

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Grundy, J., & Hosking, J. (2003). SoftArch: tool support for integrated software
architecture development.

Electronic version of an article published as
International Journal of Software Engineering and Knowledge Engineering, 13(2),

125–151.

 Available from: http://dx.doi.org/10.1142/S0218194003001238

Copyright © 2003 World Scientific Publishing Company.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.worldscinet.com/.

A preprint of article published in International Journal of Software Engineering and Knowledge Engineering
vol. 13, no. 3, © World Scientific 2003.

SOFTARCH: TOOL SUPPORT FOR INTEGRATED SOFTWARE
ARCHITECTURE DEVELOPMENT

JOHN GRUNDY1, 2 AND JOHN HOSKING1

Department of Computer Science1 and Department of Electrical and Electronic
Engineering2, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

A good software architecture design is crucial in successfully realising an object-oriented
analysis (OOA) specification with an object-oriented design (OOD) model that meets the
specification’s functional and non-functional requirements. Most CASE tools and software
architecture design notations do not adequately support software architecture modelling and
analysis, integration with OOA and OOD methods and tools, and high-level, dynamic
architectural visualisations of running systems. We describe SoftArch, an environment that
provides flexible software architecture modelling using a concept of successive refinement
and an extensible architecture meta-model. SoftArch provides extensible analysis tools
enabling developers to analyse their architecture model properties. Run-time visualisation of
systems uses dynamic annotation and animation of high-level architectural modelling views.
SoftArch is integrated with a component-based CASE tool and run-time monitoring tool,
and has facilities for 3rd party tool integration through a common exchange format. This
paper discusses the motivation for SoftArch, its modelling, analysis and dynamic
visualisation capabilities, and its integration with various analysis, design and
implementation tools.

Keywords: software architecture, software tools, architecture modelling and analysis,
software visualisation

1 Introduction

Many software modelling notations and tools have been developed over time [1, 2,
3, 4]. Due to the increasing complexity of software systems there has been an increasing
emphasis on software architecture modelling in CASE tools in addition to the more
conventional object-oriented analysis (OOA) and object-oriented design (OOD)
modelling [5, 6, 3, 4]. Various design notations have been developed, including those of
UML [7], PARSE [4], JViews and aspects [8, 9], tool abstraction [2], and Clock [1, 10].
Support tools include Rational Rose [11], JComposer [9], PARSE-DAT [4], ViTABaL
[2], SAAMTool [3] and Argo/UML [12]. The Unified Modelling Language (UML) [7]
uses a combination of class, collaboration, component and deployment diagrams.
Clockworks and JComposer use annotated component diagrams [1, 9]. PARSE-DAT
and ViTABaL use process diagrams. Several systems, including SAAMTool [3],
Argo/UML [12] and Visper [13], use various kinds of structural architecture component
diagrams.

Most of these systems provide only partial software architecture modelling
solutions, supporting some aspects of architecture modelling supported e.g. basic
structure, limited dynamic behaviour and event models, or dynamic process creation
[15, 16]. Most only capture limited knowledge about an architecture’s properties and the
characteristics of architecture elements. Few provide analysis tools to help developers
reason about their models and ensure OOA requirements are met and architecture
components refined to suitable OOD abstractions [12, 15]. Few support OOD and/or
implementation code generation from architecture-level abstractions, and few support
reuse of previously developed models and patterns [10, 12]. Almost none are
sufficiently extensible to allow new architecture abstractions and analysis tools to be
added, and most architecture representations in tools have poor or no integration with
related analysis, design and implementation abstractions. High-level dynamic
visualisation of algorithms and design-level call graphs and dataflow have been used for
many years [17, 18, 19, 14, 20] to provide a mixture of views of running program
information. Most of these approaches focus on object or algorithm-level dynamic
visualisation techniques, rather than architectural component visualisation. Limited
architecture-level visualisations have been developed, together with approaches to
visualise running systems [18, 19]. However most dynamic visualisations bear little or
no relation to static architecture visualisation (design) notations, making them hard to
understand and interpret.

We describe SoftArch, an environment providing new approaches for software
architecture modelling, analysis, visualisation and tool integration. Architects use an
extensible visual notation to describe and refine software architecture models. Detailed
properties of architecture elements and element groupings capture knowledge of
architectural characteristics. A collection of extensible “analysis agents” constrain,
guide and advise architects as they build and refine these models. Visualisation of
running system architectures using high-level abstractions in SoftArch is supported.
SoftArch has been integrated with process management, analysis, design and
implementation tools, using a variety of tool integration techniques, to “value-add” to a
software designer’s overall tool set by providing support for complementary, integrated
architecture development.

In the following sections we motivate the need for SoftArch and review current
support for architecture modelling, analysis and dynamic visualisation support. We then
overview the facilities of SoftArch, focusing in turn on its static architecture modelling,
architecture analysis, and dynamic architecture-level visualisation support. We briefly
discuss the design and implementation of SoftArch, focusing on its integration with
other tools (CASE, programming environments and run-time systems). We conclude
with a summary of SoftArch’s contributions and directions for future research.

2 Motivation

Software architecture development has become an increasingly important part of
the software lifecycle, due to the increasing complexity of software being constructed
[21, 7, 22]. Software developers need to carefully describe and reason about the
architectures of complex, distributed information systems, which are often comprised of
a mix of new and reused components. A good, extensible and maintainable architecture
often makes the difference between successful and failed projects. Much more time

tends to be spent on architecture development than previously, and many more options
exist for developers [21].

(3)
(1)

(2) (4)

Fig. 1. (a) An example system and (b) two views of parts of its software
architecture from the SoftArch environment.

Consider a simple E-commerce system, a screen dump from which is shown in Fig.
1 (a). This is a collaborative travel planning system which provides itinerary views (1),
flight bookings (2) and a travel map visualisation (3) [23]. Fig. 1 (b) shows two high-
level views of parts of the software architecture for this system from our SoftArch

design tool. The top view shows how specific components of the client-side and server-
side processes are inter-related. The bottom view shows how customer and travel agent
clients access the centralised server processes. These views are described using our
SoftArch visual architecture description notation [5, 24, 22]. In order to design and
build such a system, developers need to carefully model the software architecture and
refine it to a suitable OOD model, ensuring it meets all system functional and non-
functional specifications.

