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A concept and first results of combining multispectral light detection
and ranging (LiDAR) with positioning sensors to produce spatially
resolved target identification in indoor environment is presented. The
aim is to enhance the sensor-based indoor localisation with a multispec-
tral target identification and mapping. There is a growing need for auto-
matic and mobile mapping and surveillance in buildings and locations
where satellite positioning is not available. LIDAR is a common sensor
in feature-based simultaneous localisation and mapping. As multispec-
tral LIDARs are emerging and becoming increasingly popular in
research applications, the multi/hyperspectral point clouds are likely
to improve object recognition and enable a new level of autonomous
surveillance in the near future. The first results show that position sol-
ution can be obtained using sensors attached to the LiDAR.

Introduction: Indoor positioning for global navigation satellite system
(GNSS) denied environments have been studied increasingly during
the past few years [1]. Sensor positioning is based on propagating the
known initial position and heading with motion measurements obtained
from the sensor. However, sensor measurements suffer from errors,
which deteriorate the solution in time. Therefore, fusion of sensors
with different error characteristics enables the solution to stay accurate
for longer time. This is particularly the case when using low-cost
sensors, especially micro-electro-mechanical sensors [2—4].

Indoor positioning methods can be roughly categorised into three
approaches, based on radio frequency fingerprinting, motion-based,
and visual [1, 5]. As radio fingerprinting requires an existing infrastruc-
ture (such as wireless network or separate identification tags), sensor
positioning is more widely applicable in any environment. Inertial
sensors, namely accelerometers and gyroscopes forming an inertial
measurement unit (IMU), have been used for sensor positioning.
IMUs provide translation and heading measurements, but they must
be calibrated with some absolute positioning means or fused with
motion measurements obtained from different sources, such as visual
odometry [4] to improve the quality.

Combining positioning sensors and light detection and ranging
(LiDAR) has become a widely used approach for mobile mapping and
robotics [4, 6]. LIDAR is commonly utilised in mobile laser scanning
(MLS). The MLS systems also rely on GNSS, mainly for direct georefer-
encing of point clouds [7], but the increasing number of autonomous
robotic platform applications [4, 8] has emphasised the need for better
location accuracy. The growing demand for robotic and situational
awareness applications in GNSS denied environments will emphasise
the role of multi-sensor indoor positioning [9]. Three-dimensional (3D)
detection of features with LiDAR is also common in simultaneous local-
isation and mapping (SLAM) [6]. SLAM provides infrastructure-free
accurate and reliable localisation and information on the environment
by means of adaptive integration of data from multiple sensors [8, 10].
In SLAM, LiDAR is typically combined with other optical and odometry
sensors, IMU [4], and GNSS in outdoor applications [11].

The common estimation frameworks to produce a SLAM solution are
based on Kalman filter and Particle filter (PF) [8]. PF was implemented
in [2] to integrate motion (heading and translation) measurements from a
monocular camera, foot-mounted IMU, sound navigation and ranging
(SONAR), and a barometer to produce an accurate and reliable 3D local-
isation solution for SLAM. The horizontal accuracy was 3.14 m with
standard deviation of 2.82 m. The results could be improved with
more accurate error modelling and additional sensors, such as multiple
IMU’s or visual LIDAR odometry [4].

Iterative closest point (ICP) is a method for providing the translation
and rotation between two point clouds [12]. However, ICP needs a good
a priori measurement of transformation to converge. Also, when LiDAR
is moved, the point clouds suffer from motion distortion, which should
be corrected using other measurements. When these challenges are
tackled and the two point clouds are matched, the difference between
their position and orientation may be used to obtain motion information
via LiIDAR odometry [4].

Visual odometry measurements from a monocular camera are often
used to solve the challenges related to LiDAR odometry, and to
obtain an accurate localisation solution. Monocular cameras have

advantages for visual perception compared with stereo cameras; they
have wider field-of-view and provide faster image processing capabili-
ties [13]. However, traditionally stereo cameras have been mainly
used, because methods based on monocular cameras usually suffer
from so called ambiguous scale problem [14]. In our previous studies,
we have developed a concept called visual gyroscope and visual
odometer [13], which resolves the scale problem and provides absolute
translation and rotation information to be used for localisation.

There is a trade-off between accuracy and computing time cost in
SLAM solutions, and numerous methods have been introduced to opti-
mise the positioning solution [10, 15]. With post-processing, centimetre-
level accuracy can be achieved, while a real-time application could be
improved to decimetre level at least for feature-rich environments [15].

Laser scanning applications have reached a new level as multi-
wavelength LiDAR applications have emerged [16-18]. The output
from a multispectral LiDAR comprises the point cloud (x, y, z, I),
where the intensity / contains multiple values of wavelength. The multi-
wavelength aspect has enabled a new level of detail in, e.g. vegetation
studies, where hyperspectral sensing is a well-established method for
identification and classification of targets and monitoring different plant
activity [19]. Active hyperspectral sensing based on supercontinuum
lasers has also been applied for long-range target characterisation [20].

