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The robust controller designed by conventional H∞ op-
timal control is complicated, high-order, and difficult
to implement practically. In industrial applications,
structures such as lead-lag compensators and PID are
widely used because their structure is simple, tuning
parameters are fewer, and they are lower-order. Their
disadvantages are that control parameters are diffi-
cult to tune for good performance and they lack ro-
bustness. To solve these problems, we propose an al-
gorithm a genetic-algorithm-based fixed-structure ro-
bust H∞ loop-shaping control for designing the robust
controller. Conventional H∞ loop shaping is a sen-
sible procedure for designing the robust controller.
To obtain parameters in the proposed controller, we
proposed a genetic algorithm to optimize specified-
structure H∞ loop shaping problem. The infinity norm
of transfer function from disturbances to states is min-
imized via searching and evolutionary computation.
The resulting optimal parameters stabilize the sys-
tem and guarantee robust performance. We applied
the evolutionary robust controller to a pneumatic ser-
vosystem. To compare performance, we studied three
types of controller PID with a derivative first-order fil-
ter controller, a PI controller, and an H∞ loop-shaping
controller. Results of experiments demonstrate the ad-
vantages of a simple structure and robustness against
parameters changing. Simulations verify the effective-
ness of the proposed technique.

Keywords: fixed-structure robust H∞ control, H∞ loop-
shaping, genetic algorithm, pneumatic servosystem

1. Introduction

H∞ control is a powerful technique to design robust
controllers for system under conditions of uncertainty,
parameter change, and disturbance. However, only ro-
bust stability alone is not enough, other performances of
the controlled system such as rise time, overshoot, steady
state error, etc. are also important considerations. To in-
corporate performance specifications into robust control,
techniques such as H2/H∞ optimal control, the mixed sen-

sitivity function, H∞ loop shaping, µ-synthesis, etc., have
been proposed. Most of these techniques design opti-
mal robust controllers by solving two Riccati equations
[1]. Successful practical results of H∞ control have been
shown [2–5], but controllers thus designed become have
complicated structures and are high-order. Controller or-
der depends on the order of both the nominal plant and
weighting function. High order and complicated structure
are not desirable in controllers to be put into practical ap-
plication, however, since simpler controller often provide
satisfied performance and robustness. Most of industrial
applications, in fact, use simple controllers such as PI and
PID, but rarely H∞ or other complicated controllers. We
present controller design of a simple structure and lower
order that retains robustness. We propose fixed-structure
H∞ loop-shaping control that evolves via genetic algo-
rithms based on the concept of H∞ loop-shaping control
proposed by Glover and McFarlane [6]. This incorporates
well-known classical loop-shaping into H∞ control prob-
lem. Controller performance is indicated by a single in-
dex, i.e., stability margin (ε) [6]. We define a controller’s
structure, then evaluate control parameters by genetic al-
gorithms. We shape the nominal plant by weighting func-
tions as is done conventionally, then define objective or
fitness functions to be maximized as stability margin (ε)
of the shaped plant. A high stability margin means high
compatibility and robustness of the specified loop shape.
Sets of controller parameters (p) in pre-specified con-
troller (K�p�) are selected as individuals in the population
of genetic algorithms. Based on search algorithms, natu-
ral selection, and evolution genetic algorithms are used to
nonlinearly optimize specified-structure H∞ loop-shaping
optimization problem. We implement our evolutionary
robust controller in a pneumatic servosystem.

The pneumatic actuator is an attractive choice in in-
dustrial and non-industrial applications over conventional
electrical and hydraulic actuators due to its reliability, low
cost, light weight, self-cooling, high power-to-weight ra-
tio, etc. However, because of its inherent highly nonlin-
ear dynamic, development of a good performance con-
trol technique for this system is difficult. Much research
on the position tracking of pneumatic servosystems has
used the linear or nonlinear control approach. In nonlin-
ear control, most techniques are based on feedback lin-
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earization, which transforms an algebraic nonlinear sys-
tem into a linear one, so linear control is applicable. It
is used to simplify models in developing robust nonlin-
ear control such as sliding mode control [7,8]. Because
it is based on a nonlinear mathematic model, it requires
good knowledge in plant physics. Several experiments are
required to identify nonlinear parameters such as nonlin-
ear effective opening valve area and nonlinear friction [9].
State feedbacks such as velocity and pressure measure-
ment are required to cancel nonlinear terms [9]. Because
of time-consuming process identification and the many
feedback states in the controller, this technique is imple-
mented in applications with very precise requirements but
not in general industrial applications.