We define a software architecture as the organisation of the software elements of a
system, together with relationships to the hardware and networking required to run and
support communication between these software elements. Like most researchers we
characterise software architectures as comprised of various components (groups of
functional abstractions) and connectors linking components [5, 22]. Each has both
functional (data and behavioural) and non-functional (e.g. performance, reliability,
security, integrity, etc) properties. Most OOD techniques, like the UML, focus solely on
detailed functional system definition. However, many software architecture description
languages (ADLs) aim to associate both functional and non-functional properties of a
specification with architectural elements, so these can be reasoned about [21, 5, 24, 16].
An architecture description should help developers to meet a system specification’s
functional and non-functional requirements, and a rich variety of architectural views
may be useful (data allocation, processes and process inter-connections, subscribe-
notify and event-passing approaches, host machines, processes and networking, and so
on). Thus when designing the architecture for a system like the Travel Planner outlined
above, developers typically require support to:
• represent processes (clients, servers, databases etc), machines (client and server

hosts etc), data and other architectural components (database tables, files, etc) [1,
11]

• represent inter-component relationships, such as structural relationships, data usage,
message passing, event subscription/notification, message order, concurrency and
so on [16, 4, 12]

• represent additional architectural characteristics related to those above, such as data
and control functions, data replication, caching, concurrency control, security
mechanisms, communication protocols, etc [1, 2]

• model and reason about both static architectural connections and dynamic
behaviour of related architecture components

• capture both functional and non-functional characteristics of each of these
architectural features [7, 1, 16]

In addition, a system’s software architecture can be viewed from many levels of

abstraction, from high level (e.g. client-server; staff clients vs customer clients; server
processes; multi-tier architecture) to architecture-implementing object-oriented design
(OOD) classes and inter-class relationships (e.g. “TravelItineraryClient”,
“FlightManager”, and “CustomerTable”). In any non-trivial architecture there normally
exists many refinement steps from OOA specifications and high-level views of the
system’s architecture to detailed OOD-level class and object abstractions. Refinements
of system functional and non-functional properties, using multiple levels of software
architecture abstractions, thus preserves traceability from OOA specifications to low-
level OOD design implementation approaches.

Fig. 2 illustrates the development process and relationships between OOA, software
architecture, and OOD and implementation-level software artefacts we aim to support
with SoftArch. Architects construct architecture designs at varying levels of detail to
realise an OOA specification, eventually producing parts of an OO design (to be
completed and implemented using e.g. CASE tools and programming environments). In
addition, often existing designs and code must be reverse engineered into higher-level
architectural models, which themselves may need to be reverse engineered into OOA
specifications. Ideally an architecture design tool should support traceability from high-
level to low-level architectural abstractions. It should also aid developers in validating
the correctness of their use of architectural abstractions. Architectural design views at
different levels of abstraction should be able to help developers analyse how an
implemented, running system using the architecture behaves.

Object-oriented Analysis

Functional & non-functional
specifications

Object-oriented Design

Classes, reused APIs,
file/table specs, code

fragments etc.

Software Architecture

Architecture components,
associations, annotations,

properties

Fig. 2. Transformation of OOA model to OOD model via Software
Architecture.

A tool to support architecture modelling, refinement, validation and to utilise static

architecture design information to aid running architecture performance analysis should:
• Allow architects to use an extensible set of architecture modelling abstractions i.e.

different kinds of components, connectors and component/connector annotations.
Architects need to use a wide range of suitable abstractions when designing
architectures, and need to extend these for different problem domains. Each of these
architecture element types will have a variety of characteristics the designer may
specify (e.g. name, location, performance characteristics, required security support,
and so on).

• Support modelling the system at differing levels of architectural abstraction, from
very high-level to parts of a detailed OO design. Ideally a number of visual
abstractions will be provided along with detailed architectural data entry.

• Provide architects with assistance reasoning about and validating complex
architecture designs. This should include checking the characteristics of related
architecture elements to ensure usage constraints and non-functional properties are
consistent and compatible.

• Support visualisation of implemented architecture designs using high-level design
abstractions. This allows architects to link implemented system performance results
with the architectural abstractions the implementation is based on

• Be able to exchange data with related tools e.g. CASE tools, programming
environments, monitoring tools.

3 Related Work

Existing software architecture notations and support tools generally lack
comprehensive support for architecture modelling, refinement, analysis and OOA/D
linkage [15, 16]. Commonly used software modelling notations like the UML [7]
provide views of classes, components and machines. Such notations suit low-level
architectural representation reasonably well, but do not provide for higher level
architectural oversight [16, 1]. Deployment diagrams in UML offer a view of machine
and process assignment and inter-connection, but this is the only high-level specifically
architectural view in UML, and is quite limited. Commonly used CASE tools, such as
Rational Rose [11] and Argo/UML [12], also lack notational abstractions for designing
large system architectures [15]. In addition, most CASE tools lack adequate support for
refinement of OOA to OOD and architecture models and for maintaining traceability
between multiple levels of system abstractions. Few provide adequate template or
reusable model support and few capture architecture-related design rationale [16].

Most component engineering tools, such as JComposer [9], Borland JBuilder and
that of Wagner et al [25], provide little in the way or architecture modelling support,
focussing primarily on design- and implementation-level detail. The latter is necessary
when developing systems, but too low-level for large system architecture development.
Few support capture of multiple perspectives on architecture models and different levels
of abstraction and refinement relationships. JComposer [9] and MET+[25] provide
component views with some higher level associations and properties like event
exchange visualised. Argo/UML [12] does provide a small amount of additional
architecture-oriented notation, notably C2-style communication "buses", but this is
inadequate for large system design.

 Some tools and notations have been developed specifically for software
architecture modelling or have had more conmprehensive architecture modelling
capabilities added. Examples include PARSE-DAT [4], ViTABaL [2], Clockworks [1],
SAAMTool [3], and JComposer architectural aspects [8]. These typically support only
limited kinds of architectural abstractions. PARSE-DAT focuses on process-oriented
views of architectures, ViTABaL on tool-based abstraction and SAAMTool on
structural composition. ClockWorks [1] uses component diagrams but with additional
architecture "annotations", representing caching, concurrency and replication.
Clockworks supports some code generation from these annotations to help automate
realisation of such facilities from their visual specifications. PARSE-DAT provides
reasonably high level views of processes and inter-process communication [4] but lacks
support for OOD or for code generation, and is limited to basic process views. Most
other architecture modelling approaches also focus on basic process and/or program
structure (such as SAAMTool) [3]. Most tools that provide architecture notations lack
support for dynamic visualisation of realised systems using equivalent notational
representations.
Few CASE or other tools provide architecture model analysis and verification
mechanisms or integration and reverse engineering support. PARSE-DAT, ViTABaL
and ClockWorks provide some analysis support, but limited to specific kinds of
domains. Argo/UML provides design critics but these mostly focus on low-level OOD
model evaluation heuristics. Argo’s critics cannot currently be extended in any way by
users, which is problematic if new architectural modelling features need to be added to
the environment. Specialised analysis tools, such as those for CSP [26], allow the

validation of (limited) architectural models via formal analysis. Some Architecture
Description Language support tools, such as those for Wright [21] and Rapide [27], also
focus on formal specification of architectural styles and support reasoning about the
characteristics of such styles. However our key interest is not so much in the
characteristics of certain architectural styles or approaches, but in supporting developers
in modelling and validating the use of such styles/approaches on development projects.

