
Abstract
Since 1999, very high spatial resolution satellite data
represent the surface of the Earth with more detail. How-
ever, information extraction by per pixel multispectral
classification techniques proves to be very complex owing
to the internal variability increase in land-cover units
and to the weakness of spectral resolution. Image segmenta-
tion before classification was proposed as an alternative
approach, but a large variety of segmentation algorithms
were developed during the last 20 years, and a comparison
of their implementation on very high spatial resolution
images is necessary. In this study, four algorithms from the
two main groups of segmentation algorithms (boundary-
based and region-based) were evaluated and compared. In
order to compare the algorithms, an evaluation of each
algorithm was carried out with empirical discrepancy
evaluation methods. This evaluation is carried out with a
visual segmentation of Ikonos panchromatic images. The
results show that the choice of parameters is very important
and has a great influence on the segmentation results. The
selected boundary-based algorithms are sensitive to the
noise or texture. Better results are obtained with region-
based algorithms, but a problem with the transition zones
between the contrasted objects can be present.

Introduction
The first commercial very high-resolution satellite (Ikonos)
became accessible in autumn 1999, the QuickBird satellite
in October 2001, and OrbView-3 was launched on 26
June 2003. These sources of very high-resolution images
are increasing the amount of information available for land-
cover from local to national scales (Aplin et al., 1999).
These data provide amazing detail of the Earth’s surface, but
information extraction using computer-assisted classification
techniques appears to be much more complex.

Internal Variability
These sources of very high spatial resolution images do not
provide necessarily better classification; this observation had
already been made by Irons et al. (1985) at the time of the
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marketing of the Landsat-4 Thematic Mapper (TM) images.
The refinement of spatial resolution from 80 m to 30 m did
not often improve classification accuracy, even though the
advantages of a higher resolution system appeared obvious
when visual comparisons were made between TM and MSS
imagery. This incongruous result of earlier studies had been
attributed to one consequence of change of spatial resolu-
tion. With the spatial resolution refinement, the internal
variability within homogenous land cover units increases
(Cushnie, 1987; Woodcock and Strahler, 1987; Aplin et al.,
1997; Zhang, 2001; Thomas et al., 2003). The increased
variability decreases the statistical separability of land-cover
classes in the spectral data space. This decreased separabil-
ity tends to reduce per pixel classification accuracies, such
as maximum-likelihood classification algorithms. The
increased variability was attributed to the imaging of diverse
class components by higher resolution sensors, whereas at
coarser resolutions, sensors integrated the reflected spectral
radiance of the various components, and classes appeared
more homogeneous (Irons et al., 1985). For example, the
sunlit and shady sides of the same tree have vastly different
spectral responses, even though they belong to the same
class (Thomas et al., 2003).

Spectral Resolution
Another disadvantage with the very high spatial resolution
satellite images is the relatively poor spectral resolution
(Herold et al., 2003b). While the spatial resolution is fine,
spectral capabilities are limited compared to sensors like
Landsat TM. Generally, there is a trade-off between the spatial
resolution and the spectral resolution (Aplin et al., 1997;
Key et al., 2001). The spectral sensibility of the receptor cell
requires a sufficient instantaneous field of view (IFOV). The
spectral resolution depends on the ratio of signal to noise,
and this ratio is linked to the IFOV, the height of flight, and
the opto-electronic characteristics of receptor cell (Lillesand
and Kiefer, 1994).

Region-based Procedure
To overcome these problems, a region-based procedure can
be used. The first step of this procedure is the segmentation.
The segmentation process is successful at removing much of
the structural clutter, and performs well in comparison with
traditional majority filtering (Barr and Barnsley, 2000).
This alternative approach had been proposed by Hill (1999)
to reduce local spectral variation. Image regions are more
homogeneous within themselves than with nearby regions
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and represent discrete objects or areas in the image. Each
image region then becomes a unit analysis for which a
number of attributes, on top of spectral attributes, can be
measured and used during the classification (Herold et al.,
2002a; 2003b; Thomas et al., 2003).

