantly, the IS also significantly
predicted clinical outcome in two other independent stage I
NSCLC cohorts (P = 0.003 and P = 0.025), showing its
robustness. In contrast, a more conventional molecular
predictor based solely on gene expression, while capable of
predicting outcome in the initial series, failed to signifi-
cantly predict outcome in the two independent data sets.
Our results suggest that recurrent copy number alterations,
when combined with gene expression information, can be
successfully used to create robust predictors of clinical
outcome in early-stage NSCLC. The utility of the IS in
identifying early-stage NSCLC patients as candidates for
adjuvant treatment should be further evaluated in a clinical
trial. [Cancer Res 2009;69(3):1055–62]

Introduction

Non–small-cell lung carcinoma (NSCLC) is the most common
cause of worldwide cancer mortality, with a global 5-year survival
rate of 15%. For patients with early-stage disease, the survival rate
after surgery is 40% to 55% (1, 2), raising the need to accurately
identify subgroups who might benefit from adjuvant chemotherapy

(3). The utility of adjuvant chemotherapy for the stage IB tumors,
however, remains controversial. Preliminary results of the CALGB
9633 trial suggested a potential survival benefit for adjuvant
chemotherapy in stage IB disease, but updated results from the
same trial show no benefit in overall survival. Stage IB NSCLC thus
represents an excellent opportunity for applying genomic strategies
to stratify patients with low and high risks of recurrence, with
adjuvant therapy being a treatment option for the high-risk category.
One major feature of NSCLCs is chromosomal instability, which

can result in the amplification and deletion of either specific
genomic regions or even entire chromosomes. Regions exhibiting
copy number alterations (CNA) can affect the expression of cis-
localized tumor suppressor genes and oncogenes. However, only few
reports have suggested a potential relationship between recurrent
CNAs and NSCLC patient prognosis (4, 5). In addition, the
architecture of CNAs is often complex (multiple ‘‘subalterations’’)
and not all genes within a CNA region will necessarily show altered
gene expression (‘‘copy number–driven’’ expression; refs. 6, 7). These
observations suggest that a substantial proportion of genes within
CNAs may be inconsequential for tumor behavior, and including
such genes into a survival model may only add noise and reduce
predictive accuracy.
To address these limitations, we developed an integrative

strategy combining both genomic CNA and transcriptomic copy
number–driven expression. We applied this strategy to a cohort of
stage IB lung adenocarcinomas profiled using both high-resolution
array-based comparative genomic hybridization (array-CGH) and
gene expression platforms. We found that the integrated signature
(IS) was an accurate predictor of relapse-free survival in the
original cohort and also robustly predicted survival in two other
independent cohorts.

Materials and Methods

Patients and tumor samples. A series of 85 consecutive patients who

underwent surgery at the Hôtel-Dieu Hospital (AP-HP, France) between
August 2000 and February 2004 for stage IB (pT2N0) primary adenocarci-

noma or large cell lung carcinoma of peripheral location were included in

the study. Patients with bronchioloalveolar adenocarcinomas or large cell

neuroendocrine carcinomas were excluded from the study, as well as those
having received chemotherapy. Pathologic slides were reviewed without any

information about the outcome (S.C-B., M.B.). The clinical and pathologic

parameters collected for analysis included age, sex, tobacco exposure, type

of resection, laterality, necrosis, size of the tumor, histologic subtype (8),
differentiation, vessel invasion, visceral pleura involvement, and TTF1

expression. The quality of frozen tissue was checked by touch preps on

microscopic glass slide; only tissue samples with tumor content >50% were
selected. This study was approved by institutional ethics committees.

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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Array-CGH and gene expression microarrays. DNA was extracted
from frozen samples using the Nucleon DNA extraction kit (BACC2,

Amersham Biosciences) according to the manufacturer’s procedures. Briefly,

frozen tumor sections were cut into small pieces and digested in proteinase

K overnight at 42jC. Deproteinization was carried out in 5 mol/L sodium
perchlorate followed by extraction in chloroform/alcohol isomamylique.

After centrifugation, the upper phase was precipitated in cold alcohol 100.

