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RESEARCH

Plant breeding programs producing inbred lines have two 
concurrent goals: (i) identifying new inbreds (either for 

varieties or parents of hybrids) and (ii) identifying parents for 
subsequent breeding cycles. We believe the most effective strat-
egy for using genomic selection in these plant breeding programs 
would address each goal separately. This two-part strategy would 
reorganize traditional breeding programs into two distinct com-
ponents: a product development component, to develop and 
screen for inbred lines, and a population improvement compo-
nent, to increase the frequency of favorable alleles through rapid 
recurrent genomic selection.

Genomic selection uses estimates of genetic value from a 
genomewide set of molecular markers to make selections (Meu-
wissen et al., 2001; Bernardo and Yu, 2007). The process involves 
training a statistical model for associations between molecular 
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markers and traits of interest using a set of genotyped and 
phenotyped individuals that are ideally closely related 
to the selection candidates (Clark et al., 2012; Hickey 
et al., 2014). The trained model is then used to estimate 
the genetic value of selection candidates using only their 
genotypic information. The selection candidates are then 
selected on the basis of their estimated genetic values.

Estimated genetic values can be used in place of phe-
notyping to drastically restructure existing breeding pro-
grams. Most breeding programs producing inbred lines 
use crossing to develop new germplasm and then perform 
selfing to derive new inbred lines (Bernardo, 2014). Alter-
natively, doubled haploid technology can be used to rap-
idly derive inbred lines (Forster et al., 2007). These newly 
derived inbred lines are then phenotyped for one or more 
cycles before final selection to fulfill one or both of the pre-
viously stated goals of product development and germplasm 
improvement. Within this framework, genomic selection 
can be used to identify promising lines sooner, thereby 
reducing cycle time and increasing genetic gain per year 
(Heffner et al., 2009). The use of inbred lines as parents is 
arguably only a by-product of the need to phenotypically 
identify new parents. With the advent of genomic selec-
tion, the use of inbred lines as parents could be eliminated 
entirely (Heffner et al., 2009). Strategies incorporating this 
idea have been described for both crops that are easy to cross 
(Bernardo and Yu, 2007; Bernardo, 2009) and those that 
are difficult to cross because of self-pollination (Bernardo, 
2010). The two-part strategy that we propose is an exten-
sion of these strategies and aims to maximize the potential 
of genomic selection in an entire breeding program.

The population improvement component of the two-
part strategy uses genomic selection to perform rapid 
recurrent selection. The goal is to minimize breeding 
cycle time to maximize genetic gain per year. Each popu-
lation improvement cycle begins with a large number of 
genetically distinct plants. These plants are genotyped, 
genomic selection is applied, and the best individuals 
are intercrossed to produce a new generation. The cycle 
is then repeated. Thus, population improvement in the 
two-part strategy is simply a recurrent genomic selection 
scheme. A portion of the seed produced in some or all 
cycles is passed to the product development component to 
ensure a constant supply of improved germplasm.

The product development component of the two-
part strategy focuses solely on developing inbred lines for 
release as inbred varieties or hybrid parents. The structure 
of this component resembles existing breeding programs 
and can thus be flexibly designed according to existing or 
new breeding program designs. This flexibility in design-
ing the product development component also allows for 
different implementations of genomic selection. The key 
difference between the product development component 
of the two-part strategy and existing breeding programs is 

that lines are not chosen for subsequent cycles of breeding, 
as this is handled by the population improvement compo-
nent. Additionally, the product development component 
must include genotyping of some phenotyped plants. This 
is necessary for updating the genomic selection training 
population used in the population improvement compo-
nent and also allows the application of genomic selection 
in the product development component. By enabling the 
construction and updating of the training set, the product 
development component of the two-part strategy guides 
the population improvement component.

Determining the cost effectiveness of the two-part 
strategy requires measuring breeding program perfor-
mance over a long time period. Such a comparison would 
ideally use actual breeding programs, but the large invest-
ment needed for this is inhibitory. Instead, we use stochas-
tic simulation to provide an initial demonstration of the 
potential of the two-part strategy.

MATERIALS AND METHODS
Stochastic simulations of entire breeding programs were used 
to compare cost effectiveness of a conventional breeding pro-
gram not using genomic selection with two breeding programs 
implementing the two-part strategy and three breeding pro-
grams using alternative genomic selection strategies. The 
alternative genomic selection strategies are herein referred to 
as standard genomic selection strategies, because they maintain 
the traditional structure of a conventional breeding program. 
The structure of all simulated breeding programs were based on 
winter wheat (Triticum aestivum L.) breeding programs produc-
ing doubled haploid lines. The program that used a conventional 
breeding strategy without genomic selection (Conv) served as a 
control and is shown in Fig. 1. The standard genomic selection 
strategies were ( . 1): a strategy that uses genomic selection in 
the preliminary yield trials (PYT) to improve selection accu-
racy (Conv GS), a strategy that uses genomic selection in the 
PYT to both improve selection accuracy and decrease cycle time 
(PYT GS), and a strategy that uses genomic selection in head-
rows to improve selection accuracy and further decrease cycle 
time (Head GS). The two-part strategy uses genomic selection 
to perform recurrent selection on F1 plants in the population 
improvement component and to perform selection in either the 
PYT (2Part) or headrow (2Part+H) stage of the product devel-
opment component (Fig. 2). Each program was constrained to 
have approximately equal operating costs, so that direct compar-
isons between the different breeding programs would represent 
their relative effectiveness. These comparisons were made using 
the average of 10 replicates for four levels of genotype-by-year 
interaction (G  ´ Y) variance. Each replicate consisted of (i) a 
burn-in phase shared by all strategies so that each strategy had an 
identical, realistic starting point, and (ii) an evaluation phase that 
simulated future breeding with each of the different breeding 
strategies (Fig. 3). Specifically, the burn-in phase was subdi-
vided into three stages: the first simulated the species’ genome 
sequence, the second simulated founder genotypes for the initial 
parents; and the third simulated 20 yr of breeding using the con-
ventional breeding strategy without genomic selection.
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from genome size (i.e., 1.43 Morgans/8 ´ 108 base pairs = 1.8 
´ 10-9 per base pair), and mutation rate was set to 2 ´ 10-9 per 
base pair. Effective population size was set to 50, with linear 
piecewise increases to 1000 at 100 generations ago, 6000 at 
1000 generations ago, 12,000 at 10,000 generations ago, and 
32,000 at 100,000 generations ago. These values were chosen 
to roughly follow the evolution of effective population size in 
wheat (Thuillet et al., 2005; Peng et al., 2011).