The attributes which can be measured are, for example,
the spatial information. This information can be used in
order to increase the classification accuracy for spectrally
heterogeneous classes (Lillesand and Kiefer, 1994) and
to overcome the current spectral limitations of very high
spatial resolution satellite images (Guindon, 2000; Herold
et al., 2002b). The attributes can be the area, the perimeter,
the compactness (area/perimeter2), and the degree and kind
of texture (Johnsson, 1994). In the per pixel methods, the
spatial attributes are calculated on an arbitrary neighborhood
using mobile windows. The image segmentation enables to
obtain the specific spatial attributes of the regions without
taking into account nearby regions. Moreover, the spatial
attributes, like texture, calculated with mobile windows,
smooth the boundaries between discrete land cover region
(Herold et al., 2003a; Carleer and Wolff, 2004) and create
between-class texture, which is often more distinctive than
within-class texture. This between-class texture causes an
edge effect in the classification (Ferro and Warner, 2002).
This edge effect problem could disappear with segmentation.

The classification of these segmented images is often
more accurate than per pixel classification, overcoming the
misclassification problem due to the internal variability of
the regions (Aplin et al., 1999).

Objective
A large variety of segmentation algorithms were developed
these last 20 years (Zhang, 1997; Haralick and Shapiro, 1984),
and a comparison between them on very high spatial resolution
satellite images is necessary. This paper presents an evaluation
and comparison study of different types of segmentation
algorithms on very high spatial resolution satellite images. The
evaluation and comparison are made on different landscapes as
a whole and not on particular objects like in other studies
(Karantzalos and Argialas, 2003; Neubert and Meinel, 2003).

Segmentation Algorithms
Segmentation algorithms can conveniently be classified as
boundary-based and region-based (Zhang, 1997; Nicolin and
Gabler, 1987; Janssen and Molenaar, 1995; Guindon, 1997).
Boundary-based algorithms detect object contours explicitly
by using the discontinuity property, and region-based
algorithms locate object areas explicitly according to the
similarity property (Zhang, 1997). The boundary approach
gathers the edge detection techniques. These methods do not
lead directly to a segmentation of the image because con-
tours obtained are seldom closed; therefore, it is necessary
to carry out closing edges algorithm if one wishes a com-
plete segmentation of the image. Indeed, after contours
closing, the duality contours/regions appears clearly. A
region is defined as the inside of a closed line. On the other
hand, the methods of the region approach lead directly to a
segmentation of the image, each pixel being assigned to a
single region (Cocquerez and Philipp, 1995). For this study,
algorithms from each group have been selected.

Boundary-based Algorithms
Two algorithms of this group have been selected: “optimal
edge detector” (Canny, 1986; Cocquerez and Philipp, 1995)
and “watershed segmentation” (Vincent and Soille, 1991;
Debeir, 2001).

In “optimal edge detector” the procedure first filters the
image with the Canny-Deriche filter. This filter provides the

derivative of the images and takes into account the Canny
criterion (Canny, 1986): namely good detection (low proba-
bility of missing real edges and detecting noise), good
position estimation and single response to each edge, which
also accommodates edges of a finite width. Next, a hystere-
sis thresholding (Hou and Koh, 2003; Ding and Goshtasby,
2001) is achieved on the image to preserve the coherent
boundaries. Finally, contours are closed by the way of best
count. The count is calculated by the sum of the pixels
norm constituting the way in the gradient image. This
procedure is proposed in the Signal and Images software
Packages (SIMPA) by the GDR Information, Signal, Images et
Vision (ISIS) of the Centre National de la Recherche Scien-
tifiques, France (CNRS).

In the “watershed segmentation” (Vincent and Soille,
1991; Debeir, 2001), the procedure first transforms the
original data into a gradient image. The resulting grey tone
image is considered as a topographic surface. This surface is
flooded from its minima and the merging of the waters
coming from different sources is prevented, thus the image
is divided into a set of watershed lines. The catchment’s
basin should correspond to the homogeneous regions of the
image. Before transforming the original data into a gradient
image, a median filter can be applied on the image to reduce
the noise. The presence of noise in an image causes an over-
detection of edges by the morphological gradient. The
median filter locally homogenizes the image and avoids
extreme gradients, and thus disturbing contours. It is also a
good means not to take into account object texture during
contours detection. The image gradient can also be thres-
holded to limit the contour sensitivity; e.g., if the threshold
is 10, we keep pixels with a gradient higher than 10, and
the others are put at 0 as if there are no edges. This water-
shed segmentation procedure was implemented by the
department of Logical and Digital Systems (SLN) of the
Université Libre de Bruxelles-Belgium (Debeir, 2001).