In linear control, the linear model is derived from lin-
ear mathematic equations, mostly by applying lineariza-
tion around a specified operation point, usually at the
middle of a pneumatic cylinder. The resulting linear dy-
namic between position output and control valve voltage
input is expressed as a third-order dynamic system, which
contains a pole at the origin. Some authors [10,15] di-
rectly evaluate model parameters by measuring physical
parameters. Others evaluate optimal model parameters to
minimize the least square of prediction error to identify
the general linear model. By assuming that a pneumatic
model structure is linear and known, unknown parame-
ters can thus be evaluated [11]. However, because of the
inherent pole at the origin of the pneumatic model, it re-
mains difficult to apply standard techniques such as the
auto regressive moving average (ARMAX), auto regres-
sive (ARX) to identify parameters. Richardson et al. [12]
determined the dynamic model of a pneumatic system by
applying closed-loop proportional control. They proposed
a new self-tuning control for pneumatic systems. Shih
et al. [13] applied a simple system identification algo-
rithm to a pneumatic servo and reported that the accu-
racy of the model depended on sampling time in identi-
fication. It is difficult to specify an effective input signal
for this process. Hamiti et al. [14] proposed an analog
inner loop proportional controller to stabilize a pneumatic
system and used a new closed-loop plant as a modified
pneumatic plant model, eliminating the pole at the ori-
gin. The modified plant reduces non-linearity in pneu-
matic systems due to air compressibility, etc. An outer
loop controller was designed to meet the performance
specifications of the whole system. The modified plant
model was approximated as a first-order model with time
delay [14], but such a time delay is generally large, lim-
iting the bandwidth in controller design [16]. The outer
loop controller in [14] is simple and does not take robust
criteria into account. In this paper, we apply an evolution-
ary controller at the outer loop of the pneumatic plant and
an analog controller at the inner loop. In identification,
we propose the approximated model as a second-order
time delay model. Second-order approximation obtains
more correctness than first-order approximation. Stan-
dard system identification, i.e., prediction error method
[17], is used to evaluate the approximated model’s pa-

rameters. The modified plant reduces some nonlinearity
effects from pneumatic, so applying linear control to the
modified plant is reasonable. Robust control is required to
design a controller with good performance that is stable in
changing plant parameters or disturbance. The proposed
controller is implemented in simulation and experiments
varying load mass and supplied pressure to examine the
robustness of the controller’s performance. This paper is
organized as follows: Section 2 describes the pneumatic
dynamic model, modified plant model, and identification.
Section 3 presents robust control and H∞ loop shaping,
detailing the proposed algorithm and fixed-structure con-
troller that evolves by genetic algorithms. Section 4 de-
tails design, simulation, and experimental results. Section
5 summarizes and concludes the paper.

2. Pneumatic Dynamic Model and System
Identification

2.1. Pneumatic Dynamic Model and Modified Plant
Model

The dynamic model of a pneumatic system is difficult
to determine due to its nonlinearity and large variation
in plant parameters. The pole at the origin in the sys-
tem also makes identification difficult. General lineariza-
tion is applied at an operating point to obtain the linear
dynamic model. The following mathematic model repre-
sents a pneumatic plant [14]:

y�s�
u�s�

�
k1

s�s2 � C
M s� k2�

. . . . . . . . . (1)

where

k1 �
γRTsGi

M

�
Sp

Vpo
�

Sn

Vno

�

k2 �
γ
M

�
S2

pPpo

Vpo
�

S2
nPno

Vno

� . . . . . . . (2)

where y�s� is position output, u�s� is the input valve volt-
age, γ is the ratio of specific heat � 1.4, S p and Sn are
areas of piston of chamber p and n, C is the viscous fric-
tion coefficient, M is piston mass, Ts is temperature, R is
ideal gas constant, and Vp and Vn are the volume of cham-
bers p and n. Pp and Pn are pressure in chambers 1 and
2. o is a subscript denoting the operation point and Gi is
the coefficient of the linearized air mass flow rate. Fig.1
shows the experimental setup of the pneumatic system.