Burn-In: Genome Sequence
For each replicate, a genome consisting of 21 chromosome 
pairs was simulated for the hypothetical plant species similar 
to wheat. These chromosomes were assigned a genetic length 
of 1.43 Morgans and a physical length of 8 ´ 108 base pairs. 
Sequences for each chromosome were generated using the 
Markovian coalescent simulator (MaCS; Chen et al., 2009) and 
AlphaSim (Faux et al., 2016). Recombination rate was inferred 

Fig. 1. Overview of breeding schemes for the conventional program (Conv; used in burn-in and as a control) and the programs using 
standard genomic selection strategies. DH, doubled haploid; PYT, preliminary yield trial; AYT, advanced yield trial; EYT, elite yield trial; 
Head GS, headrow genomic selection program; PYT GS, preliminary yield trial genomic selection program; Conv GS, conventional 
program with genomic selection. †The number of DH lines per cross (N) differs for each breeding program to maintain equal operating 
costs. See Table 1. 

Fig. 2. Overview of the two-part program with PYT genomic selection (2Part) and two-part program with headrow genomic selection 
(2Part+H). DH, doubled haploid; GS, genomic selection; PYT, preliminary yield trial; AYT, advanced yield trial; EYT, elite yield trial. †The 
number of DH lines per cross (N) differs for each breeding program to maintain equal operating costs. See Table 1.
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Burn-In: Founder Genotypes
Simulated genome sequences were used to produce 50 founder 
lines. These founder lines served as the initial parents in the 
burn-in phase. This was accomplished by randomly sampling 
gametes from the simulated genome to assign as sequences for 
the founders. Sites segregating in the founders’ sequences were 
randomly selected to serve as 1000 single nucleotide polymor-
phism (SNP) markers per chromosome (21,000 total) and 1000 
quantitative trait nucleotides (QTN) per chromosome (21,000 
total). The founders were converted to inbred lines by simulat-
ing formation of doubled haploids.

Burn-In: Phenotype
A single trait representing grain yield was simulated for all 
doubled haploid lines. The genetic value of this trait was deter-
mined by the summing its QTN allele effects. The allele effects 
depended on the value of an environmental effect. The envi-
ronmental effect changed over years to model G ´ Y. For a 
given year, the allele effects followed this formula:

ai(wj) = bi + miwj,

where ai is the allele effect for QTN i, wj is the environmental 
effect for year j, bi is the QTN intercept and mi is the QTN 
slope on the environmental effect. The slope, intercept, and 
environmental effects were sampled from the following normal 
distributions:
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where nQTN is 21,000, s2
G  is genetic variance due to additive 

gene action, which was set to 1, and ´sG Y  is the square root of 
the G ´ Y variance. Four levels of G ´ Y variance were exam-
ined: 0, 2, 4, and 10 times s2

G .
The genetic values of each doubled haploid line were used 

to produce phenotypic values by adding random error. The 
random error was sampled from a normal distribution with 
mean 0. The variance of the random error varied according to 
the stage of evaluation in the breeding program. This was done 
to account for increasing accuracy in evaluation as the plot size 
and number of replications per entry increases. The values for 
these error variances were set so as to achieve target levels of 
heritability. The levels of heritability represented heritability on 
an entry-mean basis for the 50 founder genotypes when G ´ 
Y variance equals 0. The used levels of heritability are given in 
the next subsection. Realized entry-mean heritability changed 
depending on genetic variance of the evaluated genotypes.

Recent (Burn-In) Breeding and Conventional 
Program (Conv)
Recent (burn-in) breeding for yield in the species was simu-
lated using 20 yr of breeding in a conventional program without 
genomic selection. The design of the burn-in program was 
modeled after existing winter wheat breeding programs. The 
key features of this breeding program were (i) a crossing block 
consisting of 50 doubled haploid lines used to develop 100 bipa-
rental populations each year, (ii) development of new doubled 
haploid lines from each biparental cross, (iii) a 4-yr cycle time 
from crossing to selection of new parents, and (iv) an 8-yr pro-
duction interval from crossing to release of a new variety.

All selection in the burn-in program was performed using 
phenotypes. These phenotypes represented either direct selec-
tion on yield using a yield trial or indirect selection for yield 
using visual selection on correlated traits. The levels of heri-
tability at a particular selection stage were set in consultation 
with breeders and based on observed values in the field.

A schematic for the overall design of the burn-in pro-
gram is given in Fig. 1 and a detailed description follows. The 
progression of germplasm through the breeding program was 
simulated using AlphaSim (Faux et al., 2016) and R (R Devel-
opment Core Team, 2014).

Year 1
Crossing is performed to produce 100 biparental populations. 
Parental combinations are chosen from all possible combina-
tions for the 50 parental lines in the crossing block (1225 possible 
combinations) using random sampling without replacement.

Years 1 and 2
One hundred doubled haploid lines are produced from each 
biparental family.

Fig. 3. Simulation stages for a single replicate. SNP, single nucleo-
tide polymorphism; QTN, quantitative trait nucleotides.
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the breeding programs continued without making new crosses. 
This was done to allow germplasm in different stages of the 
program to progress to the end. For example, crosses made in 
year 20 were evaluated as headrows in year 22 and progressed 
through the entire program by year 27.

The alternative breeding program designs were based on 
breeding programs with equivalent operating costs using dif-
ferent genomic selection strategies (Table 1). The design of 
these programs used the conventional program as a template. 
Minimal modifications were made to this template to produce 
initial designs for each strategy. The initial designs were then 
adjusted for number of doubled haploid lines produced from 
each biparental cross to ensure that the overall operating cost 
was approximately equal to the cost used for the conventional 
breeding program in the recent breeding burn-in stage. Since 
the two-part strategies used two cycles per year, they resulted 
in twice as many crosses per year. The remaining components 
of the breeding programs were kept constant. This meant, for 
example, that the number of entries in yield trials was kept 
constant across breeding programs. This was done to avoid 
changing genomic selection training population size; this factor 
is outside the scope of the present study.

Equalization of operating costs was performed using esti-
mated costs for genotyping and producing doubled haploid lines. 
The cost for producing doubled haploid lines was estimated at $35 
on the basis of the lowest publically advertised price from Heart-
land Plant Innovations (http://www.heartlandinnovations. 
com; accessed 23 June 2017). The cost of increasing seed of 
these doubled haploid lines in a headrow (progeny row) was 
considered to be included in this estimate even though this is 
not part of the advertised service. The cost for genotyping was 
estimated at $20. These estimates were intentionally skewed 
toward a smaller ratio of doubled haploid cost to genotyping 
cost as a higher ratio requires less of an offset in breeding pro-
gram design and favors genomic selection breeding programs. 
Costs for many other stages in the breeding program, such 
as yield trials, were not estimated since they were kept con-
stant across all programs. The cost for crossing, which in any 
case would be small, was not considered even though it varied 
between breeding programs.