Region-based Algorithms
In this group, two algorithms have been selected: “multilevel
thresholding technique” (Deravi and Pal, 1983) and a
“region-growing” technique.

The “multilevel thresholding” algorithm is a global
thresholding of a grey tone image which uses second-order
grey level statistics. The segmentation is carried out with a
non-symmetric, co-occurrence matrix. For all grey levels, the
conditional estimated probabilities of intensity transition
between two regions separated by the grey level n are
calculated. The lower the value of this estimated probability,
the lower the probability that the next transition will be in
a different intensity class. Therefore, it is assumed that
meaningful sets of thresholds would correspond to the
minima of this measure. Then, the minima are searched on a
range of a number of neighboring grey levels on both sides
of the grey level n. These minima are used as image segmen-
tation thresholds (Deravi and Pal, 1983; Biswas and Pal,
2000). This procedure is proposed in the SIMPA software GDR
ISIS at CNRS.

In the selected “region-growing” technique, the
procedure starts at each point in the image with one-pixel
objects, and in numerous subsequent steps, smaller image
objects are merged into bigger ones, throughout a pair-wise
clustering process. The merger is based on three criteria:
color, smoothness, and compactness. These criteria are
combined in numerous ways to obtain varying output
results. The combination of these criteria is defined as a
within-segment heterogeneity. These criteria optimize the
region’s spectral homogeneity and the spatial complexity.
The balance at which these criteria are applied depends on
the desired output (Thomas et al., 2003). If the smallest
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growth exceeds a heterogeneity tolerance defined by the
user, the process stops (Definiens Imaging, 2003; Burnett
and Blaschke, 2003; van der Sande et al., 2003). The
heterogeneity tolerance affects the relative size of output
polygons. This procedure was developed by Definiens
Imaging, Inc. in its eCognition® software.

Test Images
The test images are VHR satellite images of various types of
landscape. The test images are extracted from an Ikonos
panchromatic scene of 08 June 2000 of the Brussels area in
Belgium (Figure 1). Only the panchromatic band was used
because the both boundary-based algorithms and the “multi-
level thresholding” algorithm do not segment several bands
at the same time, and the panchromatic band offers the
finest spatial resolution. The extent of the extracts is 256 m
by 256 m, and the spatial resolution is 1 meter. The size
of 256 pixels by 256 pixels is very common in the image
libraries which serve this kind of assessment. The various
landscape types in Figure 1 are:

• rural (RURAL): a rural area with fields, hedges and some
isolated houses;

• residential (RESI): a residential area with isolated houses,
large gardens, and many trees;

• urban administrative zone (ADM): a business area with many
office-blocks, perpendicular roads, and shadows;

• urban dwelling zone (DW): a residential area with adjoining
houses, little gardens, some trees, roads, and shadows; and

• forest (FOREST): a forest area with different age and species
trees.

Each extract is visually segmented. The visual segmenta-
tions are used as reference for the assessment (Lee et al.,
1990; Pal and Bhandari, 1993; Neubert and Meinel, 2003;
Carleer et al., 2004). These visual segmentations were
digitized manually in a GIS, and a visual segmentation
method was defined and consists in three main points:

• an appropriate minimum size of four pixels is selected for
the smallest region to be represented (Welch, 1982);

• the boundaries of adjacent regions are placed at the center of
the transition zone between them, but if the transition zone
occurs consistently, it is considered to be a separated object
(Campbell, 1996); and

• a contrast of twenty is selected, on a grey level of 256, as the
tonality difference between two adjacent regions.

We could have used, in this study, synthetic images
which can be obtained from image generation procedure, but
this kind of images do not posess all the characteristics of
the real images, like textures, contrasts, and forms.

Evaluation Methods
Segmentation algorithms can be evaluated analytically or
empirically (Zhang, 1996). The analytical methods directly
examine and assess the segmentation algorithms themselves
by analyzing their principles and properties. The empirical
methods indirectly judge the segmentation algorithms by
applying them to test images, and measuring the quality
of segmentation results compared with a reference segmenta-
tion (empirical discrepancy methods), or by measuring
some desirable properties of segmented images (empirical

Figure 1. Extracts of the Ikonos image: (a) Rural zone (RURAL), (b) Residential zone (RESI), (c) Adminis-
trative zone (ADM), (d) Dwelling zone (DW) and (e) Forest zone (FOREST).
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goodness methods). For this study, we have chosen empirical
discrepancy evaluation methods. Indeed, analytical methods
are easier to apply, but they often provide only qualitative
properties of algorithms. Empirical methods are normally
quantitative, as the values of quality measures can be numeri-
cally calculated. Among them, desirable properties for the
goodness methods are chosen subjectively, and moreover, it
should be assured that the properties are not used by segmen-
tation algorithms to avoid a bias assessment. Discrepancy
methods can be both objective and quantitative (Zhang, 1996).