Equation (1) shows that this model contains a pole at
the origin, which complicates identification. For simplic-
ity, a modified plant model introducing an analog propor-
tional controller was first proposed [14]. The modified
plant model is approximated as a stable plant with time
delay (Fig.2(a)). Fig.2(b) shows the inner loop, outer
loop, and controller. G�s� is the pneumatic plant.

In the experiment, we tune proportional gain K2 in the
inner loop until a critical damp response is achieved. The
following equations are derived to obtain the model of the
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Fig. 1. Experimental setup of a pneumatic servosystem.

(a)

(b)

Fig. 2. (a) Modified plant model, (b) Controllers.

modified plant, whose dynamic model is, from Fig.2(a):

y�s� �
GK2

1�GK2
u1�s� �

k1K2
s�s2��C�M�s�k2�

1� k1K2
s�s2��C�M�s�k2�

u1�s� (3)

y�s�
u1�s�

�
k1K2

�s3 ��C�M�s2 � k2s� k1K2�

�
k1K2

�s�T1��s�T2��s�T3�
. . . . . . (4)

where u1�s� is a new defined input. The dynamic model
in eq.(4) is approximated as a lower order model with
time delay [14]. Here, we approximate the modified plant
model as a second order with time delay, which is more
correct than the first-order model. The following equation

shows approximation of the modified plant model:

y�s�
u1�s�

�
Ae�θ2s

�s2 �b1s� c1�
. . . . . . . . . (5)

where θ2 is delay time. A�b1 and c1 are unknown param-
eters that must be identified.

2.2. System Identification
System identification using experimental data is ap-

plied to determine model parameters. The model structure
is known, but parameters are unknown and must be identi-
fied. The estimated model is obtained when the difference
between model output, prediction, and measured output
data is minimized [11]. We express the plant structure for
identification in eq.(5). To identify plant parameters, we
apply the output error model (OE). The plant dynamic is
written in the OE model as

y�t� �
q�nk B̄�q�

F�q�
u1�t�� e�t� . . . . . . . (6)

where

B�q� � bnk
q�nk �bnk�1q�nk�1 � � � ��bnk�nb�1q�nk�nb�1

� q�nk B̄�q��

F�q� � 1� f1q�1 � f2q�2 � � � �� fn f
q�n f �

y is output, u1 is input, e is error, nb and na are the order
of input and output, and nk is time delay. The parameter
vector is denoted as θ , when

θ � �bnk
bnk�1 bnk�2 � � � bnk�nb�1 f1 f2 � � � fn f

�T � (7)

By applying the least square method, we identify the plant
with batch data [u1�t��y�t�]. Prediction error is defined as

ε�t�θ� � y�t�� ŷ�t�θ� . . . . . . . . . . (8)

where ŷ�t�θ� is estimated output when parameter θ is
given. The objective of identification is to find optimal
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(a)

(b) Model evaluation (c) Model validation

Fig. 3. System identification. (a) Input signal u1�t� and output response y�t�, (b) Comparison of model and experiment, (c)
Validation of model.

parameters θ that minimize the following function:

V �
n

∑
i

εi�t�
2 . . . . . . . . . . . . . (9)

where n is number of data set.
A continuous model of the system is obtained by trans-

forming the discrete model into a continuous model. In
our experiment, a pseudo binary random signal (PBRS)
is applied as input u1�t�. The time delay, 0.12 seconds,
is evaluated by impulse response [17]. Sampling time in
this identification is 0.01s. Fig.3(a) shows input signal
u1�t� and output response y�t�. Pairs of input-output data
are collected by a data acquisition circuit connected to a
computer. Experimental data is divided into evaluation

and validation data. Evaluation data is used to identify
unknown parameters. In the experiment, we use data dur-
ing 0 to 15 seconds as evaluation data. Next, we evaluate
model parameters using MATLAB identification toolbox
software. Validation data is used to validate the correct-
ness of the identified model. We use data during 15 to
30 seconds as validation data. Fig.3(b) compares the ex-
perimental output response and its prediction model us-
ing evaluation data. Fig.3(c) compares validation data.
Results show that the modified plant model is accurately
approximated by the identified model. Through the above
procedure, the identified plant model is found as

GP�s��
551�3e�0�12s

�s2 �43�26s�536�9�
� . . . . . . (10)
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Fig. 4. General block diagram in robust control problem.

