
THE NUMBERS OF SPANNING TREES, HAMILTON CYCLESAND PERFECT MATCHINGS IN A RANDOM GRAPHSvante JansonAbstra
t. The numbers of spanning trees, Hamilton 
y
les and perfe
t mat
hings in arandom graph Gnm are shown to be asymptoti
ally normal if m is neither too large nor toosmall. At the lower limit m � n3=2, these numbers are asymptoti
ally log-normal. For Gnp,the numbers are asymptoti
ally log-normal for a wide range of p, in
luding p 
onstant.The same results are obtained for random dire
ted graphs and bipartite graphs.The results are proved using de
omposition and proje
tion methods.Introdu
tion and resultsThe number of small subgraphs of a given kind of a random graph has been studied bymany authors. Typi
al results are that for both standard models Gnp and Gnm of randomgraphs, for wide ranges of p and m, the number of subgraphs isomorphi
 to a �xed graphis asymptoti
ally normally distributed as n!1, see for example [7℄, [4℄.In this paper we will study some examples of large subgraphs. More pre
isely, we willstudy three examples of subgraph 
ounts in Gnp and Gnm where the subgraphs have nverti
es and � n edges. The results in these 
ases are rather di�erent from the resultsfor small subgraphs; the asymptoti
 distribution is still normal for Gnm but log-normalfor Gnp, provided the edge density is neither too small nor too big. For a smaller edgedensity, m � n3=2, we �nd asymptoti
 log-normal distributions also for Gnm.In order to state the results smoothly, we let f(G), g(G) and h(G) denote the numbersof spanning subtrees, Hamilton 
y
les and perfe
t mat
hings in a graph G. We assumeta
itly that n is restri
ted to be even whenever we 
onsider h(Gnm) or h(Gnp), sin
eh(G) = 0 when the order of G is odd.For a random variableX (with positive, �nite varian
e) let X� = (X�EX)=(VarX)1=2denote its standardization. We write a� b when a and b are positive and a=b! 0.Theorem 1. Assume that n ! 1, m� n3=2 and �n2��m � n. Then the standardizedvariables f(Gnm)�, g(Gnm)� and h(Gnm)� 
onverge in distribution to a standard normaldistribution.Moreover, with p = m=�n2�, we haveE f(Gnm) = nn�2pn�1 exp��1� pp +O�(1� p) n3m2�� ; (1.1)Var f(Gnm) � n38m2 (1� p)2�E f(Gnm)�2; (1.2)E g(Gnm) = 12 (n� 1)! pn exp��1� pp +O�(1� p) n3m2�� ; (1.3)Var g(Gnm) � n32m2 (1� p)2�E g(Gnm)�2; (1.4)Typeset by AMS-TEX1



2 Eh(Gnm) = (n� 1)!! pn=2 exp��1� p4p +O�(1� p) n3m2�� ; (1.5)Var h(Gnm) � n38m2 (1� p)2�Eh(Gnm)�2: (1.6)If furthermore m=�n2�! � � 0, thenmn3=2 �f(Gnm)=(nn�2pn�1e�(1�p)=p)� 1� d�! N�0; 18 (1� �)2�; (1.7)mn3=2 �g(Gnm)=( 12 (n� 1)! pne�(1�p)=p)� 1� d�! N�0; 12 (1� �)2�; (1.8)mn3=2 �h(Gnm)=((n� 1)!! pn=2e�(1�p)=4p)� 1� d�! N�0; 18 (1� �)2�: (1.9)We do not know whether the upper bound for m, namely �n2��m� n, is ne
essary forthe 
on
lusions of Theorem 1; in fa
t, it seems likely that asymptoti
 normality holds assoon as �n2��m� n1=2, but we will not investigate this 
ase any further here.On the other hand, the lower bound m � n3=2 is indeed ne
essary, and we have thefollowing result for the limiting 
ase, whi
h shows that the asymptoti
 distribution thenis log-normal. We write X � LN(�; �2) when logX � N(�; �2).Theorem 2. Assume that n!1 and m=n3=2 ! 