The first selected method is the discrepancy, based
on the number of mis-segmented pixels in the segmented
images compared with the visually segmented reference
images (Neubert and Meinel, 2003; Carleer et al., 2004).

Considering the segmentation as a pixel classification
process, the percentage of mis-classified pixel is a measure-
ment of discrepancy. Suppose an image made up of Nref
pixel classes (the number of reference regions), a confusion
matrix C of dimension Nref can be constructed, where each
entry Cij represents the pixel number of class j classified as
class i by the segmentation algorithms. The evaluation
measure is defined as:

(1)

where the numerator represents the number of pixels mis-
classified, and the denominator is the total number of pixels
in the test image. The mis-segmented pixels are the pixels of
the regions, for the most part, classified in a reference region
but being in the parts spanning adjacent reference regions
(Figure 2).

In this evaluation method, the same importance is not
given to small and great regions. A segmentation with large
regions could give a small percentage of mis-classified
pixels, whereas the majority of the small regions are mis-
segmented. We should give the same importance to small
and large regions, therefore, we modify the first discrepancy
measure. This new measure is based on the same principle
as the first method, but the percentage of mis-classified
pixels is calculated on each reference region, and then, the
mean percentage is calculated. The new evaluation measure
is defined as:
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where niref is the number of pixels in the region i (class i) of
the reference segmentation image.

The second evaluation method selected is a simple ratio
between the number of regions in the segmented image and
the number of regions in the reference segmentation. This
ratio is the generalization, and is defined as:

(3)

where Ns is the number of regions in the segmented image
and Nref is the number of regions in the reference segmenta-
tion. This measure allows for evaluation of the over-segmen-
tation (Gen � 1) or the under-segmentation (Gen � 1) of
tested algorithms (Debeir, 2001). Over-segmentation is not a
defect in itself because it could be recovered during the
classification of the regions (Janssen and Molenaar, 1995);
but if the over-segmentation is significant, the advantages of
carrying out image segmentation before classification are
lost. Usually, with the increase in number of regions, errors
are expected to decrease (Biswas and Pal, 2000). However,
under-segmentation cannot be recovered during classifica-
tion because the objects are mis-identified (Debeir, 2001).

The most important evaluation measure is the average
error by region (ENRef) which makes it possible to give the
same weight to all the regions of the visual segmentation. It is
all the same interesting to analyze the total error (E). A high
total error value, being the consequences of either small or
great regions, is not desirable. The Gen evaluation measure is
not the most important measure in the segmentation methods
evaluation except if an under-segmentation is present. It
enables to know if the advantage of carrying out a segmenta-
tion is not lost. In order to complete and to help the interpre-
tation of the evaluation, the mean local variance (Table 1),
and the gradient image of each extract (test images) was also
calculated. The mean local variance is calculated within a 3
� 3 pixels variance filter. The mean local variance provides a
measure of internal variability of the extracts (Cushnie, 1987).

Results
First, the results of algorithm evaluations are presented
separately after which they will be compared at the end of
the next section.

Optimal Edge Detector (Canny-Deriche Optimal Filter)
Three sets of high- (ht) and low-thresholds (lt) are selected
for the hysteresis thresholding (ht � 4 and lt � 2, ht � 8
and lt � 5, ht � 15 and lt � 1). The results are presented in
Table 2. The over-segmentation values (Gen) are reasonable,
and even go as far as under-segmentation with the DW image
test, which is an important defect of the segmentation. The
under-segmentation of DW and RURAL (Deriche-C) test images
and the very low over-segmentation of ADM, RESI, and RURAL
(Deriche-B) test images are due to a low identification of
object contours. Part of the object contours were removed
after the optimal filtering in these test images. This poor
contour detection is confirmed by high total errors (E) and
high average errors by region (ENRef).

Gen �
Ns

Nref

Figure 2. Intersection between the reference segmenta-
tion and the result of segmentation algorithm to identify
the mis-segmented pixels.