Genomic selection in each breeding program used an ini-
tial training population containing the last 3 yr of yield trial 

Year 3 
The newly developed doubled haploids are planted in headrows 
to increase seed and perform visual selection. Visual selection 
in the headrows is modeled as selection on a yield phenotype 
with heritability of 0.1 to represent the breeder selecting on 
correlated traits. The breeder advances 500 lines.

Year 4 
The 500 lines are evaluated in the PYT. The PYT represents 
evaluation in an unreplicated trial that is mechanically har-
vested to measure yield. Selection in the PYT is modeled as 
selection on a yield phenotype with heritability of 0.2. The best 
performing 50 lines are advanced to the next trial. The best 
performing 20 lines are also advanced to the next year’s cross-
ing block, thereby completing a crossing cycle.

Year 5 
The 50 lines advanced from the PYT are evaluated in an 
advanced yield trial (AYT). The AYT represents evaluation in a 
small, multilocation replicated yield trial. Selection in the AYT 
is modeled as selection on a yield phenotype with heritability of 
0.5. This value of heritability was based on the assumption that 
an AYT represents four effective replications of the PYT. The 
best performing 10 lines in the AYT are advanced to the next 
trial. These 10 lines are also considered as candidates for next 
year’s crossing block. The next year’s crossing block of 50 lines 
is composed of the 20 best PYT lines, the 10 best AYT lines, 
and the best 20 lines selected from the current crossing block’s 
30 non-PYT lines.

Year 6 
The 10 advanced lines are evaluated in an elite yield trial (EYT). 
The EYT represents evaluation in a large, multilocation repli-
cated yield trial. Selection in the EYT is modeled as selection 
on a yield phenotype with heritability of 0.67. This value of 
heritability was based on the assumption that an EYT repre-
sents eight effective replications of the PYT. All 10 lines are 
kept in the EYT to be reevaluated in the following year. Any of 
the 10 lines used in the current year’s crossing block have their 
phenotypes updated to reflect their performance in this year’s 
EYT before lines are chosen for next year’s crossing block.

Year 7 
The 10 lines from the previous year’s EYT are reevaluated. Any 
of those still in the current crossing block have their phenotypes 
updated to reflect their performance in both years of evaluation 
in the EYT before lines are chosen for next year’s crossing block.

Year 8 
The line with the best average performance over the previous 2 
yr of EYT evaluation is released as a variety.

Future Breeding
The future breeding phase of the simulation modeled breed-
ing using alternative breeding program designs. Each design 
was simulated for an additional 20 yr following the recent 
breeding burn-in phase, so that each design could be evaluated 
with an equivalent starting point. At the end of these 20 yr, 

Table 1. Summary of breeding program sizes and costs.

Program†
Crosses 
per year

Lines per 
cross

Head-
rows i‡ Cost 

$

Conv 100 100 10,000 1.75 350,000

Conv GS 100 97 9700 1.74 349,500

PYT GS 100 97 9700 1.74 349,500

Head GS 100 63 6300 1.52 346,500

2Part 200 31 6200 1.52 347,000

2Part+H 200 20 4000 1.27 340,000

† Conv, conventional breeding program; Conv GS, conventional program with 
genomic selection; PYT GS, preliminary yield trial genomic selection; Head GS, 
headrow genomic selection program; 2Part, two-part program with PYT genomic 
selection; 2Part+H, two-part program with headrow genomic selection.

‡ Standardized selection intensity for PYT entries selected from headrows (Ber-
nardo, 2014)
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data in the recent breeding burn-in phase. This initial train-
ing population thus contained 1710 phenotypic records on 1570 
genotypes. New data was added to the training population in 
subsequent years as new yield trials were evaluated. By year 20, 
the training population expands to contain 12,540 phenotypic 
records on 11,070 genotypes.

Genomic predictions were made using a ridge regression 
model (Hoerl and Kennard, 1976; Meuwissen et al., 2001). The 
model handled the heterogeneous error variance due to different 
levels of error in each yield trial by weighting for the effective 
number of replications. The model was implemented in C++ 
and R using the R library “RcppArmadillo” (Eddelbuettel and 
Sanderson, 2014). The code was partially adapted from code in 
the R library “EMMREML” (Akdemir and Godfrey, 2015).

Conventional Program  
with Genomic Selection 
The Conv GS was developed as a control to measure change 
in selection accuracy due to the use of genomic selection with-
out changes to the conventional breeding program (Fig. 1). As 
such, the program used the same procedures as the conventional 
program. The number of doubled haploid lines per cross was 
reduced from 100 in the conventional scheme to 97 to offset 
genotyping costs.

Preliminary Yield Trial Genomic  
Selection Program 
The PYT GS program introduced genotyping at the PYT stage 
(Fig. 1). Genomic selection was used to advance lines in the 
PYT and AYT stages and to select parental lines for the cross-
ing block. The parental lines were selected by choosing the 50 
lines with the highest genomic estimated value from a set of 
candidates that comprised last year’s crossing block lines as well 
as all entries from the PYT and later yield trials. This reduced 
the cycle time for crossing to selection of new parents from 4 yr 
in the conventional program to 3 yr. The number of doubled 
haploid lines per cross was reduced from 100 in the conven-
tional scheme to 97 to offset genotyping costs.

Headrow Genomic Selection Program 
The Head GS program began genotyping lines for genomic 
selection in the headrows (Fig. 1). Therefore, genomic selection 
was used in the headrows, PYT, and AYT. Crossing block lines 
were chosen by selecting the 50 lines with the highest genomic 
estimated value from the previous year’s crossing block and all 
headrow and yield trial entries. This reduced the cycle time 
from crossing to selection of new parents to 2 yr. The number 
of doubled haploid lines per cross was reduced from 100 in the 
conventional scheme to 63 to offset genotyping costs.

Two-Part Program 
Additional aspects of the simulated species’ biology were 
assigned for the purpose of developing the two-part program. 
First, it was assumed a hybridizing agent could be applied to 
induce male sterility. Male sterile plants could then be crossed in 
a greenhouse using open pollination with untreated, fully fertile 
plants. Each cross produced 40 seeds, and the process from start 

to finish was accomplished within half a year. The values were 
chosen using values believed to be feasible for winter wheat.