3. Genetic Algorithms Based Fixed-Structure
H∞ Loop-Shaping Control

This section details the concept of robust control syn-
thesis by genetic-algorithm-based fixed-structure H∞ loop
shaping. Consider the system described by the block dia-
gram (Fig.4), where the plant G and the controller K are
real rational and proper [1]. y is output, u is control in-
put, w is the vector signal including noises, disturbances,
and reference signals, and z is the vector signal including
all controlled signals and tracking errors. The H∞ optimal
control problem is to find admission controller K�s� such
that �Tzw�∞ is minimized, where �Tzw�∞ is the maximum
norm of the transfer function from w to z, and the admis-
sion controller is the controller that internally stabilizes
the system [1].

3.1. Conventional H∞ Loop-Shaping Control

H∞ loop-shaping control, proposed by McFarlane and
Glover [6], is an efficient way to design a robust controller
and has been applied to a variety of control problems
[19–21]. Uncertainties in this approach are modeled as
coprime factor uncertainty. This uncertainty model does
not represent actual physical uncertainty, which, in fact,
is unknown. This approach requires only a desired open
loop shape in the frequency domain. Two weighting func-
tions, W1 (pre-compensator) and W2 (post-compensator),
are specified to shape original plant G so that the desired
open loop shape is achieved. In this approach, the shaped
plant is formulated as a normalized coprime factor that
separates plant Gs into normalized nominator Ns and de-
nominator Ms factors. In any plant model G, the shaped
plant Gs is formulated as [6]

Gs � W2GW1 �

�
A B
C D

�
. . . . . . . . (11)

Gs � �Ns �∆Ns
��Ms �∆Ms

��1 . . . . . . . (12)

where A�B�C�D represent plant Gs in the state-space
form,

��∆Ns
� ∆Ms

��
∞ � ε, Ns and Ms are nominator and de-

nominator normalized coprime factors. ∆Ns
and ∆Ms

are
uncertainty transfer functions in nominator and denomi-
nator factors. ε is an uncertainty boundary, called a sta-
bility margin. To obtain these normalized coprime factors,

Fig. 5. Block diagram of H∞ loop shaping.

the following equation is applied [16]:

�Ns Ms� �

�
A�HC B�HD H
R�1�2C R�1�2D R�1�2

�
. (13)

where H ���BDT �ZCT �R�1, R � I �DDT and matrix
Z � 0 is the unique positive definite solution to the alge-
braic Riccati equation

�A�BS�1DTC�Z �Z�A�BS�1DTC�T

�ZCT R�1CZ �BS�1BT � 0 . . (14)

where S � I �DT D.
Once the desired loop shape is achieved, the ∞-norm

of the transfer function from disturbances w to states z is
subjected to be minimized over all stabilizing controllers
K. Fig.5 shows the block diagram of H∞ loop-shaping
control.

3.1.1. Weighting Function Selection

Selection of the weighting function is very important
in design. Fortunately, the relation between the open loop
frequency domain and time domain performance is well
understood [22]. This section summarizes weighting se-
lection, detailed in [16]. Typically, we select weights W1
and W2 such that the open loop shaped plant has the fol-
lowing conflict properties:

1. Achieving good performance tracking and good dis-
turbance rejection require large open loop gain nor-
mally at a low frequency range.

2. Achieve good robust stability and sensor noise rejec-
tion requires a small open loop gain normally at a
high frequency range.

The selection of crossover frequency, i.e., the frequency
at which the open loop of the shaped plant intersects with
the 0dB line, is important. Practically, we select crossover
frequency to achieve the desired bandwidth of our con-
troller. The following guide explains selection:

1. For a plant with time delay θ , expected upper bound
crossover frequency (wc� must be less than 1�θ .

2. For a plant with a right half plan zeros (RHP), z, the
expected upper bound crossover frequency (w c� must
be less than 2�z.