Dynamic visualisation of systems is useful for developers to understand system
correctness (i.e. to debug them), and to understand higher-level system behavioural
characteristics that can not be easily determined from static architecture design views
and analyses. Various tools support object visualisation and object structure querying,
but lack higher level abstractions [18, 3]. Others support higher-level visualisation over
object graphs, generating call graphs, map visualisations and 3D visualisations [28, 19],
but these focus at only the object level, and are hard to scale and interpret for large,
distributed applications. Various program visualisation systems have been developed,
many offering high-level animations and visualisations of algorithms and object
structures. These include VisualLinda [29], Rose/Architect [6], The Software Bookshelf
[30], and PvaniM [31], and those using 3D call graphs and object trees [19, 18]. While
these visualisations are useful, they typically bear no relation to static architecture
modelling languages and views, and are thus difficult to formulate and interpret.
ViTABaL [2] provides dynamic views of reasonably high-level system components
("toolies") and their relationships but developers must construct these views only from
running components, limiting its usefulness.

4 Overview of SoftArch

The above deficiencies in current CASE and related approaches to software
architecture design motivated us to develop the SoftArch environment. SoftArch
provides an extensible visual notation for software architecture modelling support and
an environment that allows models to be constructed and refined. Analysis agents guide,
advise and/or constrain architects, and templates allow reuse of a variety of software
architecture refinements. A visualisation facility reuses architecture modelling views to
provide high-level visualisation of the dynamics of running systems. Fig. 3 outlines
these basic SoftArch capabilities.

Architects build up software architecture designs drawing on a set of extensible
meta-model architecture element types (components, connectors and annotations) (1).
These element types describe possible kinds of architectural components, connectors
and annotations, and the properties of these elements constrain the use of such entities.
For example, for E-commerce systems like the travel planner, thin-clients, web servers,
http requests, databases and their inter-connections are common modelling elements a
designer draws upon to model important parts of their particular problem domain.

SoftArch supports the notion of refinement of software architecture elements and
groups of elements into successively more detailed, numerous and lower-level element
groupings (2). Properties of high-level architectural components constrain the kinds of
refinements and properties at lower levels of detail. For example, a high-level travel
system component such as “Customer Clients” might be refined to “Map Visualiser”,
“Itinerary Editor”, and “Desktop Applications”. A conceptual group of system
functionality such as “Itinerary Management” might be refined to “Itinerary Clients”,

“Itinerary Servers”, “Database Server”, “Web server” with associated connectors and
annotations.

Successively refined
architectural models

Java Classes & Code

High-level
architectural model

Low-level
architectural model

OOD CASE Tools;
Programming Environments

SoftArch

JVisualise
Monitoring Tool

Running System Objects

Successively higher
level architecture

visualisations

High-level
architectural
visualisations

Low-level component
visualisations

Updates to static views &
dynamic views inter-
changed to keep each

consistent with the other

Limited forms of user
manipulation used to

change running system
configuration…

Running system component events
listened to & basic reconfiguration of

running comps by JVisualise
component object monitoring tool

Component OOD & some
code sent to JComposer
CASE tool by SoftArch;

Implementation completed
using JComposer

Import/export
agent(s)

Software component
meta-model(s)

OOA Specs
(functional &

non-functional)

CASE Tools
e.g. Rose,

Argo/UML

Refinement
templates

Software architecture
process model(s)

Analysis Agents

Static modelling Dynamic visualisation

Import/export
agents

Import agent

Import OOA-level
specifications from CASE

tool into SoftArch

Run clients &
servers

(1)

(2)

(3)

(5)

(6)

(7)

(4)

Fig. 3. Overview of SoftArch architecture design modelling, analysis and

dynamic visualisation approach.

Analysis agents monitor architecture model changes and advise architects on model

correctness i.e. if various meta-model specified constraints between element types and
property values are being adhered to (3). These give the architect feedback (in various
ways) as they model and refine a system. This feedback is typically unobtrusive, though
architects can request immediate notification of constraint violation or can manually
request agents run model checking.

Understanding the behaviour of the architecture of a system like the travel planner
when it is running is challenging. To help architects validate the run-time properties of
their architectures, we capture low-level object events (method calls, property changes,
component events) from running systems that are forwarded to SoftArch (4). In
SoftArch, OOD-level architecture components are located based on event annotations
and information about the running system is passed to their abstractions (i.e. higher-
level components). Static SoftArch visualisation views are copied and annotated to
convey this running system information to developers e.g. to highlight created/not
created processes, indicate number/size/timing of messages between components etc
(5).

We deliberately designed SoftArch not to be a complete CASE tool, but rather to
share information with CASE tools and programming environments. Import/export tools
support linkage between SoftArch and OOA, design and implementation tools. OOA
models allow software architects to capture functional and non-functional requirements

in SoftArch and ensure software architecture models meet these, or at least are
annotated with this information (6). For example, travel planner functional requirements
might be imported from Rational Rose™ OOA descriptions. Partial OOD models and
some code fragments (implementing socket protocols, database access, ORB API calls
etc.) are exported from bottom-level architecture components e.g. to OOD CASE tools
or programming environments, like JBuilder™, to implement the travel planner system
(7). Reverse engineering of OOD models into SoftArch allows developers to abstract
higher-level architectural models from their code.

5 Static Architecture Modelling

In this and the following sections we describe and illustrate the static architecture
modelling, architecture analysis and dynamic architecture visualisation capabilities of
SoftArch. Consider again an architect wanting to design a software architecture for the
travel planning system from Section 2. The architect needs some (ideally extensible)
architectural abstractions to work with and a visual modelling notation to represent
these abstractions in multiple views of the architecture. These views provide
perspectives on the architecture at varying levels of detail.