Crossing and selection of new parents in the two-part pro-
gram was handled in the population improvement component 
(Fig. 2), which consisted of two crossing cycles per year. Each 
cycle began by randomly dividing progeny from the previ-
ous cycle into equal numbers of male and female candidates. 
Genomic selection was then used on the candidates to choose 
100 male and 100 female parents. These parents were then 
grown in greenhouses. At the appropriate stage, the female 
plants were treated with a hybridizing agent to induce male 
sterility and pollinated by multiple randomly chosen males. 
This modeled open pollination of the females. Seed from each 
female plant was harvested as half-sib families. Thirty seeds, 
chosen at random, from each family were used as selection can-
didates for the next cycle of crossing. The remaining 10 seeds 
were used to produce new doubled haploid lines. The number 
of doubled haploid lines per cross was reduced from 100 in the 
conventional scheme to 31 to offset genotyping costs.

The product development component of the two-part pro-
gram handled screening of germplasm to identify new varieties 
(Fig. 2). This process began with the production of the new 
doubled haploid lines. The doubled haploid lines were screened 
in the same manner as doubled haploid lines in the PYT genomic 
selection program with regard to selection and genotyping. 
Here, none of the lines were selected for the crossing block, but 
their genomic and phenotypic data were added to the genomic 
selection training population. This allowed the genomic selec-
tion model used in the population improvement component to 
be updated over time as new material was evaluated.

Two-Part Program with Headrow  
Genomic Selection (2Part+H)
This breeding program used the same basic design as the two-part 
program, with the difference of starting with genomic selection 
in headrows instead of the PYT. Thus, screening of the doubled 
haploid lines was performed in the same manner as the head-
row genomic selection program. The number of doubled haploid 
lines per cross was reduced to 20 to offset genotyping costs.

Comparison of Breeding Programs
The effectiveness of each breeding strategy was measured by com-
paring genetic values of newly produced doubled haploid lines 
(headrow stage) over time in each of the corresponding breeding 
programs. Genetic values for headrows were examined because 
it is the earliest stage in which all programs evaluate inbred lines. 
In addition to genetic gain, we also monitored genetic variance 
and accuracy of genomic predictions. Genetic gain and genetic 
variance in the breeding programs was assessed by plotting mean 
and variance of genetic values for headrow entries over time. 
Genetic gain for EYT entries was also examined to determine if 
it differed from genetic gain in headrow entries. To aid in visu-
alization, the mean genetic values were centered at the mean 
value for headrow entries in Year 0 for each replicate. Year 0 was 
defined as the last year of the burn-in phase.

Direct comparisons between breeding programs for 
genetic gain and genetic variance were reported as ratios with 
95% confidence intervals (95% CI). These were calculated by 
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performing paired Welch’s t tests on log-transformed values 
from the 10 simulation replicates. The log-transformed differ-
ences and 95% CI from the t test were then back-transformed 
to obtain ratios (Ramsey and Schafer, 2002). All calculations 
were performed using R (R Development Core Team, 2014).

The accuracy of genomic predictions at each time point 
was assessed in each breeding program. Accuracy was defined 
as the correlation between the true genetic values of headrow 
entries and their genomic estimated values. Genomic estimates 
were produced for all breeding programs, even those that did 
not use genomic selection at the headrow stage. This was done 
only to enable comparisons across breeding programs. The 
genomic estimated values themselves were only used for selec-
tion if breeding program design specified doing so. Accuracy of 
genomic predictions was also assessed in the population improve-
ment components of the two-part programs. This was done to 
estimate the effectiveness of parent selection using this strategy.

RESULTS
The breeding programs using the two-part strategy gener-
ated the most genetic gain and all programs using genomic 
selection generated more gain than the conventional breed-
ing program. The relative rankings of the different breeding 
programs for genetic gain remained consistent across both 
simulation years and different levels of G ´ Y variance. 
The relative rankings of the different breeding programs 
for genetic variance showed complex interactions between 
breeding program, level of G ´ Y variance, and simulation 
year. The relative rankings of the different breeding pro-
grams for genomic prediction accuracy was also complex.

Genetic Gain
Breeding programs using the two-part strategy showed 
the most genetic gain regardless of G ´ Y variance. This 
is shown in Fig. 4, which presents two plots for the mean 
genetic value of headrow entries by year. The first plot 
shows the trends for individual replicate and the mean of 
all replicates for each of the breeding programs evaluated 
in the future breeding component when G ´ Y variance 
is 0. The second plot shows the same trends for G ´ Y 
variance of 10. Both plots show that by Year 4, the breed-
ing programs using the two-part strategy (i.e., 2Part and 
2Part+H) have higher mean genetic values than all other 
programs. The 2Part+H program, which begins genomic 
selection for product development in the headrows, 
slightly outperforms the 2Part program, which begins 
genomic selection for product development in the PYT. 
The same trends were observed when G ´ Y variance 
equaled 2 and 4 (Fig. S1).

Figure 4 also shows that overall ranking of breeding 
programs for total genetic gain was consistent across levels 
of G ́  Y variance. This is shown by looking at the average 
genetic values of headrow entries in the final year (Year 
22) of each plot. In both plots the ranking from lowest to 
highest average genetic value was: Conv, Conv GS, PYT 
GS, Head GS, 2Part, and 2Part+H. This ranking was also 
observed when G ´ Y variance was 2 and 4 (Fig. S1).

Figure 4 also shows the differences between breeding 
programs were smaller when G ´ Y variance was 10. At 
this level of G ´ Y variance, the best performing two-part 

Fig. 4. Genetic gain for all breeding programs when genotype-by-year (G ´ Y) variance is 0 and 10. Genetic gain is expressed as mean 
genetic value of headrow entries over time. The mean genetic value for each replicate was centered on 0 in Year 0. Individual replicates 
are shown with faded lines, and means for all 10 replicates are shown with dark lines. Conv, conventional breeding program; Conv GS, 
conventional program with genomic selection; PYT GS, preliminary yield trial genomic selection program; Head GS, headrow genomic 
selection program; 2Part, two-part program with PYT genomic selection; 2Part+H, two-part program with headrow genomic selection.
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program, 2Part+H, generated 2.36 (95% CI [2.08, 2.67]) 
times the genetic gain of the conventional breeding pro-
gram. The 2Part+H program also produced 1.31 (95% CI 
[1.20, 1.43]) times the genetic gain of the Head GS program. 
When G ´ Y variance was 0, these values were 2.47 (95% 
CI [2.36, 2.59]) and 1.46 (95% CI [1.36, 1.57]), respectively.