DNA pellets were dried and resuspended in Tris-EDTA. For each tumor, 2 Ag
of tumor and reference genomic DNAs were directly labeled with Cy3-dCTP
or Cy5-dCTP, respectively, and hybridized onto CGH microarrays containing

32,000 DOP-PCR amplified bacterial artificial chromosome (BAC) genomic

clones providing tiling coverage of the human genome (spotted on two

arrays). Hybridizations were done using a MAUI hybridization station, and
after washing, the slides were scanned on a GenePix 4000B scanner, as

described previously (9).

For total RNA extraction, frozen tumor samples were shattered in liquid

nitrogen and homogenized in 1-mL TRIzol (Invitrogen). Extraction was done

using a standard chloroform/isopropanol method. RNA quality was assessed

on an Agilent Bioanalyzer before storage at �80jC. RNA from 74 of the 85

tumor samples was deemed of sufficient quality to enable reliable gene

expression analysis. For measuring gene expression, the Human U133 Plus 2.0

oligonucleotide gene chips (Affymetrix) containing a total of 47,000 transcripts

with 61,000 probe sets were used according to the manufacturer’s protocol.

Briefly, 5 Ag of total RNA were used in the amplification reaction, and 20 Ag of
labeled cRNA were added to the hybridization.

The array data sets have been deposited in National Center for

Biotechnology Information Gene Expression Omnibus and are accessible
through GEO Series accession no. GSE10445.

Preprocessing of the array data. The array-CGH signal intensities were

normalized using a two-channel microarray normalization procedure (10)

implemented in Genedata Expressionist Pro software. BAC genomic clones
mapping to sex chromosomes (X and Y) were not considered for the analysis.

Inferences about the gain/loss/modal status of eachBAC clone for each sample

were obtained using the CGHmix classification procedure (11), which
computes the posterior probabilities of a clone belonging to either of three

defined genomic states. We assigned each clone to one of two modified copy

number states (loss or gain) if its corresponding posterior probability was

above a defined threshold value; otherwise the clone was assigned to the
modal/unaltered copy state. This latter threshold valuewas selected to obtain a

false discovery rate of 5% for each sample, where false discovery corresponded

to a clone incorrectly defined as amplified or deleted. Clones with an absolute

fluorescence intensity log ratio of >0.5 and a posterior probability of being
amplified >70% were defined as high-level amplifications/deletions.

The expression microarray data were standardized and normalized using

the robust multiarray average procedure (12). Genes whose maximum

expression did not exceed the median value of expression or whose
interquartile range did not exceed the first quartile of the interquartile

range distribution were excluded. A total of 37,771 probe sets were

considered for the analysis.
Defining patterns of CNA. To analyze the propensity of each genomic

region (BAC clone) to be deleted or amplified across the series, we modeled

the distribution of the number of observed deletions, modal/unmodified,

and amplifications for all the genomic regions using a latent class model
relying on a finite mixture of multinomial distributions (13). Here, we

considered a latent class model with three (low, intermediate, high) levels

for both amplification and deletion representing a total of nine (32)

chromosomal patterns. Each of these nine chromosomal patterns describes
the joint propensity of a given genomic region for being deleted/

unmodified/amplified. From our series, we estimated for each genomic

region its posterior probabilities for each of the nine chromosomal patterns
using Monte Carlo Markov chain techniques (14), implemented in Winbugs

software (15). Then, a classification rule was applied, which assigned each

genomic region to the chromosomal pattern to which it had the highest

probability of belonging. From the nine chromosomal patterns, the one
corresponding to the highest frequency for amplification and lowest for

deletion was defined as an ‘‘exclusively amplified’’ recurrent CNA, and vice

versa (‘‘exclusively deleted’’ recurrent CNA).

Statistical analysis to identify copy number–driven genes. To identify
copy number–driven genes, each probe set was assigned to the nearest

mapped BAC clone. For each probe set, a classic linear regression model

was applied where gene expression was the dependent variable and DNA

copy number change was the explanatory variable (coded as �1, 0, 1 for
loss, modal, and gain, respectively). From the resulting test statistics, we

calculated the posterior probability of relationship between genomic and

transcriptomic changes using the Gmix procedure (16), a fully Bayesian

normal mixture model with an unknown number of components. A probe
set was classified as a copy number–driven gene if its posterior probability

of relationship between genomic and transcriptomic changes was >0.5,

according to the Bayes rule.