5.1. Modelling Notations and Meta-Model

 SoftArch uses the concepts of architecture components, associations (connections)
between components, and annotations on components and associations. The types of
component architects might use include processes, data stores, data management
processes (e.g. database servers), machines and devices, and OOA and OOD-level
objects and classes. Associations include data usage associations, event
notification/subscription, message passing, and process synchronisation links.
Annotations include data used, events passed, messages exchanged, protocol used,
caching, replication and concurrency information, process control information, ports
and so on. Each of these architectural elements can have associated properties. These
could include information on services, security approaches, data size, transaction
processing speed, data, message and event exchange details, and so on. Property values
can be simple numbers, enumerated values, strings or value range constraints.

Architectures are made up of complex, inter-connected elements (i.e. components,
associations and annotations). Visualising these inter-connected parts provides
architects with key viewpoints on their architecture’s design. To give this perspective,
we provide architects with a visual architecture modelling language to represent
architecture elements. Fig. 4 (a) shows some of the basic notational elements in our
architecture modelling visual language. This notation has been developed over several
years to represent various architectural abstractions in both our teaching and research
projects [2, 8]. We chose this visual language for architecture modelling to enable
developers to capture a wide range of features, to be relatively simple yet expressive, to
be relatively easy to extend as needed, and to be able to tailor the appearance of visual
elements to their needs. A wide variety of notational symbol and display characteristics
can be changed by architects, such as iconic appearance, size, colour, shading etc. A
UML-style representation of architecture using deployment and component diagram-
like icons is also supported [11, 12], though we have found that these lack sufficient
expressive power and diversity for most architecture design.

Fig. 4. (a) Some examples of our SoftArch visual modelling notation, and (b)

part of a SoftArch meta-model.

The nature of software architecture design means architects often want to
incorporate new modelling abstractions (new types of components, associations and
annotations) into their models for different problem domains, or to better capture
important abstractions. A way of doing this is to allow architects to extend the
modelling abstractions available (and visual notations used to represent these) within
SoftArch. We use a software architecture meta-model to describe all of the types of
components, associations, annotations and properties of these different elements
available for use by an architect. To enable architects to easily extend this meta-model
SoftArch provides a simple visual language to describe the meta-model, illustrated in
Fig. 4 (b). Ovals represent architecture component types, horizontal bars inter-
component association types, and labelled vertical arrows annotation types. Dashed,

arrowed lines between types indicate refinement e.g. a process can be refined into a
client or server process. Solid arrowed lines indicate association relationships e.g. a data
manager may have data usage relationships with any architecture element. For example,
when developing the travel planning system, an architect may find a useful architecture
abstraction is missing e.g. web server, servlet, desktop application, http protocol etc. In
order to use this abstraction during modelling the architect may choose to add this
element type to the meta-model, refining it from an existing, more generic element, and
linking it to other elements. Properties and constraints can be specified for the element
type to enable detailed description and reasoning about its correct usage by analysis
tools.

5.2. Architecture Modelling Example

To illustrate the use of the SoftArch notation and environment for architectural
modelling, consider the modelling of the travel planning application described in
Section 2.

(2)

(4)

(1)

(3)

Fig. 5. Examples of architecture modelling in SoftArch.

To begin with, an architect initially imports an OOA functional and non-functional

specification from a CASE tool into SoftArch or defines this information directly into
SoftArch itself (using simple OOA-level class and function element types). The
architect then sketches out a high-level architectural model for the planned system,
ensuring the general characteristics of this model meets the OOA specification. For
example, the travel planner has to support a number of concurrent users, customers
require a web interface, travel planner components need to communicate with both
client-side desktop applications and server-side enterprise applications, and various data
processing, network and host machine characteristics need to be adhered to by the
architecture (performance, reliability, cost and so on).

Fig. 5 (1) and (2) show two such high-level views of the travel itinerary planning
system architecture. In (1) the architect has represented the parts of the system as three
groups of “processes” – “staff clients”, “customer clients” and “servers”. They have
indicated the staff client applications are connected to the servers via a LAN
association, the customer clients via a WAN (i.e. internet) association. Annotations add
further information such as the expected protocols for communicating with the servers.
In (2), the architect has represented the major server-side and client-side processing
components making up the system and high-level associations and annotations between
these. Such views allow software architects and system designers to describe the basic
architectural approach of the system using simple architectural elements. Some
elements may appear in more than one view, and some views may show both structural
characteristics and dynamic event/message/data exchange. In Fig. 5 (3) the architect is
viewing/setting properties associated with an association between staff clients and the
enterprise servers, which may include visual appearance and non-functional properties
of the element.These architecture diagrams are not always built from scratch. Reusable
template views, such as that shown in Fig. 5 (4) provide a means for them to reuse best-
practice or common architectural structures. In this example the architect considers
reusing a simple server-side “e-commerce” system organisation, made up of http,
application and RDBMS servers and associated data. Architects can copy any view for
reuse as a template and may select an appropriate template and have SoftArch copy this
into their project, automating linking of abstract elements to new refined elements
copied from the template. Change management between templates and copied views is
supported [32].

5.3. Architecture Refinement

Once an architect has designed high-level architectural views capturing the essence

of their system architecture, they usually wish to flesh this high-level architecture out in
more detail, ultimately down to partial OOD-level class and relationship abstractions.
Such refinement allows a system to be visualised from multiple perspectives, some
showing basic architectural elements, others detailed views of parts of a system, with
traceability supported between high-level and low-level abstractions. There are three
ways to refine an architectural model in SoftArch: enclosing components within another
(all enclosed elements are refinements of the encloser), adding sub-views for an element
(all elements in the view are refinements of the view owning element), and specifying
explicit refinement links between elements.

For example, the architect may decide to further specify what “staff clients” are
required, and so create a sub-view for the “staff clients” component in Fig. 5 (1). Fig. 6
(1) shows this sub-view. All components in this view, except for “staff lan”, are
refinements of the higher-level architecture component (“staff clients”) which owns the
sub-view. This allows architects to “hide” this level of detail and drill down to it by
double-clicking the “staff clients” icon to show its refinements. A component may have
several sub-views, with refined components shown in more than one sub-view. In this
example, “staff clients” is refined to “staff booking client”, “staff itinerary editor” and
“staff desktop apps” processes. Annotations indicate a CORBA protocol supports
booking client to server communication, the itinerary client caches itinerary data and
itinerary update events are "pushed" to the itinerary editor. The “staff lan” component is
shown in this refinement for context (what the “staff clients” sub-components are
connected to) but the “<…>” component name annotation indicates it’s a linkage
component and not a refinement component in this sub-view.