Figure 4 also shows that genetic gain is increased in 
the conventional program by adding genomic selection 
without changing cycle time. This is shown by compar-
ing genetic gain in the Conv program with genetic gain 
in the Conv GS program. When G ´ Y variance was 0, 
the Conv GS program produced 1.21 (95% CI [1.18, 1.25]) 
times the genetic gain of the Conv program. When G ´ 
Y variance was 10, this value increased to 1.39 (95% CI 
[1.23, 1.58]) times the genetic gain.

Variability in yearly genetic gain was greater with more 
G ´ Y variance. This is shown by the lines for individual 
replicates in Fig. 4. All breeding programs showed fairly 
consistent year-to-year genetic gain in each replicate when 
G ́  Y variance was 0. When G ́  Y variance was 10, year-
to-year genetic gain was less consistent within replicates. 
This is shown by the larger fluctuations in mean genetic 
value between successive years for individual replicates. For 
both levels of G ´ Y variance, the two-part programs pro-
duced the most consistent year-to-year genetic gains.

The trends for genetic gain in EYT entries matched 
the trends for headrow entries from Year 6 onward (Figs. 
S2 and Fig. S3). All breeding programs using genomic 
selection showed approximately the same amount of 

genetic gain prior to Year 6, and this genetic gain was 
greater than the genetic gain in the conventional breeding 
program. Year 6 was the first year in which EYT entries 
were derived from crosses that used parents selected by 
genomic selection. Thus differences in genetic gain from 
Years 1 to 5 reflect the difference between using genomic 
selection or phenotypic selection on existing germplasm.

Genetic Variance
The change in genetic variance for headrow entries over 
time involved interactions between breeding program 
design, level of G ´ Y variance, and simulation year. This 
is shown in Fig. 5, which plots mean genetic variance of 
headrow entries over time. The first plot shows the change 
in genetic variance during the burn-in phase and for each 
future breeding program when G ´ Y variance equals 0. 
The second plot shows the same breeding programs when 
G ´ Y variance equals 10. The occurrence of an interac-
tion is evident in the differences between the two plots.

Figure 5 shows that all breeding programs lose genetic 
variance over time when G ´ Y variance is 0. However, 
the rate of loss differs between breeding programs. The 
Conv GS, PYT GS, and Head GS programs show a large 
initial drop in genetic variance relative to the conven-
tional program followed by a more gradual decrease over 
time. In contrast, the two-part programs show an initial 
increase in genetic variance followed by a more rapid 
decrease in genetic variance over time.

Fig. 5. Genetic variance for all breeding programs when genotype-by-year (G ´ Y) variance is 0 and 10. Genetic variance is expressed 
as the genetic variance among headrows in each year of the simulation. Each line represents the overall mean for all 10 replicates. Conv, 
conventional breeding program; Conv GS, conventional program with genomic selection; PYT GS, preliminary yield trial genomic selec-
tion program; Head GS, headrow genomic selection program; 2Part, two-part program with PYT genomic selection; 2Part+H, two-part 
program with headrow genomic selection.
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Figure 5 also shows that the conventional breeding 
program leads to increased genetic variance over time 
when G ´ Y variance is 10. However, the breeding pro-
grams using genomic selection showed decreasing genetic 
variance over time. Additionally, the initial decrease in 
genetic variance observed immediately after the imple-
mentation of genomic selection was greater when G ´ Y 
variance was 10 than when it was 0.

Genetic variance in the 2Part+H program remained 
higher than the Head GS program and lower than the 
conventional program. When G ´ Y variance was 0, the 
2Part+H program had 2.73 (95% CI [1.96, 3.79]) times 
the genetic variance of the Head GS program and 0.53 
(95% CI [0.49, 0.58]) times that of the conventional pro-
gram in Year 22. When G ´ Y variance was 10, these 
values were 1.97 (95% CI [1.48, 2.62]) and 0.25 (95% CI 
[0.17, 0.37]), respectively.

The changes in genetic variance for G ´ Y variances 
of 2 and 4 were intermediate between those seen in Fig. 
5 (Fig. S5). Genetic variance in the conventional program 
stayed approximately constant when G ´ Y variance was 
2 and gradually increased when G ´ Y variance was 4.

Genomic Prediction Accuracy
Genomic prediction accuracy over time also showed an 
interaction between breeding program and level of G ´ Y 
variance. This is shown in Fig. 6, which plots correlations 
between the genetic values for headrow entries and their 

genomic predicted values. The first plot shows all breed-
ing programs when G ´ Y variance was 0, and the second 
plot shows those programs when G ´ Y variance was 10. 
Genomic prediction accuracies start higher when G ´ Y 
variance was 0. In subsequent years, genomic prediction 
accuracy in the conventional program increased, while it 
slightly increased or slightly decreased for the other breed-
ing programs depending on the breeding program and the 
level of G ´ Y variance.

Genomic prediction accuracy in the two-part breed-
ing programs was also measured in the population 
improvement stage. This is shown in Fig. 7, which plots 
the correlation between genetic values and genomic pre-
dicted values of parental candidates for each cycle of cross-
ing. There were two cycles per year. Each cycle is plotted 
at half-year increments in Fig. 7. The first plot shows the 
accuracy when G ´ Y variance was 0, and the second plot 
shows the accuracy when G ´ Y variance was 10. Both 
plots show accuracy decreasing rapidly in the first couple of 
cycles and then holding approximately steady in subsequent 
years. Both plots show yearly oscillations corresponding 
with the annual updating of the training population.

DISCUSSION
The results highlight four main points for discussion: (i) 
the impact of the different breeding strategies on genetic 
gain; (ii) the impact of the different breeding strategies on 
changes in genetic variance across time; (iii) the impact 
of the different breeding strategies on genomic prediction 

Fig. 6. Genomic prediction accuracy for all breeding programs when genotype-by-year (G ´ Y) variance is 0 and 10. Genomic predic-
tion accuracy is expressed as the correlation between true and genomic predicted genetic values of headrow entries over time. Conv, 
conventional breeding program; Conv GS, conventional program with genomic selection; PYT GS, preliminary yield trial genomic selec-
tion program; Head GS, headrow genomic selection program; 2Part, two-part program with PYT genomic selection; 2Part+H, two-part 
program with headrow genomic selection.
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accuracy; (iv) limitations of the simulations that were 
undertaken; and (v) practical implementation of the two-
part strategy in real breeding programs.