Relapse-free survival: assessing prognostic effect of genomic and
transcriptomic changes. Relapse-free survival (RFS) time was calculated

from the date of the patients’ surgery until disease-related death, disease

recurrence (either local or distant), or last follow-up examination. To

analyze the prognostic effect of either genomic or transcriptomic changes,

we computed two sets of univariate score test statistics based on the

semiparametric Cox proportional hazards model (17). Here, the null

hypothesis corresponded to the absence of a relationship between the

instantaneous hazard rate for relapse and either genomic (copy number)

status or gene expression measurement. To increase statistical power, we

also used information from our analysis of chromosomal patterns.

Specifically, for a genomic clone considered as an exclusively amplified

recurrent CNA, the few deleted samples for this clone were gathered with

those having a modal genomic status. The converse was also done for a

clone considered as an exclusively deleted recurrent CNA.

Using the Gmix procedure (16), the posterior probabilities of RFS being

related to either the genomic status (genomic-survival posterior probabil-
ities) or gene expression measurements (transcriptomic-survival posterior

probabilities) were calculated.

Gene signature building procedure overview. We devised a novel gene

selection strategy to construct a copy number–driven gene expression
signature, termed integrated signature (IS) in the following text, to predict

RFS (Fig. 1). In parallel, we also constructed a conventional transcriptomic

signature (TS), with the aim of comparing the performance of the IS to that
of a more conventionally derived expression signature not restricted to

specific pathologic properties of the cancer. For both signatures, we

considered a two-step procedure: (a) In the first step ( feature selection), the

genomic clones or genes were individually ranked based on either their
genomic survival or transcriptomic survival posterior probabilities. For

IS (as seen below), we also take into account the relationship between

genomic and transcriptomic changes. From these results, gene subset

selections were done. (b) In the second step (signature development), a
linear combination of the genes belonging to the selected subsets was

computed leading to a gene expression signature.

Feature selection. The major difference between the IS and TS feature
selection steps is that the former (IS) incorporates genomic information.

For the IS, we first selected genomic clones based on their genomic-survival

posterior probabilities. Among the genes localized to those high-priority

genomic areas, we then restricted our feature selection only to genes
exhibiting copy number–driven expression. In the classic way, for the TS we

selected the genes based on their transcriptomic survival posterior

probabilities. In practice, we selected the clones/genes in a top-down

manner, starting with a genomic/transcriptomic survival posterior proba-
bility of 99% and decreasing down to 75% with regular spacings (0.05 unit).

This operation generated a series of nested gene/clone feature sets of

different sizes depending on the chosen posterior probability threshold.

This ranking approach is conceptually similar to previous reports (18, 19)
but considers posterior probabilities rather than P values.

Signature development. The survival-associated gene expression

signatures (IS, TS) were defined as linear combinations of the gene
expression measurements of the selected genes weighted by their estimated

Cox proportional hazards model regression coefficients (association

between gene expression and RFS). More precisely, for feature gene sets

(obtained in the feature selection step), the IS and TS signatures for each
patient i were calculated as follows:
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ISðiÞ ¼ fjeV½hjZi;j� and TSðiÞ ¼ fjeC½h�
jZ

�
i;j�

where hj (resp. h*j for TS) was the transcriptomic Cox’s regression

coefficient for a gene j belonging to the feature sets V for IS (resp. C) and

Zi,j (resp. Z*i,j) was the gene expression measurement of a gene j for the

patient i over V (resp. C).
These signatures can be viewed as a compound covariate predictor for

survival data (20, 21). Using these signatures, we classified patients into low-

risk or high-risk profile group using a cutoff value determined by the

median of the estimated scores obtained through the cross-validation

procedure described below.

Performance evaluation of the signature building processes. The
discriminating ability of each signature building process (IS and TS) to

separate high-risk from low-risk patients was evaluated at different

posterior probability thresholds, leading to different feature gene set sizes.