(2)

(1)

(3)

(4)

Fig. 6. Example architecture refinements in SoftArch.

The software architect has made two further refinements in this example. In
diagram (2), the “servers” component from Fig. 5 (1) has been refined by using it to
enclose more specific server-side components, relationships and annotations. All
enclosed components, associations and annotations are refinements of the “servers”
component. The architect has chosen to use the enclosing of other components so the
context of the refinement is shown on the diagram with the refined components. Note

that this refinement has reused the template architecture from Fig. 5 (4), copying the
template and the architect renaming and adding to it for use in this modelling
application. In diagram (3), several architecture components describing the itinerary
management part of the system, on the left hand side, have been refined to OOD-level
class components (using UML class diagram notation) on the right hand side. This was
done by the architect adding explicit refinement links (the dotted arrows). The dialogue
shows refinement information for the itinerary_client to OOD classes refinement. OOA-
level classes and services can also be described in SoftArch (usually imported from a
CASE tool rather than defined in SoftArch itself) and refinement links from OOA
classes to architectural components can be made.

SoftArch provides a number of additional modelling facilities our architect may
choose to use. These include dynamic behaviour representation, showing components,
connectors and dynamic information annotations including data, message, control and
event flow/relationships and timing. We have also incorporated some PARSE-DAT and
ViTABaL [4, 2] dynamic component assembly constructs, allowing architects to model
architectures whose components and connectors evolve at run-time. Our software
architect can also model the provided and required services of components and
connectors, allowing us to check (from static design models, at least) that these are met.
Dynamic properties of components can be modelled and compared against actual
performance and other run-time collected measurements.

6 Architecture Analysis

Supporting modelling of software architectures and refinements is not sufficient to
enable software architects to produce quality, consistent architecture models for
complex systems. Software architecture analysis tools are also needed, including
support for checking such things as: all components are linked to others, all components
are suitably refined from OOA-level specifications to OOD-level class realisations,
sensible and consistent associations and annotations have been used, valid property
values have been set, and provided and required services between linked components
are consistent.

For example, our architect may have specified a variety of views of their
architecture as outlined in the previous section. However, a number of problems may be
present in these architecture designs:
• Some architecture elements may not be associated with others or may be associated

in invalid ways.
• Some elements may not have all required property values specified for their types.
• Some architecture elements may not be refined from higher-level components or

refined to lower-level components. This indicates inconsistency between
refinement levels.

• Some elements may require specific kinds of services/properties from related
elements, but these are not provided.

• Some architecture elements may be invalidly refined from or to others.
• Some elements may provide services or properties that are not used by related

components and should be.

Our meta-model architecture modelling types specify various types of validity
information (valid associations, properties and property value ranges, refinement

relationships and so on). In addition to checking such architecture element type usage
correctness, the architect may want to be provided with feedback on the use of various
architecture elements or parts of models in various situations i.e. usage guidelines.

In order to assist architects in static validation of their architecture models SoftArch
provides an extensible set of model analysis agents. These monitor changes to an
architecture model and give feedback in various ways to the software architect -
immediate report of error; unobtrusively adding error notes to an “error list”; or
producing a report when the architect requests one. Fig, 7 shows basic approaches our
model checking agents use to detect and report on errors. Some agents e.g. Agent #1
simply detect a change to a model element (or changes to elements related to that model
element) against meta-model type information. For example, an agent may check if the
component has all required property values set, is refined from another element, or has
required associations to/from other kinds of elements (and these are valid). The agent
reports any discrepancies between the meta-model element type specifications and the
model element instances it can find. Agents can subscribe to changes from single
architecture model elements or groups of related elements. Agents can filter out changes
they are not interested in e.g. an association checking agent only detects “establish or
dissolve relationship” events. We use a change event dispatcher to detect model changes
based on element type, forwarding these to subscribing model checking agents.

Other model checking agents, such as Agent #2, may detect changes to one or more
components and then compare their inter-connectivity and property values against the
agent’s “correctness” template, reporting any error(s). These templates are simply
SoftArch architecture modelling templates, like Fig. 5 (4), with a property for all
components, associations, refinement links, annotations saying if they are
optional/required, and additional element property constraints. The checking agent
validates the changed model elements by comparing them against the template. For
example, a “valid E-commerce architecture” checking agent may check for the presence
of a web server, application server, database and suitable connections, possibly with
suitably constrained element properties.

Meta-model
element type

Architecture
model element

Related elements

Related types
Meta-model

Architecture model

Agent #1

Detect change(s)

Error List Change event
dispatcher

Agent #2

Template Elements

Fig, 7. Analysis agent control, reporting and visual specification.

Fig. 8 illustrates how our software architect can control agent behaviour and view
agent error message reports via an agent control panel (shown on the left). In this
example, the architect has all of the agents configured as “critics” i.e. agents watch
model changes and add messages to a critic message dialogue (shown at the bottom).
Several example messages are shown, indicating various discrepancies between meta-
model type specifications and actual usage of architecture elements in the model. The
architect can ignore these and continue modelling, select one of these and correct it, or
correct a number of these errors and leave others. Inconsistent architecture models can
be modified with inconsistencies tracked in this way.

Fig. 8. Example of architecture design critics.

7 Dynamic Architecture Visualisation

Once an architecture model design is complete, the software architect typically
exports partially specified OOD-level components to a CASE tool and/or programming
environment. Developers complete the implementation using these tools. Software
architects may then want to analyse the actual behaviour of their implemented
architecture, or to analyse a reverse-engineered architecture, using SoftArch-style
abstractions. For example, after completing travel system implementation our architect
may want to study the behaviour of their architecture in practice, possibly to identify
and correct problems, possibly to record performance and other characteristics for use
when developing other architectures in the future. In order to support dynamic
architecture analysis we have developed support for monitoring and visualising
performance information within SoftArch. The approach we use is to capture running
system events (such as method calls, object creation, time to complete method call etc),
and forward these events to SoftArch, tagging them with information about the lowest-
level SoftArch model element they are associated with (OOD class/method, low-level
architecture abstraction etc). We then aggregate these events within SoftArch i.e.
associate events with SoftArch elements and then “pass them up” refinement
hierarchies, summing them at each level in the hierarchy. This gives a multi-level
analysis of overall running system performance measures. We present this aggregated
performance information to the architect using annotated design diagrams (though
architects can also develop diagrams specifically for aggregating performance
information in different ways).

