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1Abstract—One of the most relevant issues in image
processing and analysis is a reliable image quality assessment.
During last several years numerous metrics have been proposed
by various researchers which are much better than
traditionally used Mean Squared Error or similar metrics in
the aspect of the accordance with human perception of various
distortions. Nevertheless, the direct application of such metrics
does not provide high correlation with subjective scores
because of the required additional nonlinear mapping.
Unfortunately, such fitting, typically applied for each image
database using the logistic function, leads to different values of
parameters for each dataset. As a more universal approach,
some nonlinear combinations of various metrics have been
proposed recently which do not require any nonlinear mapping.
In the paper an extended combined similarity metric is
proposed, which provides high prediction accuracy of the image
quality with highly linear correlation with subjective scores.
The results of extensive tests conducted using the most relevant
image quality assessment databases are also presented.

Index Terms—Image quality assessment, image analysis,
image similarity.

I. INTRODUCTION

The role and importance of the image analysis in various
applications is still growing. Regardless of the specific
problem, the accuracy of detection, recognition or
classification based on the image processing and analysis
strongly depends on the quality of input images. In many
cases such subjective image quality assessment is conducted
by the human operator of the system and may be specific for
a given application. Nevertheless, some typical image
distortions are common and their impact on the results of the
image analysis is similar.

Some other important issues are data transmission and
visualization which are directly related to image quality
assessment and some of image processing methods. In such
applications an objective reliable image quality assessment,
independent on the human subject but well correlated with
subjective quality scores, may be useful for the development
of some new algorithms as well as their optimization and
verification, especially for color images.
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II. CLASSICAL IMAGE QUALITY METRICS

A reliable objective image quality metric should be
independent on the image content so different images
subjected to the same distortions should give equal results.
Due to the effortless usage for the optimization purposes,
scalar metrics are preferred, especially with dynamic range
from 0 to 1.

The objective image quality assessment schemes may be
classified as belonging to three major groups. The first one
is known as “blind” (no-reference) approach, which does not
require the access to the original undistorted image at all [1],
[2]. Although the potential usage is wide and such metrics
are the most desired ones, their universality is currently
rather low as they are usually sensitive to only one or two
types of distortions. Some typical examples are blur metrics
and measures of JPEG artifacts observed as blocks.

Another, more popular group of methods consists of
numerous full-reference metrics, with classical Mean
Squared Error (MSE) and Peak Signal to Noise Ratio
(PSNR). Such methods require the exact knowledge of the
original, perfect quality image without any distortions and
the quality score is calculated by comparing some features
between the distorted and original (reference) images.
Although in practical applications the access to the original
image is not always possible, a great progress in this family
of metrics has taken place in recent years.

The third, less popular approach is known as reduced-
reference and it requires a partial knowledge about the
reference image e.g. some DCT coefficients or specified
features. Such methods may also be used for the estimation
of some full-reference metrics [3].

Regardless of the type of the metric, each newly
developed one should be verified in order to determine its
concordance with subjective evaluations and Human Visual
System (HVS) which can be modeled using many techniques
describing the way that human observers perceive various
kinds of image distortions. For this reason some image
quality assessment databases have been developed
containing reference and distorted images together with
Mean Opinion Scores (MOS) or Differential Mean Opinion
Scores (DMOS) collected during the experiments conducted
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in cooperation with numerous observers.

III. RECENT FULL-REFERENCE IMAGE QUALITY METRICS

Poor correlation of some traditional metrics based on the
comparison of corresponding pixels from the reference and
distorted images, such as MSE or PSNR, caused the
necessity to develop a new approach based on alternative
assumptions. The first such idea, known as Universal Image
Quality Index, is based on the comparison of three local
features corresponding to common distortions, using the
sliding window approach [4]. These features are: luminance
distortions, loss of contrast and structural distortions. After
some modifications, e.g. increasing its stability, the UIQI
metric, has been extended [5] into one of the most popular
image quality metrics called Structural Similarity (SSIM).
The local SSIM formula for each window position can be
expressed as the combination of the mean values, variances
and the covariance
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assuming that x and y denote the local fragments of distorted
and reference images inside 11×11 pixels windows
(weighted using Gaussian function) with small stabilizing
constants C1 = (0.01∙L)2 and C2 = (0.03∙L)2 where L is the
number of available luminance levels (typically 256).

Due to the popularity of the SSIM metric some
modifications have also been proposed e.g. three-component
weighted SSIM, gradient SSIM or Multi-Scale SSIM [6],
which is defined as
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where components representing the luminance, contrast and
structural distortions respectively, are weighted for each j-th
scale (but the luminance changes are considered only for full
resolution images). The default values of coefficients
and have been proposed by the authors of the paper
[6] as the result of the optimization procedure with 600
images used for testing involving 8 observers.

Some other interesting ideas of full-reference image
quality assessment are based on the applications of Singular
Value Decomposition (SVD), wavelets, other transforms or
using some elements of the information theory. An example
of this approach is the Visual Information Fidelity (VIF)
defined as the mutual information that vision extracts from
the distorted image divided by the information extracted
from the reference one, calculated for several sub-bands in
the wavelet domain [7].