In this Letter, we demonstrate the potential of multispectral target
identification combined with multi-sensor indoor positioning, to
provide one-shot spectral identification and position information for
the targets. In our previous paper [21], we extended the target identifi-
cation from 3D hyperspectral point clouds into industrial targets and
built environment. We have shown in our earlier studies that the hyper-
spectral LIDAR (HSL) is capable of measuring different phenomena in
3D, such as leaf-level moisture in vegetation and its distribution over
extended targets [16]. We have also developed algorithms for automatic
classification of targets with both spectral and spatial features [22]. The
ultimate aim of our research is to combine the HSL target detection with
sensor positioning for a real-time SLAM method with improved optical
sensing (point-wise target identification using spectral libraries) and
autonomous indoor mapping. We also discuss the accuracy of our
method and discuss its future prospects of providing autonomous
target characterisation from 3D features and spectral data in addition
to autonomous mobility.
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Fig. 1 The FGI hyperspectral lidar setup. Red beam: Laser input. R: 2D
scanner. M: Off-axis parabolic mirror. S: Spectrograph. A: photo diode
array

Data and methods: The Finnish Geospatial Research Institute
Hyperspectral LIDAR (FGI HSL) is a prototype multi-wavelength laser
scanner [16], with a supercontinuum laser light source (420-2400 nm,
41 mW average optical power, 5 kHz pulse rate). The operation principle
is the same as in a monochromatic pulse-based terrestrial LIDAR, but the
output point cloud (x, y, z, I) contains the intensity / as a function of wave-
length, i.e. an eight-channel spectrum (500-1000 nm) is associated with
each point (x, y, z). The range measurement is based on the time-of-flight
of the reflected laser waveform. An off-axis parabolic mirror is used as a
primary optic to gather the returning laser pulses. The detector consists of
a spectrograph (Specim Imspector V10), placed in front of a 16-element
avalanche photodiode (APD) array. A high-speed (1 ns) digitiser enables
data storage at eight wavelength bands. Thus, the detector system is multi-
spectral, but the wavelength channels can be selected by adjusting the
spectrograph position with respect to the APD array. A monochromator
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(Oriel, Cornerstone 74,125) was used to calibrate the spectral responses of
the APD elements. The scanning over the target was performed with a 2D
scanner to produce a point cloud. See Fig. 1 and [16] for more details on
the instrument and data processing.

Three different targets were investigated (see also [21]): two were card-
board samples one of which was sprayed wet with water, and the third
was a wooden panel with some mould on it. The targets were placed
hanging on a wire in the middle of the area to be scanned. The HSL
wavelength channels in this Letter were 536, 589, 634, 688, 741, 793,
848, and 951 nm. We scanned the entire corner of the laboratory to
produce a point cloud (Fig. 2), which was processed with MATLAB
R2013a software (The MathWorks®, Inc). The samples were manually
cropped from the point cloud to obtain the mean backscattered reflec-
tance of all the echoes from each target. In further applications of this
method, it is possible to replace the manual identification with algorithms
developed for HSL data for automatic target identification [22, 23].

Fig. 2 Targets hanged on wire in scanned area. Wet and dry cardboard
samples are in left and middle, respectively (left). HSL point cloud of
room corner, showing targets (right)

The multi-sensor 3D indoor positioning solution in this experiment is
computed by fusing the measurements obtained using a monocular
camera, IMU, a barometer, and SONAR. The goal of our research is
to develop a hyperspectral multi-sensor SLAM solution, providing
improved accuracy and reliability for localisation.

Heading and velocity may be computed from the IMU measurements
and when the initial position and orientation are known, a continuous
position solution obtained by propagating the measurements in time.
However, IMU alone is not sufficient for accurate positioning and there-
fore the measurements are fused with visual odometry, which also pro-
vides heading and velocity measurements. With a special configuration
of the camera, namely knowing its height and being able to compute its
orientation using image processing means [13] absolute translation
measurements may be obtained. Visual odometry does not provide accu-
rate vertical motion information and therefore a barometer will be used
for obtaining height measurements. A barometer provides accurate
height information by measuring changes in air pressure. However,
the ambient pressure indoors may change significantly due to opening
a window or due to air conditioning and therefore changes in height
measured by a SONAR sensor pointing down to the floor will be
used to evaluate the reliability of obtained height measurements. More
details of the measurement are given in [2].

Particle filtering [24] was used here for fusing the heading and trans-
lation measurements from a monocular camera and the IMU, a barom-
eter, and SONAR.
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Fig. 3 Targets cropped from original point cloud. Intensity for each point is
plotted in HSL channel 4: 720 nm (left) and 6: 818 nm (right). Dry and wet
cardboard samples are in left and middle, respectively (cf. Fig. 2), while
wood sample is on right

Results: Fig. 3 shows a close-up of all targets and their intensity at 720
and 818 nm. The spectra of the wet and dry cardboard panel are plotted
in Fig. 4. The spectra were obtained by extracting the object from the
point cloud and averaging the intensity of all points at each wavelength
channel. Overall, we have observed a 6% approximate error level in
the reflectance measurement of the HSL detector. The difference in
the intensity between different targets is visible at all wavelengths.
The difference is more pronounced at near-infrared wavelengths
>1000 nm because of the strong water absorption [e.g. 20]. However,
these results enable us to demonstrate the use of spectral indices in
target detection.
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Fig. 4 Eight-channel average spectra of wet and dry cardboard targets