TABLE 1. MEAN LOCAL VARIANCE OF IMAGES

Test Images Local Variance

FOREST 10,46
DW 14,92
RESI 13,21
RURAL 6,21
ADM 12,82
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TABLE 2. OPTIMAL EDGE DETECTOR EVALUATION RESULTS

Algorithms Test Images E (%) ENRef (%) Gen Nb of Regions

Deriche_A (ht � 4, lt � 2) FOREST 11,03 46,87 5,44 1083
DW 34,83 58,04 0,98 839
RESI 29,54 50,52 1,31 868
RURAL 9,57 56,81 3,12 742
ADM 24,17 49,86 1,57 721

Deriche_B (ht � 8, lt � 5) FOREST 11,13 45,82 5,08 1011
DW 34,90 58,07 0,96 823
RESI 29,80 50,11 1,27 840
RURAL 9,85 57,92 1,45 345
ADM 24,93 50,60 1,45 667

Deriche_C (ht � 15, lt � 1) FOREST 11,95 50,13 3,71 738
DW 36,55 59,18 0,88 752
RESI 30,31 51,02 1,14 755
RURAL 33,46 82,06 0,88 209
ADM 26,64 52,23 1,22 560

The change of hysteresis thresholding thresholds does
not change anything about the errors and over-segmentation
for the ADM, RESI, and DW test images. Part of the objects in
these three images are adequately contrasted and homoge-
neous, and thus, the object borders are characterized by
strong gradients which are always detected with a high
high-threshold. A low high-threshold does not detect more
borders because the objects are more homogeneous (less
local maxima within those). The fact that the RURAL and
FOREST test images are more textured than the others, explains
that over-segmentation decreases as the threshold increases.
With a low high-threshold, the result of the segmentation is
disturbed by the local maxima resulting from the object
texture. With a high high-threshold, the borders due to the
texture disappear, but the object borders which have less
contrasted can also disappear, as it is the case with the
RURAL test image. With the RURAL image the total error
(E) strongly increases with the high-threshold going from 8
up to 15.

The ascending order of the absolute number of regions
resulting from the segmentation gives us a curious order
(Table 2): FOREST � RESI � DW � RURAL � ADM. This order
does not follow the ascending order of the mean local
variance (Table 1) as one could expect. This could be
explained by the distribution of the maxima within the
gradient images (Figure 3). The fact that the FOREST image
test is more segmented while not having the greatest mean

local variance, can be explained by the objects within this
image being comparably textured and little contrasted; this
leads to the detection of many local maxima in the gradient
image, and thus, detection of many contours of many
regions. On the other hand, for the ADM test image for which
the mean local variance is high, the number of regions
resulting from the segmentation is lower. The objects in this
image are contrasted and more homogeneous (less textured);
this explains the greater mean local variance and a fewer
number of regions. Indeed, the local maxima of gradient
image correspond to the object borders and not to their
texture. Contrary to what is mentioned in other studies
(Cushnie, 1987; Woodcock and Strahler, 1987), a high mean
local variance does not necessarily indicate the presence of
strongly textured objects. An image of homogenous con-
trasted objects can provide higher mean local variance than
an image of textured non-contrasted objects, as is the case
with the ADM and FOREST images (Figure 3).

The segmentations of the RURAL and FOREST test images
give a total error (E) below 15 percent, but have an average
error by region (ENref) over 45 percent which is not accept-
able in a segmentation. One notices that the average errors
by region are significant for all test images. This is explained
by the fact that an image does not only consist of homoge-
neous and contrasted objects or textured and little con-
trasted objects, but of a proportion of both; for this reason,
the choice of suitable thresholds is difficult. If the high-
threshold is high, many contours will be missing. It is not
profitable to take it too low because in this case, the result
can be parasitized: by having a lower high-threshold, some
pixels not corresponding to desired contours are preserved
and are then unfortunately supplemented by connection in
complete contours in the final result.

This contour detection method is adapted for homoge-
neous and contrasted objects detection, such as buildings,
but not for whole image segmentation.

Watershed Segmentation
As for the contour detection method by Canny-Deriche operator
(optimal filtering), the test images are filtered. In this method
the filter is a median filter of 3 � 3 pixels instead of the Canny-
Deriche optimal filter. Median filtering makes it possible to
remove the noise while preserving contours. Moreover, the
gradient images are thresholded by a simple threshold, and the
contour detection is carried out by “watershed.” Two simple
thresholds are selected for this segmentation (10 and 5). The
results are presented in Table 3.