For example, after starting up the itinerary editor servers and one itinerary client
staff application, Fig. 9 (1) shows a dynamic visualisation using a top-level architectural
view in SoftArch. This visualisation represents the number of components created so

far. The servers component is dark (five server-side objects created), staff clients is
lightly shaded (one staff application is running) and customer applets very lightly
coloured (no objects of types that are refined from this high-level component running on
non-staff hosts have been created). This kind of visualisation is useful for software
architects to determine what processes in an architecture have so far been created, and
to determine relative densities of objects etc in their realised architecture. Views can be
animated to show density increasing as a system runs. As with other visualisations,
scaling is used to show relative object and process creation densities, data transfer totals
and number of events exchanged, and so on. The architect can change properties of the
visualisation (colour, scaling, elements updated, frequency of update etc) as they
require.

(1)

(2)

Fig. 9. Dynamic visualisation of running system in SoftArch.

Fig. 9 (2) shows the server-side view of the itinerary planning system, annotated to
illustrate relative method calling and event propagation densities. This helps our
architect identify bottlenecks and performance problems. Association line thickness for
indicates method/event propagation density across the relationship (however
implemented). Border thickness of component icons indicates number of
methods/events in, while background colour indicates internal method/event calling.
This visualisation shows the architect that the booking applet and booking manager

server are moderately used and perform a limited number of internal calls. The Itinerary
editor and its application server perform many more internal calls, and in this scenario
generate more client<->server interactions. The RDBMS is moderately heavily used
(caching in the application servers reduces its load), while the http server’s servlet is
moderately used and performs few internal calls.

Sometimes the software architect wants point-value information about specific
architecture element performance measures, as shown in Fig. 10 (1). This shows data
for the application server objects at a snap shot in time. Summarised information, in this
example a bar graph of number of method calls to the “itinerary app server” component,
an object making up the application server process, has been generated by exporting
data to MS Excel™, shown in Fig. 10 (2). Developers can request that inter-component
communication tracing information be recorded for selected architectural elements, and
can review these. Fig. 10 (3) shows an example of such information presented in a
dialogue. Each method invocation of the application server has been recorded, and the
developer can examine this trace.

(1)

(3)

(2)

Fig. 10. Detailed and summarised performance information.

8 Design and Implementation

Figure 11 illustrates the basic architecture of SoftArch which comprises:
• The SoftArch modelling and meta-modelling tools. These provide a set of meta-

model architecture element type abstractions, reusable model templates and
software architecture model views.

• Serendipity-II workflow system [32]. This provides process models and project
plans for guiding use of SoftArch, and supports visual plug-and-play of analysis
agent parts for use by SoftArch.

• JComposer component-based CASE tool [9]. JComposer provides abstractions for
modelling the specifications and designs of software components, and we use
JComposer to complete design and implementation of SoftArch architecture
models. JComposer also allows reverse-engineering of architecture designs from
existing component code (currently Java files).

• Import/export tools for communicating with 3rd party CASE tools. To date, we have
built XMI-based tools for communication with Argo/UML and a comma-separated
value data exchange tool with MS Excel™.

• The JVisualise dynamic component debugging tool [9]. JVisualise allows us to
monitor running system events and aggregate these into SoftArch. It also allows us
to perform limited manipulation of running component-based systems.

• Communication/event handling by the JViews software bus [23].

JViews Software Bus

SoftArch

Meta-model
projects

Template
projects

Modelling
project

Serendipity-II

JComposer

Analysis agents Process models
& project plans

OOA & D
component models

Java .java files &
packages

XML import/
export agent

Rational
Rose

Argo/
UML

JDK/
JBuilder

XML-encoded
UML models

Import/export OOA
and OOD comps

Import/export .java classes +
code fragments to/from

OOD comps via JComposer
Import/export OOA/D

comps to/from
Argo/UML via XML

encoding

Agents detect SA comp
changes via JViews
component model

Analysis agents
coordinated by enacted
process models & task

automation agents

JVisualise

Running JViews
(Java) components

Visualisation/ configuration of
running architectures via JVisualise…

Compiler Java .class files

CSV Export

Performance
data summaries

Figure 11. Architecture of SoftArch and related tools.

SoftArch’s meta-model, model and visual editing views are implemented using our

JComposer tool’s meta-CASE framework, which generates classes that specialise our
JViews component-based architecture for multi-view, multi-user environment
construction [9]. SoftArch is thus a component-based system and able to be integrated
with other component-based tools by JViews component facilities. SoftArch provides
multiple views of software architecture models with a centralised repository and view
consistency mechanism. It provides a variety of collaborative work facilities, including
synchronous and asynchronous editing of views, version merging and configuration
management.

SoftArch maintains a set of meta-model projects that define the allowable
components, associations, annotations and property types for a model. A set of reusable
refinement templates (which are copiable SoftArch model views) allow reuse of
common architectural refinements. A modelling project holds the model of the software
architecture currently under development, including all views, architectural elements
and projects. This information is represented as JViews software components using a
three-level architecture, as illustrated in Figure 12. The bottom layer is a canonical
representation of data; the middle view information shown in each view; and the top a
set of user interface components forming an editor and icons. The extensible meta-
model can be visually extended allowing new modelling abstractions and constraints to
be dynamically added and reused. The templates can be copied and instantiated into a
model for reuse, with changes able to be propagated between model and source
template. The graphical user interface icons and connectors used by SoftArch are user-
tailorable, allowing architects to change and extend the appearance of their modelling
views. This is particularly important if architects add new meta-model abstractions -
they can also extend their appearance of the SoftArch visual icons to distinguish new
modelling element types from others.

Meta-model Base
Element Type

Meta-model Base
Element Type

Meta-model Base
Element Type

Meta-model Base
Element Icon

Meta-model Base
Element Icon

Meta-model Base
Element connector

Meta-model views

Meta-model base
information

Meta-model editors

Model Base
Element

Model Base
Element

Model Base
Element

Model View
Icon

Model View
Icon

Model View
Connector

SoftArch model
views

SoftArch model
base information

Model editors

Template model
View Icon

Model model
 view connector

SoftArch
template views

Figure 12. 3-level architecture of SoftArch.