3.1.2. H∞ Loop-Shaping Design

Based on standard H∞ loop-shaping, the following
steps are proposed for an SISO plant [6]:
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1. Shape singular values of nominal plant G by using
pre-compensator W1 and/or post-compensator W2 to
get the desired loop shape. W1 and W2 should be cho-
sen so that Gs contains no hidden modes. W1 is used
to meet tracking performance and disturbance atten-
uation and W2 to attenuate sensor noise. Practically,
we select W1 as an integral action weighting func-
tion, which make a zero steady state error. Eq.(15)
shows typical weighting function W1. W2 can be cho-
sen as an identity matrix because we can neglect sen-
sor noise effect when a good sensor is used.

W1 � Kw
s�α
s�δ

� W2 � I . . . . . . (15)

where Kw�α and δ are positive numbers. δ is se-
lected as a small number �� 1� for integral action.

2. Minimize the ∞-norm of transfer matrix Tzw over all
stabilizing controllers K to obtain optimal cost γopt ,
as [1]

γopt � ε�1
opt � inf

stabK

����
�

I
K

�
�I �GsK��1M�1

s

����
∞
�

. . . . . . . . . . . . . (16)

The resulting εopt is a measure of robustness of the
desired loop shape. It also indicates compatibility of
weighting functions with robust control of the plant.
εopt � 0�25 (or γopt � 4) indicates that W1 or W2 de-
signed in step 1 is incompatible with robust stability.
We must return to step (1) and readjust W1 or W2. εopt
is determined using the unique method explained in
[16]:

γopt � ε�1
opt � �1�λmax�XZ��1�2 . . . . (17)

where X and Z are the solutions of Riccati equations
(18) and (14), and λmax is the maximum eigenvalue.

�A�BS�1DTC�T X �X�A�BS�1DTC�

�XBS�1BT X �CT R�1C � 0� . . (18)

3. Select ε � εopt , then synthesize controller K∞ that
satisfies (negative feedback) [1,6]

�Tzw�∞ �

����
�

I
K∞

�
�I �GsK∞�

�1M�1
s

����
∞

�

����
�

I
K∞

�
�I �GsK∞�

�1�I Gs�

����
∞
� ε�1� (19)

Controller K∞ is obtained by solving the optimal con-
trol problem in eq.(19).

4. Final controller (K) follows

K �W1K∞W2� . . . . . . . . . . . (20)

3.2. Genetic-Algorithm-Based Fixed-Structure H∞
Loop-Shaping Optimization

We apply a fixed-structure robust controller. Our scope
of design is an SISO plant, but it can be extended to an
MIMO plant. The controller derived from direct H∞ syn-
thesis is high-order, complicated, and not practical in ac-
tual application [23]. Fixed-structure robust controllers
have becomes an interesting area of research because of
their simple structure and acceptable controller order, al-
though solving two Riccati equations as required con-
ventionally to synthesize a fixed-structure controller re-
mains unfeasible. We propose genetic-algorithm-based
fixed-structure H∞ loop shaping to solve this problem. Al-
though the proposed controller is structured, it retains the
robustness and performance as long as satisfactory uncer-
tainty boundary ε is achieved [24]. The proposed algo-
rithm is as follows:

Assume predefined structure controller K�p� has satis-
fied parameters p. The goal of optimization is to find pa-
rameters p in controller K�p� that minimize infinity norm
�Tzw�∞. From eq.(20), controller K�p� is written as

K�p� �W1K∞W2 . . . . . . . . . . . . (21)

or

K∞W2 �W�1
1 K�p�� . . . . . . . . . . . (22)

We select weight W2 � I, which implies that sensor noise
is negligible and not considered. Thus,

K∞ �W�1
1 K�p�� . . . . . . . . . . . . (23)

By substituting eq.(23) into eq.(19), the ∞-norm of the
transfer function matrix from disturbance to state, �Tzw�∞,
which is minimized, is written as shown in eq.(24).
�Tzw�∞ is used as cost function Jcost of the genetic algo-
rithm.

Jcost � γ � �Tzw�∞

�

����
�

I
W�1

1 K�p�

�
�I �GsW

�1
1 K�p���1�I Gs�

����
∞
�

. . . . . . . . . . . . . . (24)

Although the infinity norm is difficult to calculate, power-
ful mathematic software such as MATLAB provides func-
tions to evaluate this norm.