The automatic target identification algorithms developed for the HSL
data are based on 3D features extracted from the point cloud, combined
with spectral identification using spectral correlation mapping [23] or
spectral indices [22]. As an example of spectral indices in identifying
target characteristics, we computed two different water indices: the
water concentration index WI [25], which is based on a water absorption
band at 970 nm and reference wavelength (900 nm)

Rogo
WI=— )
Ro70
As 900 and 970 nm were not available in this measurement, we used
848 and 951 nm instead to obtain WI=0.96 for dry and WI=0.94 for
wet sample, using the average spectra plotted in Fig. 4.
We also compared the normalised water index (NWI) [26]

Ry70 — Rgso @)
Ro70 + Rgso

NWI =

Again, we used 951 and 848 nm instead and obtained NWI=0.02 for
dry and NWI=0.33 for the wet sample, using the values averaged
over the entire sample. However, the NWI values show some variation
over the targets, which is seen in the plotted extract of the point cloud in
Fig. 5, showing the NWI for both cardboard samples. Nevertheless,
there is a visible difference between the wet and dry cardboard samples.

Fig. 5 NWI= [R970 — R850]/[R970 + R850] (2) plotted for each point in

point cloud extract showing all three targets (cf. [23]). There is difference

in NWI between wet and dry cardboard samples (middle and left,
respectively)
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The fused position solution was computed by navigating from out-
doors to indoors into the room where the HSL sensor was located.
The navigation trajectory is presented in Fig. 6.

-

Fig. 6 Navigation trajectory and position of HSL (cf. Fig. 7)
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Fig. 7 Top: position solution for reference system (green) and fused solution
(blue). Position of HSL has been computed using reference solution. Bottom:
close-up showing targets

The starting position and the attitude were obtained with a Novatel
SPAN reference system, including a GPS receiver with a Honeywell
HG1700 AGS5S8 tactical grade IMU. After initialising the system the
SPAN measurements were used only for a reference, the results pre-
sented below are obtained by comparing the fused position solution
with the one computed from the reference system measurements.

Osmium MIMU22BT foot-mounted multiple IMU and GoPro
Hero 3 action camera were used for horizontal positioning and
XSENS MTi-G-700 inertial navigation system’s barometer and
HRUSB-MaxSonar SONAR for vertical positioning. The positioning
experiment was carried out at the premises of the FGI in Masala. The
route walked was ~200 m and contained both outdoor and indoor
parts, also including features that were challenging for both visual odo-
metry and inertial sensing, such as spiral stairs. The distance root mean

squared (DRMS) error of the computed horizontal position solution for
the route was 3.4 m. For comparison we computed the horizontal pos-
ition solution using an IMU only and the resulting DRMS was almost
6 m. Fig. 7 shows the horizontal positioning solution for fused (blue)
and reference (green) solutions. The mean error for the fused vertical
position solution was 0.9 m, with standard deviation of 0.6 m, when
computed by using IMU only 4.2 and 2.1 m, respectively. Fig. 8
shows the vertical positioning for fused (blue), IMU only (red), and
reference (green) solutions.
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Fig. 8 Vertical position solution for reference system (green), IMU only
(red), and fused solution (blue)

Discussion: Our results are similar (in terms of error levels) to
those from non-GNSS positioning: Fourati [5] obtained a 5 m position
drift in 1100 m using a non-GPS pedestrian navigation with a foot
mounted IMU. The results were the same order as in [27], where the
mean error was 4.87 m for a set of half-an-hour walks, where the
route varied from rectangular to random, and the step detection
method was calibrated before each test. In this Letter, the route was
challenging and contained height changes, such as spiral stairs, which
complicated the measurement. Our method also aims at seamless
outdoor-indoor navigation, which reduces the temperature stabilisation
time for the sensors.

Conclusion: The clear difference in the NWI for wet and dry samples
indicates the potential for using the NWI and other spectral indices in
automatic target detection algorithms. In case of moisture based detec-
tion, the water absorption is stronger at wavelengths further in the near-
infrared [cf. 20], which means that in the future implementations of a
hyperspectral instrument for indoor mapping, wavelengths >1000 nm
should also be considered.

We also presented the results for infrastructure-free indoor position-
ing to obtain the position of the HSL and hence the targets. The accuracy
of the fused position solution was already feasible for most indoor
positioning applications. However, in the future we will fuse the
sensor positioning algorithms with measurements obtained from the
HSL for an accurate SLAM solution. We anticipate the SLAM localis-
ation accuracy to improve up to decimetre level.

This Letter is the first step towards spatially resolved target identifi-
cation and mapping. Although these results are preliminary, they
show the potential of using a multispectral LiDAR enhanced indoor
mapping in localising different targets and phenomena, such as humid-
ity or mould in building structures. In future, this will enable the use
of indoor SLAM not only for navigation of people or autonomous
vehicles but also for autonomous surveillance in construction or security
applications.
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