At each threshold, the entire process of feature gene selection, signature
computation, and high/low-risk group allocation was assessed using a

5-fold cross-validation strategy. At the end of the cross-validation

procedure, each patient had a predicted group membership and the log-
rank score statistic (as a measure of separation between high-risk and low-

risk groups) was calculated (22). For both signatures, the posterior

probability threshold leading to the best performance in terms of log-rank

score statistic was retained and regarded as the optimal threshold for that
signature.

To establish if the differences between the two survival distributions

(low/high risk) were statistically significant (i.e., the gene signature

performance is better than chance), we randomly permuted the survival
times (and associated censoring indicators) among the tumor samples,

repeated the entire cross-validation procedure, and calculated a log-rank

score statistic as described above. Then, we calculated the proportion of

permutations having a log-rank statistic greater or equal to the real

(unpermuted) data (20) and used it to detect a significant difference at the
5% level.

External validation of the consensus gene signatures. Because

individual cross-validation runs can output distinct feature sets, we defined

consensus feature sets for IS and TS comprising genes that were selected in
at least two of five of the cross-validated gene sets obtained at their optimal

posterior probability thresholds. Finally, the IS and TS consensus feature

sets were reapplied to our series to determine consensus gene weighted

scores for the final consensus IS and TS signatures.
The external validation or the transportability of the two consensus

signatures (IS and TS) were tested on two independent publicly available

microarray expression data sets, done on either Affymetrix U133 Plus 2.0 or
U133A oligonucleotide arrays. The first data set (GEO accession no. GSE3141)

from Duke University (23) included a subselection of 31 stage I lung adeno-

carcinomas. The second independent data set (GEO accession no. GSE4573)

from Michigan University (19) included a subselection of 73 patients having
stage I squamous cell lung carcinomas. For both data sets, the MAS5-

calculated signal intensities were normalized using quantile normalization.

To quantify the amount by which the consensus weights differ from the

optimally trained weights (defined as the weights derived from each
independent data set), we computed the dispersion over the IS and TS gene

sets by averaging the squared distance of the consensus weights from the

optimal ones.

Results

This study was based on a series of 85 lung cancer patients
diagnosed with stage IB primary adenocarcinoma/large cell
carcinoma (Table 1). Because the effect of comorbidity on survival

Figure 1. Flow chart of the lung cancer gene signature building process. Integrative signature (IS ). A, CGHMix: allocation for each BAC to a copy state
(gain/loss/modal); B, ranking of the genomic clones based on their genomic-survival posterior probabilities; C, selection of nested feature sets of clones depending
on the chosen posterior probability threshold; D, identification of copy number–driven expression genes; E, selection of copy number–driven expression genes
located in selected genomic-survival clones. Transcriptomic signature (TS ). F, ranking of the genes based on their transcriptomic survival posterior probabilities.
G, selection of nested feature sets of genes depending on the chosen posterior probability threshold. H, signature development. I, 5-fold internal cross-validation
for different nested sets of genes for IS and TS. J, evaluation of the discriminating ability of IS and TS to separate high-risk from low-risk patients at different
posterior probability thresholds; identification of the optimal threshold. K, external validation using independent data sets.
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after surgical resection of stage I NSCLC patients has been
recognized (24), we focused on RFS as a clinical end point. The
median follow-up was 46 months. At the time of analysis, 29
disease-related deaths or tumor relapses had occurred. For the
entire cohort, the RFS rate was 79.3% (95% confidence interval,
70.8–88.9) at 24 months (Supplementary Fig. S1), similar to
previous observations (25). No significant relationships between
RFS and classic clinicopathologic variables (age, sex, histologic
differentiation, pleural involvement, vascular invasion, and TTF1
expression) were found (Supplementary Table S1).