Genetic algorithms are well known as a biologically in-
spired class of algorithms applicable to any nonlinear op-
timization problem. This algorithm applies the concept
of chromosomes and the operations of crossover, muta-
tion, and reproduction. A chromosome is an individual
sample in a population. Each individual is assigned a fit-
ness based on evaluation and objective functions. At each
step, called generation, fitness values of all individuals in
a population are calculated. Individual with maximum fit-
ness value is retained as a solution in the current genera-
tion and passed to the next generation. To form a new
population of the next generation, crossover, mutation,
and reproduction are used. Crossover randomly selects
a site along the length of two chromosomes, then splits
the two chromosomes at the crossover site. New chro-
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Fig. 6. Genetic operations. (a) Crossover, (b) Mutation, and (c) Reproduction.

mosomes are then formed by matching the head of one
chromosome with the tail of the other. Mutation forms
a new chromosome by randomly changing a single bit in
the chromosome. Reproduction forms a new chromosome
by copying the old chromosome. Chromosome selection
in genetic algorithms depends on the fitness value. High
fitness means a high chance of being selected. Mutation,
reproduction, or crossover depends on the pre-specified
operation’s probability. Individual samples in the genetic
population are coded in binary. For real numbers, decod-
ing binary to floating-point numbers is used [25]. The
following example illustrates the coding procedure. As-
sume that p � �Kp�Ki� as the parameters of PI controller.
The range of parameters are assume as 0�0 � K p � 5�0,
0�0 � Ki � 10�0. The number of bits in a parameter is
assumed as 10, therefore, Kp and Ki can be coded as the
following.

Kp code Ki code
0�00000 0000000000 0�00000 0000000000
0�00488 0000000001 0�00977 0000000001
0�00977 0000000010 0�01955 0000000010

...
...

...
5�00000 1111111111 10�0000 1111111111

For example, p = [0.00977, 10.0000] is code as
[00000000101111111111]. Crossover, mutation, and re-
production are shown in Fig.6. The algorithm is summa-
rized as follows:

Steps 1 and 2 Apply the McFarlane and Glover proce-
dure [16]. εopt � 0�25 (or γopt � 4) indicates that W1 and
W2 are incompatible with robust stability. W1 or W2 is ad-
justed.
Step 3 Select controller structure K�p� and initialize sev-
eral sets of parameters p as the population in the first gen-
eration. Define genetic parameters such as initial popula-
tion size, crossover and mutation probability, and maxi-
mum generation.
Step 4 Evaluate cost function, Jcost , of each individual us-
ing eq.(24). Assign Jcost � 100, or a large number if K�p�
does not stabilize plant G. Select the individual with min-
imum cost as a solution in the current generation. For the
first generation, Gen � 1.
Step 5 Increment the generation by 1 step.
Step 6 While the current generation is less than the maxi-
mum generation, create new population using genetic op-

Fig. 7. Flow chart of design.

erators and go to step 4. If the current generation is the
maximum generation, stop.
Step 7 Check performances in frequency and time do-
mains. If performance is unsatisfactory, such as too low
ε, go to step 1 to change weighting functions or control
structure. Low ε indicates that weighting functions and/or
selected control structure is not suitable to the problem.
Other properties in the time domain such as overshoot and
rise time are also important. Fig.7 shows the flow of the
proposed algorithm.

4. Simulation, Experiments, and Results for
Pneumatic System

From identification in Section 2.2, the modified nom-
inal plant is modeled as a second-order model with time
delay. We approximate the delay term in the model by
a first-order Pade’s approximation. The identified plant
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Fig. 8. Cost functions Jcost versus iteration in genetic algorithm.

model is thus

GP�s��
551�3e�0�12s

�s2 �43�26s�536�9�

�
551�3��0�06s�1�

�s2 �43�26s�536�9��0�06s�1�
. . (25)

where the first-order Pade’s approximation is

e�θs �

�
�θ

2 s�1
θ
2 s�1

�
� . . . . . . . . . . (26)

In the model, crossover frequency must not exceed
1�θ , 8.33rad/s. Weighting functions are selected using
the guideline in [16]. W1 is an integral action weight-
ing function, small positive pole, to conduct a zero steady
state error. Identity W2 is selected because sensor noise is
assumed to be negligible. According to eq.(15), we select
weighting functions as

W1 �
0�75s�4�0
s�0�001

� W2 � 1� . . . . . . (27)

With these weighting functions, the bandwidth of the
desired control system is about 4.0rad/s. These weighting
functions significantly improve performance and robust-
ness.