It is noticed that the change of threshold does not
change the total errors (E) and average errors by region
(ENref) for the ADM, DW, RESI, and FOREST test images, there is

Figure 3. The local maxima in the gradient image of (a)
the ADM test image correspond to the object borders
and not to their texture as in (b) the gradient image of
the FOREST test image.
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a light decrease in these two errors. On the other hand, the
change of threshold has a great influence on the total error
of the RURAL test image for which the total error (E) falls
from 35 percent to 8 percent. Which is explained by the
detection of new contours delimiting objects of the visual
segmentation which were not detected previously. One also
notes a big increase of the over-segmentation for FOREST test
image with a reduction of the threshold. The reduction
of the threshold allows the identification of maxima not
corresponding to contours in the gradient image: the seg-
mentation is disturbed. One can say regarding the FOREST
test image that identifiable contours by this method had
already been detected with a threshold of 10 since there is
no improvement of the total error and average error by
region. Broadly, the use of a threshold of 5 works well on
all test images; the best results were obtained with this
threshold. Similar results were already obtained with a
threshold of 10 except for RURAL test image where contours
were missing.

Multilevel Thresholding Technique (Deravi and Pal Segmentation)
Two numbers of neighboring grey levels (10 and 15) are
selected for the search of the minima, the evaluation results
are in Table 4. In the multi-level thresholding segmentation,
there is a significant salt and pepper effect which con-
tributes to the over-segmentation of images. Because of the
high local variance, the adjacent pixels are not in the same
range of gray values between two thresholds, which explain
the salt and pepper effect (Figure 4b). Between 49 and
60 percent of the regions are composed of one pixel. A
modal filter could have been applied after the thresholding,
but that would not improve the errors because the one pixel
regions are contained in a reference region and are conse-
quently well segmented.

The total errors (E) are above 20 percent (Deravi_10)
except for FOREST, but then the over-segmentation is very
significant. The thresholding methods are less effective on
images presenting a unimodal histogram. Such histograms
are typical in images with many small different objects, such

as aerial photographs or very high spatial resolution satellite
images. The histogram of the image RURAL (Figure 4c) test is
bimodal, but the two peaks do not represent contrasted
objects and background. These images do not exhibit a clear
background-foreground distinction (Deravi and Pal, 1983)
(Figure 4a).

This method could be used to isolate particular objects
in an image, e.g., objects having a particular spectral charac-
teristic (peak in the histogram), but not to segment a whole
image, whatever the landscape. The method is appropriate
for images of objects on homogeneous background or for
images of homogeneous, adjacent, and contrasted objects, as
it is the case for the ADM test image which presents the
smallest average error by region (Deravi_10). However, a
problem remains with the images of contrasted objects, like
urban images: if the number of thresholds is sufficient, the
transition zone between contrasted objects will be isolated
as an object. The value of the transition zone falls in an
other range of value as the two adjacent objects. This effect
disappears if the number of thresholds decreases (from
Deravi_10 to Deravi_15), but the errors are too significant.

Finally, it should be mentioned that the method is
applicable when the scene is of object-background nature
(Pal and Bhandari, 1993), and the texture level is not very
high.

Region-growing Technique
In this region-growing technique, the main merger criterion
is the color (spectral homogeneity); the other merger crite-
rion is a region form criterion combining smoothness and
compactness (spatial complexity). A different weight can be
given to each one of these criteria in the heterogeneity value
calculation which cannot exceed an a priori fixed hetero-
geneity tolerance. Four heterogeneity tolerances (het � 5, 10,
15, 20) as well as two weights were selected for both
criterions and led to eight different segmentations. The rg1
algorithm does not take into account the region form
criterion, whereas the rg3 does. The results are presented in
Table 5.

One notices that the best results are obtained by taking
the form into account (rg3), all heterogeneity tolerances
taken together and for all test images. The results are
obviously the best with the smallest heterogeneity tolerance
(5). With a small heterogeneity tolerance, mergers of pixels
and regions are limited, and there is a considerable over-
segmentation, which results into decreasing errors.