One of the most promising directions of research seems to
be the similarity based approach represented by Riesz-based
Feature Similarity (RFSIM) and Feature Similarity (FSIM),
which are quite similar to the idea of the SSIM. The RFSIM
metric [8] is defined as
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where M is the binary mask being the edge detection result
(for this purpose well-known Canny filter may be applied)
and di are local similarity values calculated  for five features
obtained using the 1st and 2nd order Riesz transform
coefficients. The local similarity for the images x and y can
be calculated (using small stabilizing constant value C) as
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Further research of the same group has led to the
definition of the FSIM metric [9] based on two factors:
phase congruency (PC) and gradient magnitude (G). The
construction of the overall index is quite similar as in (3) and
its value can be obtained as
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where PCmax is the higher from two local values of phase
congruency from the reference and assessed image. The
local similarity value is defined as the product of two factors
related to gradient (Scharr filter is recommended for this
purpose) and phase congruency
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The color version of the metric can also be calculated
using the YIQ color model in a similar way, replacing the
PC and G values by the chrominance I and Q respectively
and multiplying the obtained result (using the exponent
value =0.03) by the formula (6), assuming the values of
exponents  and  equal to 1.

All the metrics briefly presented above have an important
common disadvantage – their values are not directly related
to the subjective scores expressed as MOS or DMOS values
so the additional nonlinear mapping is required in order to
achieve high values of the linear correlation coefficients
between objective and subjective quality scores.

IV. IMAGE QUALITY ASSESSMENT DATASETS

The verification of the compliance of objective metrics
with MOS or DMOS values can be expressed as the quality
prediction accuracy and prediction monotonicity. The
accuracy is measured using Pearson’s linear Correlation
Coefficient (CC) whereas the monotonicity can be evaluated
by Spearman Rank Order Correlation Coefficient (SROCC)
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or Kendall Rank Order Correlation Coefficient (KROCC).
In order to achieve a reliable verification, calculations

should be conducted for all available datasets. The most
relevant of them is Tampere Image Database [10] containing
1700 color images with 17 types of distortions with MOS
values obtained from 838 observers. The other two relevant
datasets are Categorical Subjective Image Quality (CSIQ)
database from Oklahoma State University [11] with 866
images (35 observers and 6 distortion types) and well-known
LIVE dataset from Texas University at Austin [12]
containing 779 images distorted in five ways assessed by 29
subjects.

As a supplement for those three databases, less important
ones may also be used such as: IRCCyN/IVC [13] from
University of Nantes (160 images with 4 types of distortions
assessed by 15 observers), Wireless Image Quality (WIQ)
with 80 distorted greyscale images judged by 30 observers
[14] and A57 dataset [15] consisting of 54 test images with 6
types of contaminations evaluated by 7 experts. The oldest
database has been developed by Toyama University in Japan
and is known as MICT database [16]. Nevertheless, its
usefulness is currently strongly limited as it contains 198
images assessed by 16 students but only two types of
distortions related to JPEG and JPEG2000 compression.

V. PROPOSED APPROACH AND THE VERIFICATION RESULTS

Highly linear relationship between the objective and
subjective scores is typically obtained by nonlinear mapping,
e.g. by logistic function, with necessary optimization of the
mapping function’s parameters. Unfortunately it ought to be
conducted independently for each dataset leading to
different values of the coefficients. For this reason such
approach cannot be considered as a universal one.

Much better results can be obtained using the nonlinear
combination of some metrics as proposed in the paper [17].
Using the weighted product of three (or more) metrics with
exponent values optimized for the largest database (TID) a
serious increase of the CC values can be achieved in
comparison to each of the metrics separately (even after
nonlinear mapping), e.g. the combination of MS-SSIM, VIF
and R-SVD metrics leads to CC = 0.86 [17] and replacing
the R-SVD by FSIMc metric proposed in the paper [18] as
CISI metric leads to CC = 0.8752 for the TID database.

Good results may also be obtained using the nonlinear
combination of the RFSIM and FSIMc metrics leading to
HFSIMc metric with CC = 0.8861 for the same dataset.

Another possibility is changing the weighting exponents
inside the calculation procedure of the FSIM –  and  in
(6) – or FSIMc metric, discussed in [22], leading to the
Weighted FSIM (WFSIM) metric and its color version
WFSIMc, increasing the values of the rank order correlation
coefficients with subjective scores.

The extended version of the approach based on the
combination of four metrics: MS-SSIM, VIF, RFSIM and
weighted FSIM is proposed in this paper defined as

        ,a b c dEHIS MS SSIM VIF WFSIMc RFSIM     (7)

assuming using the color version of the WFSIM metric for

available color images. The results of the exponents
obtained as the result of optimization conducted using TID
database are

   1.6131 0.2037 59.7151 0.1989 ,a b c d   (8)

with the definition of the WFSIM or WFSIMc metric using
the values of the coefficients suggested in the paper [19]
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The obtained CC, SROCC and KROCC values and their
comparison with other metrics for the databases described in
Section III are presented in Tables I-III and the aggregate
values for all datasets weighted according to the number of
test images in respective datasets are shown in Table IV.
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Fig. 1. Scatter plot of the proposed metric versus MOS values for TID2008
database illustrating highly linear relationship between objective and
subjective evaluations.