Patterns of CNAs. Using BAC array-CGH technology, we
analyzed the frequencies of genomic amplification/deletion events
in our series (Fig. 2A). The global copy number patterns observed
in our series were similar with those of previous studies (4, 26–28),
showing the well-known amplifications at 1q, 5p, 7, and 8q and
deletions at 3p, 5q, 8p, 9p, and 13. In particular, we found that the
most common genomic alteration in our series was a gain of
chromosome 5p found in 56.5% of cases, a similar rate as that
published by Weir and colleagues (27). On 5p, we detected two
distinct amplification events centered on the hTERT and SKP2
genes (Supplementary Fig. S2), both of which have been
functionally implicated in lung carcinogenesis. Additionally, we
observed the previously described common segmental amplifica-
tions such as 8q24 (c-MYC), 11q13 (CCND1), and the more recently
reported region 14q13, corresponding to the NKX2-1 (TTF1) gene
(27). In our study, the majority of oncogenes and tumor suppressor
genes known to be associated with quantitative genomic changes
in NSCLC (Supplementary Table S2) were commonly found in close
proximity to the central peaks of recurrent CNAs (Supplementary

Fig. S2). For example, we observed a strong correlation between
array-CGH and interphasic fluorescence in situ hybridization for
amplification of EGFR-1 and c-MYC genes (Supplementary data).
We next defined patterns of recurrent CNAs that reflect the

propensity of each genomic region to be amplified or deleted.
From this chromosomal patterns analysis, 14.4% and 20.9% of the
clones were classified as ‘‘exclusively amplified’’ or ‘‘exclusively
deleted’’ recurrent CNAs, respectively. The most frequent
exclusively amplified CNAs were observed at chromosomes 1q,
5p, 6p, 7, 8q, and 20, whereas the most frequent exclusively
deleted CNAs occurred at 3p, 5q, 6q, 8p, 13, 15, 16q, 17p, and 18q
(Fig. 2B). The PIK3CA gene, located at 3q26.3 locus, has been
reported to be amplified in squamous cell carcinoma (4, 28) and,
as expected, was not identified as a recurrent CNA in our series.
In a similar vein, we observed recurrent gains of 6p and recurrent
losses of 13, both of which have been shown to occur in lung
adenocarcinomas (5, 26).

Copy number–driven genes. Using a Bayesian normal mixture
model approach (16), we quantified for each gene its posterior
probability for having expression changes correlated with copy
number changes. The distribution of the linear correlation-based
statistics formed a normal-shaped curve shifted toward positive
values (Supplementary Fig. S3). Although we observed several
competing mixture models that provided a good fit to the data,
the estimated component means of normal distributions for these
mixture models were always positive, consistent with the notion
that amplifications are associated with increased expression, and
deletions with loss of expression. Applying the Bayes allocation
rule, 42% of the genes were classified as copy number driven,
consistent with a global influence of DNA CNAs on gene expression
in lung cancer. Similar observations have been reported for breast
cancer (7). An example of a positive correlation validated at the
DNA, mRNA, and protein levels is shown for CCND1 (Supplemen-
tary Fig. S3). In addition, we observed a positive relationship
between amplification of NKX2-1 (TITF1, TTF1) and its expression
at both transcript and protein levels. The mean transcript levels by
microarray were 5.89 and 6.90 units for nonamplified and amplified
NKX2-1 , respectively (P = 0.02). Furthermore, all 16 cases of
amplified NKX2-1 showed detectable expression of the protein,
whereas protein was detected in only 40 of 65 (62%) cases deemed
not amplified for NKX2-1 (P < 0.005).

Prognostic effect of genomic/transcriptomic changes. To
examine the relationships between copy number changes and RFS,
we computed score statistics based on Cox models (Supplementary
Fig. S4A). At a false discovery rate threshold of 10%, the clones with
the highest posterior probabilities of being correlated to the time
to relapse were located in the following regions: 1p36, 7p12, 7q11,
7q31-33, 8q22, 11q12, 14q21, 16p11-13, 16q22-q24, 20q11, 21q21-22,
and 22q11-12. Of note, a highly significant increased risk for relapse
was found for the amplified region 7q31-33, known to contain
several genes that have been related to cancer aggressiveness (MET,
POT1, CAV1 , and CAV2). Paradoxically, a significant decreased risk
for relapse was found for deletion of chromosome 16q containing
the tumor suppressor gene WWOX . However, this region also
contains the oncogene MAF whose deletion may act to reduce
cancer progression and thus explain the protective effect of this
chromosomal loss (29).
The prognostic effect of global gene expression changes on RFS

was also calculated. Unlike the survival score statistics for the BAC
genomic clones, the gene expression statistics did not show a clear
trend over the chromosomes (Supplementary Fig. S4B). For a