Many tools exist which provide object-oriented analysis and design capabilities.
Our own JComposer is one such example, but others include CASE tools like Rational
Rose [11] and Argo/UML [12]. We originally planned SoftArch as an extension to
JComposer, but decided it would be more useful as a stand-alone tool, that could
ultimately be used in conjunction with other, 3rd party CASE tools. SoftArch requires
constraints from an OOA model, particularly non-functional constraints like

performance parameters, robustness requirements, data integrity and security needs and
so on. These constrain the software architecture model properties that needs to be
developed in order to realise the specification. These also influence the particular
architecture-related design decisions and trade-offs software architects need to make.
Similarly, a SoftArch architectural model is little use on its own, but needs to be
exported to a CASE tool and/or programming environment for further refinement and
implementation. Some code generation can potentially be done directly from a SoftArch
model description e.g. some middleware and data management code. When reverse
engineering an application, an OOD model will need to be imported into SoftArch and a
higher-level system architecture model derived from it. Ultimately an OOA
specification may be exported from SoftArch to a CASE tool. Thus SoftArch must
support OOA and OOD model exchange with other tools, and ideally some code
generation support.

JComposer and SoftArch interact to achieve OOA import and OOD design export
and code fragment generation for SoftArch. Generated .java class source code files can
be used in tools like JDK and JBuilder, and changes reverse engineered back into
JComposer and then into SoftArch. We initially used a JComposer component model as
the source for SoftArch OOA-level specification information. JComposer allows not
only functional requirements to be captured, but has the additional benefit of
requirements and design-level component “aspects”, which are used to capture various
non-functional requirements. We developed a component that supports importation of
basic component and aspect information into SoftArch from a JComposer model, using
JViews’ inter-component communication facilities to link SoftArch and JComposer.
However, rather than add OOD and code generation support to SoftArch itself, we
leveraged existing support for these in JComposer. SoftArch uses JComposer’s
component API to create OOD-level components (classes) in JComposer, and instructs
JComposer to generate code for these to produce .java files. We have prototyped a data
interchange mechanism to enable SoftArch to exchange OOA and OOD models with
Argo/UML using an XML-based encoding of UML models.

We use our JVisualise component monitoring tool to request running components
send it messages when they generate events. SoftArch instructs JVisualise to send it
these low-level component monitoring events, which are mapped onto SoftArch OOD-
level architecture elements using JComposer-generated Java class names. SoftArch
allows users to view information about running components using higher-level SoftArch
views, as OOD-level components in SoftArch must have refinement relationships to
higher-level architecture elements in these views. We extended JComposer-generated
OOD models and code to include additional monitoring components to intercept data
and communication messages and to annotate these with the source SoftArch elements
to which low-level generated component events are related. JVisualise uses these to
provide its event and message monitoring and control support.

9 Experience

We have used SoftArch to model a number of small and medium-sized system
architectures. These have included the travel planner discussed here, a business-to-
customer on-line retailing system, an on-line video store library system, and an on-line
micro-payment system. We have also used it to help reverse-engineer the architectures
of several component-based, distributed systems. We have used SoftArch as the

architecture modelling tool component of SoftArch/MTE, a performance test-bed
generator which takes SoftArch models and generates performance test-bed code [33].
This includes the generation of JSP, ASP, CORBA, Enterprise JavaBean and .NET
implementations of SoftArch-modelled systems, with stubs generated for clients,
servers and database access code to allow architecture and middleware performance
analysis to be automatically carried out.

We have carried out two usability evaluations of SoftArch to assess its support for
architecture development. These involved a combination of graduate students,
researchers and industry practitioners modelling system architectures, and in the second
scenario generating performance test-bed code for analysis. These evaluations have
demonstrated SoftArch provides a number of useful facilities not found in comparable
CASE or development environments. These include the ability of designers to refine
architecture models in various ways that supports much richer architectural
representation and reasoning and traces architectural design decisions clearly from OOA
to OOD. Analysis agents that provide incremental feedback to architects while
tolerating varying amounts of inconsistency during architecture design allow for more
flexible architecture development while providing continuous validation guidance.
Visualisation of running systems using high-level abstract views provides much easier
to understand performance information and more rapid feedback than most other
approaches. When coupled with our performance test-bed generator component, the
SoftArch architecture visualisation support can also be reused to provide high-level
visualisation of automatically-generated performance analysis tests. Users of SoftArch
liked its flexible design notation but commonly suggested using “more UML-style
notations”. They also found the import/export of architecture models between different
tools e.g. Argo/UML, SoftArch and JBuilder, to be cumbersome. The current visual
language used to define architecture design critics was found to be too difficult for most
users of SoftArch surveyed.

We are working on characterising a wider range of architectural components for
various domains, such as for embedded systems, real-time systems and E-commerce
systems, and defining meta-models, notational symbols and reusable templates to enable
easier modelling of such systems. We are building further analysis agents to make better
use of architecture component performance measurements, giving developers improved
estimates of likely run-time behaviour of architecture models. We plan to incorporate
more structured architectural properties, characterised using our aspect-oriented
engineering method [8], allowing developers to characterise their architectural
component and association characteristics using systemic aspects and for SoftArch to
perform consistency analysis of inter-aspect relationships. The JComposer-based code
generation and monitoring is quite effective at providing developers with high (and low)
level dynamic architectural component performance and trace information. However, it
requires our JViews-based component architecture be used to realise running distributed
applications. We are currently working on a code generator that uses XML-encoded
UML models to generate parts of systems and 3rd party profiling tools whose traces will
be acquired and aggregated by SoftArch to provide run-time performance information.
We plan to use this code generation and profile aggregation to allow developers to
rapidly develop middleware test bed systems to validate architectural model
performance properties via rapid architecture prototyping and performance analysis.

10 Summary

Modelling, validating and visualising complex system architectures is a challenging
development activity. SoftArch provides a set of tools enabling architects to model rich
knowledge about their architectures using an extensible set of architectural abstractions
and visual notations. The extensible SoftArch meta-model allows developers to define
new, specialised architectural components for particular domains, while the tailorable
visual notations allow developers to represent their architectures in a wide variety of
ways. Architectural component refinement allows developers to refine their
architectures from analysis-level specifications to design-level implementation
descriptions in a controlled and traceable fashion. Architecture analysis in SoftArch
uses basic consistency checks and comparison to best-practice element usage templates
to help inform developers of the quality of their models. This provides support for
proactive architectural refinement during modelling. Dynamic visualisation of running
systems is supported by aggregating captured trace events and displaying this
information by annotating static modelling view components. This approach presents
developers with run-time architecture performance metrics in a context they can readily
interpret.

Acknowledgements

Support for this research from the University of Auckland Research Committee and the
New Zealand Public Good Science Fund is gratefully acknowledged. The helpful
comments of the anonymous referees on earlier drafts of this paper are also appreciated.