Impact of the Different Breeding Strategies 
on Genetic Gain
Breeding programs using the two-part strategy produced 
the most genetic gain, and all programs using genomic 
selection produced more genetic gain than the Conv 
program. These results were consistent across both the 
different levels of simulated G ´ Y variance and the years 
of the breeding programs. The programs using the two-
part genomic selection strategy produced between 2.36 
and 2.47 times more genetic gain than the Conv program. 
The two-part programs also produced between 1.31 and 
1.46 times more genetic gain than the best performing 
breeding program using a more standard genomic selec-
tion strategy. All breeding programs using genomic 
selection produced more genetic gain than the Conv 
program. These results suggest that: (i) using genomic 
selection improved the rate of genetic gain in breeding 
programs; and (ii) the two-part strategy was the best strat-
egy for implementing genomic selection.

Improved selection accuracy and/or decreased cycle 
time underpinned the increased genetic gain observed in 
breeding programs that used genomic selection. The use 
of genomic selection in the Conv GS program did not 
decrease cycle time compared with the conventional pro-
gram without genomic selection. Therefore, the increased 
genetic gain observed in the Conv GS program was solely 

the result of increased accuracy of parent selection. The 
other breeding program strategies using genomic selection 
involved some degree of shortening of breeding cycle time. 
This shortening of the breeding cycle contributed to the 
increased genetic gain that they delivered, together with 
increases in accuracy of parent selection in some cases.

In the two-part programs, the shortening of breed-
ing cycle time was the major driver of increased genetic 
gain. This can be observed by comparing the two-part 
programs to the Head GS breeding program, which used 
genomic selection beginning in the headrow stage to 
select parents of the next breeding cycle. The two-part 
programs generated more genetic gain than the Head GS 
program but had lower accuracy of parent selection. The 
accuracy of parent selection is shown in Fig. 7 for the two-
part programs and in Fig. 6 for the headrow stage of the 
Head GS program. Following the first cycle of selection, 
the accuracy of parent selection in the two-part program 
dropped to less than 0.4 when G ´ Y variance was 0 and 
to about 0.2 when G ´ Y variance was 10. In comparison, 
the accuracy of parent selection in the Head GS program 
was approximately 0.6 when G ´ Y variance was 0 and 
0.4 when G ´ Y variance was 10. This indicates the Head 
GS program more accurately selected parents than either 
of the two-part programs, but it did not produce as much 
genetic gain. Thus, although the accuracy of parent selec-
tion in the two, two-part programs was lower than that 
of the Head GS program, the two-part programs could 
deliver more genetic gain per unit of time because they 
had 2 more cycles of selection per unit time than the Head 

Fig. 7. Genomic prediction accuracy in the population improvement part of the two-part programs when genotype-by-year (G ´ Y) vari-
ance is 0 and 10. Genomic prediction accuracy is expressed as the correlation between true and genomic predicted genetic values 
of all population improvement plants over time. 2Part, two-part program with PYT genomic selection; 2Part+H, two-part program with 
headrow genomic selection.
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GS program (2 per year for the two-part versus 0.5 per 
year for the Head GS program).

The rankings for the different breeding programs 
based on genetic gain delivered provides further evidence 
for the critical importance of reduction of cycle time for 
increasing genetic gain. There was a perfect rank cor-
relation between the cycle time of a breeding program 
and the genetic gain that it produced across all the sce-
narios that we tested. These findings are consistent with 
the expectation that the greatest benefit of genomic selec-
tion for genetic gain in crops will come from decreased 
cycle time (Heffner et al., 2009), as has been predicted and 
observed in genomic selection of dairy cattle (Schaeffer, 
2006; García-Ruiz et al., 2016).

Genetic gain in the two-part strategy could be fur-
ther increased by adding more cycles per year and thus 
further decreasing cycle time. In the present study the 
two-part strategies only involved two breeding cycles 
per year. Depending on the biology of a particular spe-
cies, many more breeding cycles per year may be possible. 
For example, seven cycles per year have been achieved 
in spring wheat using “speed breeding” techniques (Lee 
Hickey, personal communication). While we expect that 
additional breeding cycles per year would increase the 
genetic gain, this increase may not be linear because of 
two factors. The first relates to an expected decrease in the 
accuracy of selection and the second relates to a rapid loss 
of genetic variance from the population.

The accuracy of genomic prediction, and therefore 
selection, will decrease in each additional cycle added to 
the two-part strategy. This is due to plants in each addi-
tional cycle being less related to the training population. It 
is well known that genomic prediction accuracy decreases 
when relationships between the individuals in the train-
ing set and the selection candidates decrease (Habier et al., 
2007; Clark et al., 2012; Hickey et al., 2014). In the pres-
ent study this trend can be observed in Fig. 7, where a 
cyclical pattern exists for the genomic selection accuracies. 
The cyclical pattern arises because the genomic selection 
training set is only updated once per year in the two-part 
strategies, but there are two breeding cycles. The individu-
als in the second breeding cycle in a given year, which have 
lower selection accuracy than those in the first breeding 
cycle, are one generation more removed to the training set 
than those in the first breeding cycle. The cyclical loss of 
accuracy would be exacerbated if the number of breeding 
cycles per year increased. One way to mitigate this prob-
lem would be to assemble huge training sets of hundreds 
of thousands of individuals. With such training sets the 
accuracy of genomic selection is less dependent on related-
ness between training individuals and selection candidates. 
While assembling such data sets may be possible in large 
breeding programs, further research is needed to develop 
solutions for breeding programs without this capacity.

Increasing the number of cycles in the two-part strat-
egy could increase short-term genetic gain but may result in 
decreased long-term genetic gain. This behavior is depen-
dent on how the cost of adding additional cycles is offset. 
A simple way of offsetting this cost would be to reduce 
the number of plants genotyped in each cycle while keep-
ing selection intensity the same. This method for offsetting 
cost could reduce long-term genetic gain, because it would 
decrease effective population size. Populations with smaller 
effective population sizes are prone to more rapid loss of 
genetic variance due to drift (Charlesworth, 2009). As 
genetic variance decreases, the ability to make subsequent 
genetic gain also decreases. Thus long-term genetic gain 
in the two-part strategy depends on how genetic variance 
is maintained. Optimal contribution theory (Woolliams et 
al., 2015) and introgression of new genetic variation are well 
established solutions for averting decline of genetic vari-
ance in breeding programs, and further research is needed 
to determine their roles in two-part breeding strategies.