Table 1. Patient clinicopathologic characteristics

Characteristic (N = 85) n (%)

Age at diagnosis (y)

Median 63
Range 42–84

Gender

Male 63 (74)

Female 22 (26)
Tobacco (n = 78)

Smokers 73 (86)

Non smokers 5 (6)

Type of resection
Wedge-resection/segmentectomy 4 (5)

Lobectomy/bilobectomy 78 (92)

Pneumonectomy 3 (3)
Necrosis 54 (64)

Histology

Adenocarcinomas of mixed subtype 56 (66)

Other adenocarcinomas 9 (11)
Large cell carcinomas/others 20 (23)

Histologic differentiation

Well differentiated 42 (49)

Moderately differentiated 7 (8)
Poorly/nondifferentiated 36 (43)

Other histologic parameters

Lymphatic invasion 44 (52)

Blood vessel invasion 53 (62)
Visceral pleura invasion (n = 84) 53 (63)

TTF1 expression (n = 84) 51 (61)
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global 10% false discovery rate, the selected scores were exclusively
positive, indicating that overexpression increases relapse risk,
whereas underexpression decreases relapse risk. Among the
selected genes, SRA1, GNA12 , and NTSR1 have previously been
implicated in cancer progression in breast, ovarian, and glial cell
cancers (30–32). Other RFS-associated genes are related to immune
cell function (SLAMF9, IFIH1, IL11 , and CD2BP2) and oxidative
stress response (MAPK11 and TXNRD2), perhaps indicating
involvement of the microenvironment. It is also worth noting the
selection of PTK9 (TWF1) and PTK9L (TWF2), coding for two
recently described proteins of the twinfilin subfamily that modulate
cell motility by inhibiting actin polymerization (33).

Construction and internal validation of prognostic gene
signatures. Next we sought to build an ‘‘integrated’’ predictive
model of RFS based solely on the expressed portions of the most
clinically relevant cytogenetic abnormalities. For this purpose, we
restricted our gene selection specifically to copy number–driven
genes located within exclusively amplified or deleted recurrent
CNAs, the latter having posterior probabilities of being associated
with RFS above a defined statistical threshold (see Materials and
Methods). We then constructed a compound covariate predictor,
termed the integrated signature (IS), using an approach similar to
that of Simon and colleagues (20). We performed 5-fold cross-
validation to evaluate the two classifier-building processes ( feature
selection and signature construction) with respect to their
discriminatory capabilities. To compare the IS with a more
conventionally derived expression signature, we also constructed

a transcriptomic signature (TS) using the same methods, with the
exception of feature selection. For TS, we considered all genes
irrespective of their copy number status and ranked them based
solely on their expression correlations with RFS.
Both the IS and TS processes were able to select signatures that

provided statistically significant discrimination between low-risk
and high-risk patients. Nevertheless, the IS process showed higher
and more stable discriminating power than the TS process when
increasing or decreasing the feature selection threshold (posterior
probability), which relates to the number of selected clones/gene
across the different cross-validation runs.
Based on the cross-validation curves, we defined optimal

threshold values (0.92 for IS and 0.88 for TS) that strike a balance
between having a good discriminating ability and allowing for a
minimum number of selected genes. Thus, the IS defined low-risk
and high-risk groups with RFS rates at 24 months of 94.5%
(95% confidence interval, 87.3–100.0) and 63.7% (95% confidence
interval, 48.2–84.2), respectively (Fig. 3A). Similarly, the TS defined
low-risk and high-risk groups with RFS rates at 24 months of 87.1%
(95% confidence interval, 76.1–99.7%) and 74.0% (95% confidence
interval, 60.6–90.3%), respectively (Fig. 3B). By performing random
permutations, we found that the survival differences between the
low-risk and high-risk groups defined by the IS and TS were
significantly better than expected by chance (P = 0.02 and P = 0.05,
respectively).
Finally, we identified final consensus gene sets for the IS and