While the heterogeneity tolerance goes from 5 up to 10,
the total errors (E) for rg3 and for all landscapes remain
lower than 15 percent and increase in a limited way for
RURAL and FOREST test images. The average errors by region
(ENRef) for “rg3 het � 10” are included between 20 and
30 percent, and there is a very significant decrease of the
over-segmentation. In this method, it can be noticed that
all test images respond in the same way to the change of

TABLE 3. WATERSHED SEGMENTATION EVALUATION RESULTS

Algorithms Test Images E (%) ENRef (%) Gen

Watershed_1 (t � 10) FOREST 6,03 22,59 23,68
DW 17,39 27,95 5,61
RESI 14,14 23,10 7,48
RURAL 34,96 32,56 5,23
ADM 15,64 27,20 7,82

Watershed_2 (t � 5) FOREST 6,05 23,02 38,79
DW 14,74 26,04 7,63
RESI 13,34 22,70 10,19
RURAL 8,52 27,12 12,33
ADM 11,58 25,41 11,79

TABLE 4. MULTILEVEL THRESHOLDING TECHNIQUE EVALUATION RESULTS

Algorithms Test Images E (%) ENRef (%) Gen Number of Threshold One Pixel Regions (%)

Deravi_10 FOREST 7,48 22,61 41,78 6 52,66
DW 25,11 24,92 11,10 8 52,23
RESI 26,57 33,76 9,70 6 50,89
RURAL 18,84 42,99 10,00 3 60,15
ADM 20,39 21,29 15,21 6 52,59

Deravi_15 FOREST 41,40 77,69 8,91 2 55,30
DW 54,48 58,17 3,65 5 51,78
RESI 50,02 53,73 5,44 3 50,82
RURAL 20,89 43,65 10,00 3 60,15
ADM 79,87 69,13 3,46 3 49,12
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parameters. We also observe that with small heterogeneity
tolerance and with contrasted objects, the transition zone
(more or less, one pixel wide) between objects is isolated as
an object as with the Multilevel Thresholding Technique

(Figure 5). The heterogeneity tolerance is not high enough for
the transition zone to be included in one of the two objects.
When the heterogeneity tolerance increases from 10 to 15,
this transition zone disappears, but the errors are too big.

When the heterogeneity tolerance increases up to 20,
the over-segmentation (Gen) decreases as far as under-
segmentation for some images. The total error remains
lower than 10 percent for FOREST and RURAL test images but
the average error by region (ENref) reaches 57 percent which
is unacceptable.

Segmentation Comparison
For similar high-thresholds, the contour detection by “Water-
shed” is more effective than by the Canny-Deriche Operator
from the point of view of the total error and average error by
region. On the other hand, watershed segmentation produces
more segments than the Canny-Deriche Operator, which
could partly explain these best results. The median filter
retains more contours than the Canny-Deriche optimal filter.
Figure 6 shows the differences between the results of these
two algorithms, the over-segmentation of the Watershed
segmentation (Figure 6d) and the missing contours with the
“Optimal Edge Detector” with regard to the reference seg-
mentation (white circles in Figure 6c).

The “Watershed Segmentation” with a threshold of 5 is
equivalent to the “Region-growing” segmentation with a

Figure 4. (a) RURAL test image, (b) the deravi_10 RURAL test image segmentation is disturbed by a salt
and pepper effect, and (c) the bimodal histogram of the RURAL test image do not represent contrasted
objects and background.

TABLE 5. REGION-GROWING TECHNIQUE EVALUATION RESULTS

Algorithms Test Images E (%) ENRef (%) Gen

rg1 (het � 5) FOREST 4,18 11,04 30,87
DW 8,91 12,65 9,79
RESI 8,09 12,53 11,45
RURAL 3,07 15,30 12,76
ADM 6,89 9,83 15,65

rg1 (het � 10) FOREST 6,88 26,84 7,53
DW 19,44 29,23 2,56
RESI 17,55 27,64 2,99
RURAL 6,51 33,35 3,13
ADM 13,19 22,84 3,98

rg1 (het � 15) FOREST 9,15 37,09 3,67
DW 28,23 42,91 1,28
RESI 25,43 40,30 1,54
RURAL 8,88 47,81 1,45
ADM 20,05 34,49 1,98

rg1 (het � 20) FOREST 11,81 50,99 2,15
DW 37,06 56,53 0,79
RESI 34,84 52,45 0,96
RURAL 11,66 57,02 0,97
ADM 24,69 44,24 1,25