Breeding strategies that used genomic selection had 
more stable genetic gain in the presence of G ´ Y. This 
is shown by looking at the lines for individual replicates 
in Fig. 4 when G ´ Y variance equals 10. These lines 
show fairly consistent yearly increases for all the breed-
ing programs using genomic selection, with the programs 
using the two-part strategy having the most consistent 
increases. In contrast, the genetic gain for the Conv pro-
gram was more prone to large fluctuations. These differ-
ences arise because genomic selection breeding programs 
use genomic predictions that are based on several years of 
historic phenotypic information. In contrast the conven-
tional breeding program makes selection decisions using 
only a single year or at most a few years of phenotypic 
information. This use of historic phenotypic information 
with genomic selection could provide breeding programs 
with greater robustness of genetic gain in years with 
extreme weather. The greater robustness would allow the 
two-part strategy to deliver more consistent genetic gain 
than existing breeding program.

Impact of the Different Breeding Strategies 
on Changes in Genetic Variance across Time
The trends for genetic variance were less straightforward 
than those for genetic gain, because they varied according 
to the level of G ´ Y variance. All breeding programs that 
used genomic selection displayed a decrease in genetic vari-
ance over time, regardless of the level of G ´ Y variance 
simulated. However, the trend for change in genetic variance 
for the conventional program depended on the level of G ´ 
Y variance. It displayed a consistent loss in genetic variance 
when there was no G ́  Y variance and displayed a consistent 
gain in genetic variance when G ´ Y variance was high.

In breeding programs using genomic selection, the 
most significant decreases in genetic variance occurred 
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immediately after the implementation of genomic selec-
tion. This initial loss in genetic variance is mostly due to 
increased selection accuracy in early stages of a breeding 
program. Increased selection accuracy results in the Bulmer 
effect, which decreases genetic variance under directional 
selection due to the buildup of negative linkage-disequi-
librium between the causal loci (Bulmer, 1971). Further 
changes in genetic variance depend on multiple factors that 
differ between breeding programs. These factors include 
effective population size, selection intensity, selection 
accuracy, and the number of cycles per year.

The breeding programs using the two-part strategy dif-
fered from other breeding programs using genomic selec-
tion in that they showed a small initial increase in genetic 
variance. This initial increase in genetic variance was due 
to using a cycle of random mating to convert the fully 
inbred parents to outbred parents. Afterward, genetic vari-
ance decreased according to the factors mentioned above.

Most of the factors resulting in the loss of genetic vari-
ance can be manipulated in a two-part breeding program 
with relative ease. For example, the number of selection 
candidates per cycle and/or the number of parents per cycle 
can be changed to vary both effective population size and 
selection intensity. Differences in these values between the 
two-part breeding programs and the headrow genomic 
selection program may explain why the two-part breed-
ing programs maintained more genetic variance. The 
two-part breeding programs used more parents per cycle 
(200 vs. 50) and fewer selection candidates per cycle (3000 
vs. 6870 to 6920). It is likely these values could be opti-
mized for both long- and short-term genetic gain. Future 
studies are needed to identify optimal values.

The maintenance, and in some cases increase, of 
genetic variance in the Conv program when G ´ Y vari-
ance was high can be explained by balancing selection. 
Balancing selection that occurs in the presence of gen-
otype-by-environment interaction involves fluctuating 
allelic effects between environments, resulting in differ-
ent individuals being selected in different environments. 
This fluctuating of the breeding goal results in genetic 
variation being maintained (Gillespie and Turelli, 1989). 
Allelic effects in our simulation fluctuate each year due to 
our model for G ´ Y. This results in no single doubled 
haploid line being ideal in all years. The conventional 
breeding program thus favors different doubled haploid 
lines in each year of the simulation. Multiple years of phe-
notypic selection favors doubled haploid lines with high 
average performance over its years of evaluation. In con-
trast, the genomic selection model selects doubled haploid 
lines on the basis of its average SNP effects in the train-
ing population. If these average SNP effects don’t change, 
genomic selection will always favor a single genotype and, 
thus, will not maintain genetic variance in the same way 
as phenotypic selection in the presence of G ´ Y.

If maintenance of genetic variance by G ́  Y is impor-
tant to breeding programs, then the failure to observe this 
in genomic selection breeding programs is noteworthy. 
It suggests that genomic selection could result in rapid 
depletion of genetic variance that may hamper long-term 
potential. During the course of this simulation, no notice-
able affect from the loss of genetic variance was observed 
on long-term selection gain. This indicates that the loss of 
genetic variance was either unimportant or was offset by 
other benefits of using genomic selection.

Impact of the Different Breeding Strategies 
on Genomic Selection Accuracy
Genomic prediction accuracy over time varied across 
breeding programs. These variations ranged from an 
increase in accuracy over time in the conventional breed-
ing program to a decrease in accuracy over time in the 
two-part breeding programs. These differences are due 
to the many factors that affect the accuracy of genomic 
predictions, such as effective population size, training 
population size, the genetic distance between the training 
and prediction populations, and the trait’s genetic archi-
tecture (Daetwyler et al., 2008; Goddard, 2009; Pszczola 
et al., 2012; Hickey et al., 2014).
Training population size and the genetic distance between 
the training and prediction populations are likely respon-
sible for the observed differences in genomic prediction 
accuracy. The training population grew in size each year 
of the simulation at an equal rate for all breeding pro-
grams. In isolation, the increasing training population size 
is expected to increase genomic selection accuracy. This 
mechanism explains how some of the breeding programs 
experienced an increase in genomic prediction accuracy 
over time. The other breeding programs showed either no 
change or a decrease in genomic prediction accuracy over 
time. This may be explained by the contravening effect 
of increasing genetic distance between the training and 
prediction populations. This effect is expected to decrease 
genomic prediction accuracy and is introduced by selec-
tion. This can explain why the rate of genetic gain for 
breeding programs observed in Fig. 4 was approximately 
inversely related to genomic prediction accuracy in Fig. 6.

Limitations of the Simulations That  
Were Undertaken
Because of certain assumptions in our simulation meth-
odology, the simulations conducted in this paper did not 
model the full complexity of actual breeding programs. In 
this section we discuss the limitations and impact of a few 
of these assumptions: (i) assumptions that impact genomic 
selection accuracy; (ii) assumptions about the reproduc-
tion of the simulated species; (iii) assumptions about the 
making of crosses; and (iv) assumptions about the com-
plexity of the breeding goal.
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Assumptions That Impact Genomic  
Selection Accuracy 
The genomic prediction accuracies observed in these 
simulations are likely higher than those in real-world con-
ditions. This was because of conditions in the simulation 
that favored high genomic selection accuracy such as: (i) 
molecular markers with no genotyping errors; (ii) genetic 
control of the trait that did not involve epistasis; and (iii) 
breeding programs that did not use germplasm exchange.