TS comprising genes that were commonly selected in repeated

Figure 2. Frequencies of chromosomal aberrations. The frequencies of amplification (orange ) and deletion (light blue ) over the 85 samples are plotted and ordered
according to the chromosomal order (x-axis ) from 1pter to 22qter (A), with their corresponding allocation in one of the three levels of amplification (orange/red )
and deletion (blue ; B ). Exclusively amplified recurrent CNAs are plotted in red, and exclusively deleted recurrent CNAs in dark blue.
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cross-validations. The consensus IS was composed of 171 probe
sets representing 103 unique genes located on chromosomes 7, 16,
20 and 22 (Supplementary Table S3). The consensus TS was
composed of 58 probe sets representing 43 unique genes scattered
over the genome (Supplementary Table S4). Not surprisingly, these
two signatures included completely different sets of genes (only
one gene in common), suggesting that they may reflect different
biological aspects of carcinogenesis.

External validation of the consensus IS and TS signatures.
Next, we assessed the transportability of our consensus IS and TS
in two independent lung cancer data sets. Importantly, we did not
retrain the weights on the new data sets, but rather directly applied
the original gene weights as derived from our series. In the Duke
data set subselection (consisting of 31 stage I lung adenocarcino-
mas analyzed on the same platform U133Plus 2.0, ref. 23), the
consensus IS showed a statistically significant difference in RFS
between low-risk and high-risk patients (P = 0.003), whereas the TS

did not (Fig. 4A and B). It is worth noting that varying the number
of genes for the TS did not improve its internal or external
prognostic performance.
Because the locations and frequencies of recurrent CNAs are

highly similar between adenocarcinomas and squamous cell
carcinomas (28), we then asked if the IS retained its prog-
nostic significance when applied to squamous cell carcinomas as
well. Specifically, we tested a series of 73 patients with stage I
squamous cell carcinomas from a Michigan University study (19).
Because the Michigan series was analyzed on the Affymetrix
U133A microarray, only 93 of 171 probe sets for the IS and 27 of 58
for the TS could be applied in validation. Nevertheless, the
consensus IS showed a statistically significant difference in RFS
between low-risk and high-risk patients (P = 0.025), whereas the
TS did not (Fig. 4C and D).
To investigate the disparity between IS and TS performance, we

analyzed the squared distance between the original consensus

Figure 3. Internal validation of the lung cancer gene
signatures. RFS curves with the IS (A) and for the TS (B)
for the optimal feature selection threshold with their
corresponding P values.

Figure 4. External validation of the consensus signatures.
External validation of the consensus IS and TS signatures
for Duke (A and B ) and Michigan (C and D ) series.
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weights and optimally trained ones derived from the Duke and
Michigan series. The distances were markedly smaller for the IS
(Duke: 1.19, Michigan: 0.58) compared with the TS (Duke: 3.06,
Michigan: 1.67), indicating that on the whole, the genes comprising
the IS are more reproducibly associated with patient outcome in
the independent series than the genes of the TS, which explains, in
part, the better transportability of the IS. Together, these findings
show a robust prognostic performance of the IS in predicting
outcome in stage I NSCLC.

Discussion

In this work, we combined genomic and gene expression
information to derive a survival model rooted in recurrent CNAs
associated with NSCLC. By restricting the model to genes
exhibiting copy number–driven expression, we generated a
generalizable (reproducible and transportable) predictor of out-
come in a subgroup of early-stage lung cancer patients for which
there is clearly a need for new prognostic factors. Specifically, the
IS accurately distinguished patients with high risk and low risk of
relapse in our initial series and was transportable to two
independent stage I NSCLC series. These results clearly show that
genome copy number information can be effectively used for
generating prognostic models of lung cancer survival. Interestingly,
we also found that a classically constructed prognostic signature,
based solely on gene expression, failed to show significance in the
independent cohorts. This may suggest that integrating copy
number information with gene expression may provide added
power in the generation of robust prognostic signatures. Although
an exhaustive comparison about whether the integrated approach
is truly superior to pure gene expression approaches is beyond the
scope of this report, it clearly represents an avenue for the conduct
of future studies.
It is perhaps worthwhile to juxtapose our study against the