References

1. T.C.N. Graham, C.A. Morton, and T. Urnes, ClockWorks: Visual Programming of

Component-Based Software Architectures. Journal of Visual Languages and Computing,
(July 1996), 175-196.

2. J.C. Grundy, J.G. Hosking, ViTABaL: A Visual Language Supporting Design by Tool
Abstraction, In Proc. of the 1995 IEEE Symposium on Visual Languages, Darmsdart,
Germany, September 1995, IEEE CS Press, pp. 53-60.

3. R. Kazman, Tool support for architecture analysis and design, In Proc. of the Second Int.
Workshop on Software Architectures, ACM Press, 94-97.

4. A. Liu, Dynamic Distributed Software Architecture Design with PARSE-DAT, In Proc. of
the 1998 Australasian Workshop on Software Architectures, Melbourne, Australia, Nov 24,
Monash University Press.

5. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Addison-Wesley,
1998.

6. A. Egyed and P. Kruchten, Rose/Architect: a tool to visualize architecture, In Proc. of the
32nd Hawaii Int. Conf. on System Sciences, January 1999, IEEE CS Press.

7. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modelling Language User Guide,
Addison-Wesley, 1999.

8. J.C. Grundy, Supporting aspect-oriented component-based systems engineering, In Proc. of
11th Int. Conf. on Software Engineering and Knowledge Engineering, Kaiserslautern,
Germany, June 16-19 1999, KSI Press, pp. 388-395.

9. J.C. Grundy, W.B. Mugridge, J.G. Hosking, Static and dynamic visualisation of component-
based software architectures, In Proc. of 10th Int. Conf. on Software Engineering and
Knowledge Engineering, San Francisco, June 18-20, 1998, KSI Press.

10. T. Urnes and T.C.N. Graham, Flexibly Mapping Synchronous Groupware Architectures to
Distributed Implementations. In Proc. of Design, Specification and Verification of
Interactive Systems (DSV-IS'99), 1999.

11. T. Quatrani, Visual Modeling With Rational Rose and Uml, Addison-Wesley, 1998.
12. J. Robbins, D.M. Hilbert, and D.F. Redmiles, Extending design environments to software

architecture design, Automated Software Engineering 5 (July 1998), 261-390.
13. N. Stankovic and K. Zhang, K. Towards Visual Development of Message-Passing Programs,

In Proc. of 1997 IEEE Symposium on Visual Languages, IEEE CS Press.
14. B. Shizuki, M. Toyoda, E. Shibayama, and S. Takahashi, Visual Patterns + Multi-Focus

Fisheye View: An Automatic Scalable Visualization Technique of Data-Flow Visual
Program Execution. In 1998 IEEE Symposium on Visual Languages, Halifax, Canada,
September 1998, IEEE.

15. J.C. Grundy and J.G. Hosking, Directions in modelling large-scale software architectures, In
Proc. of the 2nd Australasian Workshop on Software Architectures, Melbourne 23rd Nov
1999, Monash University Press, pp. 25-40.

16. J. Leo, OO Enterprise Architecture approach using UML, In Proc. of the 2nd Australasian
Workshop on Software Architectures, Melbourne 23rd Nov 1999, Monash University Press,
pp. 25-40.

17. M. Beaumont, and D. Jackson, Visualising Complex Control Flow. In 1998 IEEE
Symposium on Visual Languages, Halifax, Canada, September 1998, IEEE.

18. T. Hill, J. Noble, Visualizing Implicit Structure in Java Object Graphs, In Proc. of
SoftVis’99, Sydney, Australia, Dec 5-6 1999.

19. S.P. Reiss, A framework for abstract 3-D visualization, In Proc. of the 1993 IEEE
Symposium on Visual Languages, IEEE CS Press.

20. R.J. Walker, G.C. Murphy, J. Steinbok, and M.P. Robillard, Efficient Mapping of Software
System Traces to Architectural Views, In Proc. of CASCON’2000.

21. R. Allen and D. Garlan, A formal basis for architectural connection, ACM Transactions on
Software Engineering and Methodology, July 1997.

22. M. Shaw and D. Garlan, Software Architecture : Perspectives on an Emerging Discipline,
Prentice Hall, 1996.

23. J.C. Grundy, W.B. Mugridge, J.G. Hosking and M.D. Apperley, Tool Integration,
Collaboration and User Interaction Issues in Component-based Software Architectures, In
Proc. of TOOLS Pacific’98, Melbourne, Australia, Nov 28-30 1998, IEEE CS Press.

24. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, P. Pattern Oriented Software
Architecture : A System of Patterns, Wiley, 1996.

25. B. Wagner, I. Sluijmers, Eichelberg, D. and P. Ackerman, Black-box Reuse within
Frameworks Based on Visual Programming, In Proeedings of the. 1st Component Users
Conf., Munich, July 1996, SIGS Books, pp. 57-66.

26. A. Parashkevov and J. Yantchev, ARC - A Tool for Efficient Refinement and Equivalence
Checking for CSP, In Proc. of the 1996 IEEE Int. Conf. on Algorithms and Architectures for
Parallel Processing, Singapore, June 11-13, 1996.

27. D.C. Luckham, L.M. Augustin, J.J. Kenney, J. Veera, D. Bryan, and W. Mann, Specification
and analysis of system architecture using Rapide, IEEE Transactions on Software
Engineering 21(April 1995), 336-355.

28. J.G. Hosking, Visualisation of object-oriented program execution, In Proc. of 1996 IEEE
Symposium on Visual Languages, IEEE CS Press.

29. H. Koike, T. Takada, and T. Masui, VisuaLinda: A Framework for Visualizing Parallel
Linda Programs, In Proc. of the 1997 IEEE Symposium on Visual Languages, IEEE CS
Press.

30. P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos, S.
Perelgut, M. Stanley, M. and K. Wong, The Software Bookshelf, IBM Systems Journal 36
(November 1997), 564-593.

31. B. Topol, J. Stasko and V. Sunderam, PVaniM: A Tool for Visualization in Network
Computing Environments, Concurrency: Practice & Experience 10 (1998), 1197-1222.

32. J.C. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley, M.D. An architecture for
decentralised process modelling and enactment, IEEE Internet Computing 2
(September/October 1998), IEEE CS Press.

33. J.C. Grundy, Y. Cai, Y. and A. Liu, Generation of Distributed System Test-beds from High-
level Software Architecture Descriptions, In Proc. of the 2001 Int. Conf. on Automated
Software Engineering, San Diego, Nov 25-28 2001, IEEE CS Press.