For comparison, we evaluated different controllers. We
first design a controller by conventional H∞ loop-shaping,
then transform the transfer function of the shaped plant to
a state-space form as follows:

Gs �W1GW2

�
0�75s�4�0
s�0�001

551�3��0�06s�1�
�s2 �43�26s�536�9��0�06s�1�

�

�
A B
C D

�

�

�
���	
�59�9 �19�7 �4�36 �0�00 4�0
64�00 0�000 0�000 0�000 0�0
0�000 32�00 0�000 0�000 0�0
0�000 0�000 8�000 0�000 0�0
0�000 �1�62 0�572 0�561 0�0



���� � . (28)

(a) Loop shape of plant and desired shape plant

(b) Desired loop shape and loop shape by conventional H infinity
loop shaping, proposed PI, and proposed PID controllers

(c) Step responses of proposed PI, PID and H infinity controllers

Fig. 9. Bode diagram of (a) plant and shaped plant, (b)
desired loop shape and loop shape by proposed controllers,
and (c) step responses of controllers.

By solving eqs.(14), (17), and (18), optimal stability mar-
gin εopt is found to be 0.5793. In conventional H∞ loop-
shaping, we select ε � 0�5475, less than the optimum
value. Solving eq.(19), controller K∞ is obtained as fol-
lows:

K∞�s� �
44�9329�s�16�67��s2 �41�8s�470�2�
�s�61�04��s�5�64��s2 �36�13s�1561�

�

. . . . . . . . . . . . . . (29)
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Fig. 10. Comparison of step responses of controller after
first and 100th generations of proposed PID controller.

Fig. 11. Pneumatic actuator system and encoder.

With eq.(20), we obtain the conventional H∞ loop-shaping
controller as follows:

K�s� �W1K∞W2 �
�0�75s�4�0�

s�0�001

�
44�9329�s�16�67��s2 �41�8s�470�2�
�s�61�04��s�5�64��s2 �36�13s�1561�

�
33�6996�s�16�67��s�5�333��s2 �41�8s�470�2�

�s�61�04��s�5�64��s�0�001��s2 �36�13s�1561�
�

. . . . . . . . . . . . . . (30)

The controller in eq.(30) is fifth-order and complicated,
making it difficult to implement practically.

We try PID with a derivative first-order filter controller
as the fixed-structure controller. The controller structure
is expressed in eq.(31). Kp�Ki�Kd� and τd are parameters
to be evaluated.

K�p� � Kp �
Ki

s
�

Kds

τds�1
� . . . . . . . . (31)

We select controller parameters, their ranges, and ge-
netic algorithms parameters as follows: Kp 	 �0�0�10�0�,
Ki 	 �0�0�10�0�, Kd 	 �0�0�1�0�, τd 	 �0�0�20�0�, popula-
tion size � 500, crossover probability � 0�9, mutation
probability � 0�1, maximum generation � 100, and num-
ber of bits that represent one parameter � 24. 100 gener-

Fig. 12. Proportional valve.

Analog proportional circuit

Data acquisition circuit

Fig. 13. Analog proportional controller and data acquisition
circuit.

ations are run by genetic algorithm. The obtained optimal
solution is shown in eq.(32), which has a stability margin
of 0.5298 (or γ � 1�8875).

K�p� � 0�2356�
2�5017

s
�

0�7298s
12�6007s�1

� . . (32)

We try a fixed-structure PI controller. The optimal so-
lution is shown in eq.(33), which has a stability margin of
0.4975 (or γ � 2�0101).

K�p� � 0�4083�
2�369

s
� . . . . . . . . . (33)

Figure 8 shows plots of convergence of cost function
Jcost , the inverse of the stability margin, versus genera-
tions by genetic algorithm. Both optimal fixed-structure
controllers provide a satisfied stability margin at 0.5298
and 0.4975 for PID with a derivative first-order filter and
PI, respectively.
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(a) Simulation result

(b) Experimental result

Fig. 14. (a) Simulation result, and (b) Experimental re-
sult of proposed optimal robust PI controller (Scale: Y-axis:
20mm/division, X-axis: 0.5s/division).