rg3 (het � 5) FOREST 3,47 8,91 29,28
DW 8,06 11,61 8,63
RESI 7,04 11,12 10,36
RURAL 2,52 11,36 13,66
ADM 6,30 9,56 14,37

rg3 (het � 10) FOREST 5,78 22,83 7,88
DW 14,73 24,33 2,41
RESI 13,02 22,91 2,90
RURAL 5,20 29,79 3,54
ADM 10,80 19,21 3,78

rg3 (het � 15) FOREST 8,19 39,61 3,68
DW 21,39 39,09 1,24
RESI 19,29 35,67 1,48
RURAL 7,34 47,78 1,66
ADM 14,89 31,49 1,88

rg3 (het � 20) FOREST 10,66 53,27 2,14
DW 29,69 53,78 0,75
RESI 26,30 50,02 0,90
RURAL 9,25 56,89 1,05
ADM 19,24 43,13 1,15

Figure 5. (a) ADM test image, and (b) the rg3 (het � 10)
ADM segmentation isolates the transition zones between
contrasted objects.
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heterogeneity tolerance of 10, but over-segmentations are
higher for the “Watershed” segmentation. The results would
be better with a smaller threshold, but over-segmentation
would be high as is the case with a decrease of the hetero-
geneity tolerance in the “Region-Growing” technique.

The “Multilevel Thresholding” technique is effective for
images having a histogram including peaks and valleys,
which is seldom the case for very high spatial resolution
satellite images, and, if the segmentation is good, it is to
the disadvantage of a reasonable over-segmentation value.
Figure 6e shows the high over-segmentation and the salt and
pepper effect with the “Multi-thresholding” technique. The
“Region-growing” method works well with textured images
and images with not high contrast objects like in RURAL and
FOREST test images. The results obtained with the other
types of landscapes are not bad (Figure 6f). It is perhaps the
method which gives a good image segmentation of any type
of landscape without having high over-segmentation values,
and this method does not require pre- and post-processing,
such as filters or contours closing. Moreover, there is not
any salt and pepper effect as with “Multilevel Thresholding”
segmentation. These two segmentation methods are in the
same group of methods (region-based algorithms), but the
segmentation procedures are very different. The “Multilevel
Thresholding” segmentation uses the global information of
the image to segment it (the detection of thresholds is
influenced by all pixels in the image) while the “Region-

growing” segmentation uses the local information (region
variance and form) to segment the image. The global infor-
mation methods are more sensitive to texture (internal
variability), i.e., less immune to texture than the local
information based methods (Pal and Bhandari, 1993).

Conclusions
The miraculous segmentation method which segments in a
correct way for all types of landscape does not exist. In each
of the four used methods, the choice of the parameters
(thresholds) is important and has a great influence on the
segmentation results.

The contour detection methods are sensitive to noise or
texture in the images, and pre-processing is essential in the
majority of the cases (median filter and optimal filter). These
methods prove to be effective for the detection of homoge-
neous and contrasted objects within the images (Janssen and
Molenaar, 1995) as in the images of urban zones where these
types of objects are very common (for example, buildings).

The two region-based methods are very different, and a
common conclusion is not obvious. However, a problem
with the transition zones between the contrasted objects can
be present in both segmentation techniques. The “Region-
growing” segmentation is less sensitive to texture, which is
a significant advantage in the segmentation of very high
spatial resolution satellite images.

Figure 6. The best results or the best compromises between the ENRef and the Gen evaluation measures
for the four segmentation algorithms: (a) RESI test image, (b) reference segmentation, (c) Optimal edge
detector segmentation (Deriche_b), the white circles show the missing contours, (d) Watershed
segmentation (Watershed_1), (e) Multi thresholding segmentation (Deravi_10), and (f) Region Growing
segmentation (rg3, het � 10).
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All the objects in an image cannot be extracted with one
segmentation without over-segmentation. If each region of
the segmentation is supposed to represent one object in the
image, multi-level segmentation must be applied. In each
level, different objects are identified according to their
characteristics (such as, texture and form). The lower levels
are made up of small objects, larger homogenous objects,
and pieces of the larger textured objects. The upper levels
are made up of the merger of the regions of the lower levels
and allow the identification of larger textured objects. The
implementation of multi-level segmentation is easier with
the “Region-growing” technique, as long as the heterogeneity
tolerance is increased.
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