The accuracy of genomic selection affects the perfor-
mance of the simulated breeding programs. These effects 
should affect all breeding programs using genomic selec-
tion similarly, so we don’t expect the relative performance 
of breeding programs using genomic selection to change 
much under real conditions, which suggests that the two-
part strategies should still outperform other genomic selec-
tion strategies. However, the relative performance of the 
conventional program to the programs using genomic 
selection could change. If this were to occur, the two-part 
strategies should still outperform the conventional breeding 
program because of the magnitude of difference observed 
in the simulation, provided that a sufficiently high-quality 
genomic selection training population is used.

Assumptions About the Reproduction  
of the Simulated Species 
Assumptions about the reproductive ability of the sim-
ulated species affect the performance of the two-part 
program as it seeks to push the species to its biological 
limits in terms of breeding cycles per year to maximize 
genetic gain. In this paper we chose a conservative two 
cycles of crossing per year to guard against overestimating 
the benefit of the two-part program. More cycles per year 
could easily be performed with some species, especially 
those that do not require vernalization. Doing so could 
result in increased genetic gain if the accuracy of genomic 
selection and the utilization of genetic variance were both 
managed properly as previously discussed.

Assumptions About the Making of Crosses 
The other important assumption about the simulated spe-
cies involved how crossing was performed. It was assumed 
that maturity differences needed for crossing were easily 
obtained by growing female and male plants in separate 
greenhouses. However, crosses between early-flowering 
males and late-flowering females, or late males and early 
females, may be missed owing to asynchrony. It was also 
assumed that a hybridizing agent could be used for cross-
ing at relatively little cost; if this is not possible, then more 
laborious manual crosses would have to be performed. This 
would also cost more and, thus, require other components 
of the breeding program to be reduced if the cost was to 
remain equal. That said, this should only have a minor 
effect on the performance of the two-part program, as the 

overall cost of crossing is expected to be small relative to the 
total cost of the breeding program. Benefits gained by con-
trolling parental pairing may even be more advantageous 
than cost savings gained from using a hybridizing agent.

Assumptions About the Complexity  
of the Breeding Goal 
The breeding program examined in this simulation only 
considered grain yield. Real-world breeding programs must 
also consider additional traits relating to agronomic perfor-
mance, disease resistance, and end-use quality. Genomic 
selection in the two-part strategy would have to account 
for all the traits or at least ensure that sufficient variation for 
these traits is maintained for selection of favorable genotypes 
in the product development section. Genomic selection has 
been used for some of these traits in wheat (Rutkoski et al., 
2011; Battenfield et al., 2016), and it should be possible to 
use it for more. The challenge is deciding how to use all 
these predictions in a coherent way. Wheat and many other 
crops lack widely accepted selection indices where the rela-
tive weights placed on each trait that needs to be selected 
up on are clearly defined. Developing a selection index is 
likely necessary for the two-part strategy to be useful. The 
modified versions of the two-part strategy discussed below 
may not need a selection index.

Practical Implementation  
of the Two-Part Strategy
The two-part strategy as examined in this study shows 
great promise for use in plant breeding programs. However, 
breeders are likely to be hesitant to change their programs 
completely until it is proven in practice. This could be accom-
plished by using a modified version of the two-part strategy 
as a portion of a traditional breeding program design. This 
would be accomplished by using the population improve-
ment component for prebreeding, to rapidly produce 
improved breeding lines. These lines are then introduced as 
parents in a conventional breeding program’s crossing block. 
The prebreeding strategy could be used to produce high-
yield lines, as in the present simulation, or used to develop 
parents with a narrow focus, such as improved disease resis-
tance or specific quality attributes, the main limitation on 
breeding objective being the availability of phenotypic data 
to train the genomic selection model that drives the pro-
gram. The prebreeding program would require a sufficiently 
large population size to ensure consistent performance, and 
further research is needed to determine this size.

Modifications can be made to the two-part strategy to 
allow for outside germplasm to be introduced. The popu-
lation improvement sections of the two-part programs in 
this paper were modeled as closed systems only for the 
sake of simplicity of simulation. Closed systems are not a 
requirement of the two-part strategy. Outside germplasm 
can be introduced to the population improvement section 
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in one or more cycles of crossing. If this germplasm is 
used as males, their alleles would be interspersed within 
the population. This would effectively integrate the out-
side germplasm into the population improvement section. 
Optimal contribution selection (Woolliams et al., 2015) or 
a similar approach could be used to ensure that the newly 
introduced diversity is not quickly eliminated through 
genomic selection prior to its inclusion in the training pop-
ulation (Gorjanc et al., 2016). The optimal contribution 
selection could also be used to maintain more genetic vari-
ance, while maximizing genetic gain to achieve greater 
long-term genetic gain (Cowling et al., 2016).

The population improvement component doesn’t need 
to rely exclusively on genomic selection. Phenotypic selec-
tion could be implemented using “speed breeding” proto-
cols currently used in rapid cycling for disease resistance 
(Dinglasan et al., 2016; Riaz et al., 2016). Further testing 
is needed to determine the benefit of this approach relative 
to a pure genomic selection approach. It is likely that the 
benefit will depend on the particular trait and availability of 
sufficiently accurate phenotype evaluations or predictions.

The strength of the two-part strategy is that it combines 
multiple breeding philosophies within a flexible frame-
work. The population improvement component man-
ages the breeding program’s germplasm, using continuous 
cycles of recurrent selection to achieve the shortest possible 
cycle time and the maximum genetic gain. This structure 
is very similar to that of animal breeding programs and 
would benefit from explicitly defined long-term breeding 
goals, with the use of common techniques such as optimal 
contribution selection for managing genetic variance and 
multiple trait analysis with selection indices for improv-
ing many traits simultaneously. The product development 
component of the strategy makes use of the best aspects of 
current plant breeding programs. It retains the design of 
traditional plant breeding programs, giving breeders the 
flexibility to use any standard breeding strategy. Breeders 
can thereby make use of the existing approaches that have 
been developed for dealing with their species’ biology and 
their specific breeding objectives.

Since all programs examined in this paper were con-
strained to equal operating costs, two conclusions can be 
drawn from the results: (i) implementing genomic selec-
tion in breeding programs increases the rate of genetic 
gain, and (ii) the two-part strategy is the most cost-effec-
tive approach for implementing genomic selection. The 
whole breeding program simulation approach used in this 
paper allowed for modeling the complex interactions that 
arise in different program designs. The particular pro-
grams modeled in this study were generalized represen-
tations of true programs. However, the approaches used 
in this study could be repeated with real-world breeding 
program designs and costs to measure cost-effectiveness, 
or other aspects, of genomic selection strategies.
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