Open loop bode diagrams are plotted to verify pro-
posed algorithms. Fig.9(a) compares plant G and speci-
fied shaped plant Gs. The desired loop shape and the loop
shape by the proposed controller are plotted in Fig.9(b). It
is clearly shown that the proposed technique performs as
robust controller, which corresponds to the desired loop
shape. Both loop shapes of PI and PID with a deriva-
tive first-order filter are close to the desired loop shape.
Fig.9(c) shows step responses of the optimal solution
from the proposed robust PI, PID with a derivative first-
order filter, and the conventional H∞ controller.

Figure 10 compares step responses in the controller af-
ter the first and 100th generations, showing that the genetic
algorithm improves performance in the time domain and
in robustness.

The experiment is done on a 200mm, low friction
pneumatic cylinder, SMC CDY1S10H, which has 700kPa
rated pressure. The 5-port proportional valve used in the
experiment is Festo MPYE-5-1/8-HF-010B, which has
�700 to 700�/min flow. A linear potentiometer, Festo-
POT-500L, is used as a position sensor. Nominal supply

Fig. 15. Step response at 400kPa supply pressure (nominal
supply pressure � 550kPa) (Scale: Y axis: 20mm/division,
X axis: 0.5s/division).

Fig. 16. Step response at 3kg load mass (nominal load �
1kg) (Scale: Y axis: 20mm/division, X axis: 0.5s/division).

pressure is maintained at a constant 550kPa by a pressure
regulator. Figs.11-13 show equipment used in the exper-
iment. Fig.14 shows simulation and experimental results
of the step response of the proposed robust PI controller
in eq.(33). Results are similar, showing overly damp re-
sponses and about the same rise time. The simulation re-
sult has no steady state error. In the experimental result,
the steady state error is about
0.3mm due to a non-model
friction dynamic, dead-zone of valve, and limitation of
sensor resolution.

We conducted other experiments to verify the robust-
ness of the proposed controller. First, we changed the
supply pressure of the pneumatic system, equivalent to pa-
rameter variation in the nominal plant. We also changed
load mass. Both experimental results show that the pro-
posed controller has good robust performance from sup-
ply pressure uncertainty and load mass. Responses are
overly damp with small different in rise-time. Figs.15 and
16 show the results of step response in changing supply
pressure and load mass.
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Fig. 17. Response at different location on pneumatic cylin-
der (Scale: Y axis: 40mm/division, X axis: 1.0s/division).

Figure 17 shows experimental results of the proposed
controller at different locations on the cylinder, indicating
that the proposed controller is applicable to a wide range
of operations.

5. Conclusion

The proposed controller achieves good robust perfor-
mance by applying two specified weighting functions.
Although design of a fixed-structure controller is diffi-
cult because of its inherently non-convex nonlinear prob-
lem, the genetic algorithm simplifies this by searching
for optimal solutions. Based on the concept of conven-
tion H∞ loop shaping, only a single index, stability mar-
gin, ε, is applied to indicate performance of the designed
controller. Optimal stability margin εopt is found to be
0.5793 for conventional H∞ loop shaping. We then choose
ε � 0�5475 to design the robust controller. The con-
troller obtained from conventional H∞ loop shaping is
high-order and complicated. For proposed PI and PID
control with a derivative first-order filter, optimal solu-
tions of ε after running genetic algorithms for 100 gen-
erations are 0.4975 and 0.5298, respectively, indicating
that designed controllers are compatible with the speci-
fied open loop shape and also guarantee robustness. In
the frequency response, the conventional H∞ loop-shaping
controller performs closer to the desired loop shape than
the proposed technique. However, because of the com-
plicated controller in the conventional design, the pro-
posed approach significantly improves practical control
by simplifying the controller structure and reducing the
controller order while retaining robust performance. This
makes the proposed controller more practical and attrac-
tive. Experimental results show the robust performances
of the proposed controller. Changing load mass and sup-
ply pressure has little effect on the controlled output re-
sponse.

In conclusion, by combining the two approaches of ge-
netic algorithms and H∞ loop shaping; we designed a

fixed-structure controller. Although this approach can-
not guarantee an invariably satisfactory solution, in most
cases, the solution exists. Implementation in a pneumatic
system confirmed that the proposed technique is valid and
flexible. Other control performances will be considered in
further research with multiple objective functions.
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