TABLE I. PEARSON LINEAR CORRELATION COEFFICIENTS (CC)
FOR VARIOUS METRICS AND DATASETS.

Metric TID CSIQ LIVE IVC WIQ A57 MICT
MS-SSIM 0.7843 0.7708 0.4762 0.7679 0.6089 0.8289 0.7438

VIF 0.7777 0.9219 0.7327 0.8800 0.7301 0.6141 0.9024
RFSIM 0.8596 0.9130 0.9352 0.7927 0.7589 0.8419 0.7523
FSIM 0.8300 0.8048 0.8586 0.8563 0.7371 0.9252 0.8003
FSIMc 0.8341 0.8208 0.8595 0.8606 --- --- 0.8050
HFSIM 0.8853 0.9158 0.9538 0.8711 0.7876 0.9319 0.7977
HFSIMc 0.8861 0.9197 0.9532 0.8721 --- --- 0.7992

CISI 0.8752 0.9346 0.9453 0.9152 0.7998 0.8663 0.8834
Proposed 0.9105 0.9397 0.9480 0.8963 0.8221 0.7748 0.8940

TABLE II. SPEARMAN RANK-ORDER CORRELATION (SROCC)
FOR VARIOUS METRICS AND DATASETS.

Metric TID CSIQ LIVE IVC WIQ A57 MICT
MS-SSIM 0.8526 0.9136 0.9155 0.8845 0.7360 0.8397 0.8864

VIF 0.7496 0.9194 0.7942 0.8964 0.6918 0.6223 0.9086
RFSIM 0.8680 0.9295 0.9401 0.8192 0.7368 0.8215 0.7731
FSIM 0.8805 0.9242 0.9634 0.9262 0.8006 0.9181 0.9059
FSIMc 0.8840 0.9310 0.9645 0.9293 --- --- 0.9067
HFSIM 0.8911 0.9406 0.9605 0.8898 0.7858 0.9250 0.8430
HFSIMc 0.8925 0.9422 0.9604 0.8908 --- --- 0.8437

CISI 0.8742 0.9426 0.9618 0.9201 0.7845 0.8709 0.9106
Proposed 0.9098 0.9498 0.9622 0.9076 0.8266 0.9177 0.9045
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Fig. 2. Lower and upper bounds for the 95% confidence interval calculated
for Pearson correlation with subjective scores for major datasets.

TABLE III. KENDALL RANK-ORDER CORRELATION (KROCC)
FOR VARIOUS METRICS AND DATASETS.

Metric TID CSIQ LIVE IVC WIQ A57 MICT
MS-SSIM 0.6543 0.7389 0.7431 0.7005 0.5645 0.6483 0.7029

VIF 0.5863 0.7532 0.5848 0.7158 0.5246 0.4594 0.7329
RFSIM 0.6780 0.7645 0.7816 0.6452 0.5493 0.6324 0.5752
FSIM 0.6946 0.7567 0.8337 0.7564 0.6215 0.7639 0.7302
FSIMc 0.6991 0.7690 0.8363 0.7636 --- --- 0.7303
HFSIM 0.7108 0.7900 0.8254 0.7162 0.6038 0.7667 0.6479
HFSIMc 0.7125 0.7931 0.8248 0.7192 --- --- 0.6485

CISI 0.6896 0.7893 0.8280 0.7488 0.6038 0.6762 0.7361
Proposed 0.7382 0.8033 0.8288 0.7357 0.6487 0.7601 0.7260

All the calculations have been conducted using Matlab
with Image Processing Toolbox, using also such useful
functions as corrcoef, as well as fminsearch and fminunc for
optimization purposes.

TABLE IV. CORRELATION COEFFICIENTS FOR VARIOUS METRICS
WEIGHTED FOR ALL DATASETS.

Metric CC SROCC KROCC
MS-SSIM 0.7129 0.8796 0.6939

VIF 0.8085 0.8083 0.6336
RFSIM 0.8763 0.8862 0.7086
FSIM 0.8291 0.9093 0.7407
FSIMc 0.8067 0.8831 0.7226
HFSIM 0.8996 0.9121 0.7475
HFSIMc 0.8713 0.8837 0.7256

CISI 0.9032 0.9093 0.7431
Proposed (EHIS) 0.9195 0.9275 0.7690

VI. CONCLUSIONS

Analyzing the results presented in Table IV and Fig. 1–
Fig. 2 the advantages of the proposed hybrid similarity
metric can be easily noticed for all measures of correlation
with subjective evaluations, leading also to the narrower
bounds obtained for the 95 % confidence level for Pearson’s
correlation, especially for three largest datasets.

Proposed metric can be successfully applied for the direct
assessment of results of many image processing algorithms
e.g. related to compression, filtering or reconstruction. Due
to its highly linear correlation with subjective quality
evaluations, its application does not require any additional
mapping operations leading directly to accurate prediction of
image quality regardless of the distortion type.
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