backdrop of other reports describing genomic approaches to
discriminate patients with early-stage NSCLC. Bhattacharjee and
colleagues (34) described three distinct and stable clusters of
adenocarcinoma subclasses using mRNA expression. One subclass
included most bronchioloalveolar carcinomas (BAC) and were
stage I tumors. In contrast, another subclass expressed neuroen-
docrine markers and had a significantly poorer prognosis. In our
series, the genes described in the neuroendocrine subclass (KLK11,
DDC, ASCL1, CALCA, PCSK , and SPE) were not significantly related

with survival. This was not surprising because we excluded cases
with neuroendocrine differentiation and BAC histology. Recently,
Potti and colleagues (35) combined gene expression information
with Bayesian statistics to describe a multifactorial model for
predicting clinical outcome in early-stage NSCLC. Chen and
colleagues (36) also described a simpler five-gene classifier for
the same purchase. Although promising, these previous studies are
also not without limitations. First, most of the signatures have been
largely inferred by treating NSCLC as a single disease type, whereas
in reality NSCLCs comprise a diverse mix of distinct histologic
subtypes that differ radically in their global gene expression profiles
(37). Furthermore, there is mounting evidence that different
histologic subtypes of NSCLC may in fact exhibit different optimal
molecular signatures for survival (19). This failure to incorporate
histologic subtype might reduce model robustness and predictive
accuracy in the pure gene expression–based models. Indeed, we
found that two published pure gene expression–based models,
the 5- and 16-gene signatures from Chen and colleagues (36) and
a 50-gene prognostic signature from Beer and colleagues (18)
and Raponi and colleagues (19), were not able to significantly
discriminate between low-risk and high-risk patients in our cohort
(data not shown). In contrast, the survival-associated recurrent
CNAs described in our report are known to be observed across
multiple NSCLC subtypes, such as amplifications of chromosome 7
and deletion of 16q (28). The commonality of these CNAs may
explain why our integrated predictor was also applicable to a
squamous cell lung carcinoma cohort despite it being built on an
initial cohort, which was a mixture of adenocarcinomas and large
cell carcinomas.
Another limitation of the gene expression–based studies is that

it can be difficult to infer if genes belonging to the prognostic
signatures reflect transcription within cancer cells or in the tumor
stroma consisting of various fibroblast, endothelial, or infiltrating
immune cells. Given the variation of stromal tissue content within
and across tumor specimens, how gene expression levels arising
from these tumor subcompartments relate to prognosis may be
difficult to predict and may explain why some gene expression
signatures show limited performance when measured over
different populations. In contrast, our IS is grounded on genomic
regions exhibiting recurrent CNAs. Because such CNAs are likely to
be present solely within tumor cells, the IS may present a more
‘‘tumor-centric’’ view of gene activity and thereby improve the
transportability of a survival model.

Figure 5. RFS from high-risk group stage I and stage II
patients. A, RFS curves for our series (blue ) and the stage
I adenocarcinoma patients from the Duke series (orange ).
B, high-risk (orange ) and low-risk (dashed orange )
patients according to the IS for stage I patients from the
Duke series, with the RFS for stage II patients from the
same series (green ) shown superimposed.
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From a clinical aspect, it is worth considering the potential effect

of our study on the treatment of stage IB NSCLC patients—an

important clinical population where treatment options are
controversial. In a preliminary analysis, we found that in the

Duke series (23), the clinical outcome of stage I patients

classified as ‘‘high risk’’ and stage II patients were similar
(Fig. 5). This observation raises the potential implication that

stage IB patients classified as high risk by the IS should be

treated with adjuvant chemotherapy similar to stage II patients

because the benefit of adjuvant treatment has already been
conclusively shown in the latter group. By extension, stage IB

patients designated ‘‘low risk’’ by the IS might consider not

undergoing adjuvant treatment. The utility of an IS as a
chemotherapy indicator should definitely be further evaluated

in the context of a prospective clinical trial.
In conclusion, we have described in this report an integrative

genomic strategy combining information about recurrent CNAs
with genes exhibiting copy number–dependent expression for the
creation of survival models. We then showed the robustness and
transportability of this IS for stratifying stage IB NSCLC patients.
Our results conclusively show that genome abnormalities in copy

number are likely to exert an influence in determining patient
prognosis in NSCLC. Our study highlights the relevance of
combining genomic information from multiple levels to address
problems of high clinical priority.
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