 > 0. Then, with p = m=�n2�,E f(Gnm) � nn�2pn�1 exp��1� pp � 16
2 �; (1.10)Var f(Gnm) � (e1=8
2 � 1)�E f(Gnm)�2; (1.11)E g(Gnm) � 12 (n� 1)! pn exp��1� pp � 16
2 �; (1.12)Var g(Gnm) � (e1=2
2 � 1)�E g(Gnm)�2; (1.13)Eh(Gnm) � (n� 1)!! pn=2 exp��1� p4p � 148
2 �; (1.14)Var h(Gnm) � (e1=8
2 � 1)�Eh(Gnm)�2; (1.15)and f(Gnm)=E f(Gnm) d�! LN�� 116
2 ; 18
2 �; (1.16)g(Gnm)=E g(Gnm) d�! LN�� 14
2 ; 12
2 �; (1.17)h(Gnm)=E h(Gnm) d�! LN�� 116
2 ; 18
2 �: (1.18)For Gnp we obtain asymptoti
 normality only when p! 1; for smaller p we have againa log-normal distribution.Theorem 3. Assume that n ! 1, p ! 1 and 1 � p � n�2. Then the standardizedvariables f(Gnp)�, g(Gnp)� and h(Gnp)� 
onverge in distribution to the standard normal



3distribution. Moreover, E f(Gnp) = nn�2pn�1; (1.19)Var f(Gnp) � 2(1� p)�E f(Gnp)�2; (1.20)E g(Gnp) = 12 (n� 1)! pn; (1.21)Var g(Gnp) � 2(1� p)�E g(Gnp)�2; (1.22)Eh(Gnp) = (n� 1)!! pn=2; (1.23)Var h(Gnp) � 12 (1� p)�E h(Gnp)�2: (1.24)Theorem 4. Assume that n!1, p! � < 1 and lim inf pn1=2 > 0. Then (1.19), (1.21),(1.23) hold as above, andp1=2�log f(Gnp)� log�E f(Gnp)�+ 1� pp � d�! N�0; 2(1 � �)�; (1.25)p1=2�log g(Gnp)� log�E g(Gnp)�+ 1� pp � d�! N�0; 2(1 � �)�; (1.26)p1=2�log h(Gnp)� log�Eh(Gnp)�+ 1� p4p � d�! N�0; 12 (1� �)�: (1.27)Remark 1.1. The results in Theorem 2 and in Theorem 4 for 
onstant pmay be written aslogX�a d�! N(0; �2) without s
aling, where X is the random variable under 
onsiderationand a = a(n) and �2 are suitable 
onstants. Equivalently, X=ea d�! LN(0; �2). On theother hand, if p ! 0 in Theorem 4, it is ne
essary to s
ale logX to get 
onvergen
e:(logX � a)=b d�! N(0; �2), whi
h translates to (X=ea)1=b d�! LN(0; �2), with b!1. Note�nally that the asymptoti
 normality in Theorems 1 and 3 also may be written(logX � a)=b d�! N(0; �2);where now b! 0.Remark 1.2. Let p! 0, with p� n�1=2. The distribution of log f(Gnp) is 
on
entratedat log E(f(Gnp))�(1�p)=p+O(p�1=2), whi
h is below log E(f(Gnp)). Hen
e the distribu-tion of f(Gnp) is 
on
entrated way below its expe
tation; in parti
ular, f(Gnp)=E f(Gnp)p�! 0. This may look surprising at �rst sight, but it is a
tually a natural 
onsequen
e of thelarge tail of a log-normal distribution. For example, by (1.25), the distribution of f(Gnp)is well approximated by LN(log E f(Gnp) � 1�pp ; 2 1�pp ), whi
h has the same expe
tationas f(Gnp), but is 
on
entrated at substantially lower values.Remark 1.3. Sin
e (1.25){(1.27) hold if pn1=2 ! 
, for every �xed 
 > 0, a simple
ompa
tness argument shows that they hold also if pn1=2 ! 0 suÆ
iently slowly. Similarly,if we rewrite (1.13){(1.15) asmn3=2�log f(Gnm)� log�E f(Gnm)�+ n316m2 �! N(0; 18 ); (1.28)et
., they hold also when m=n3=2 ! 0 slowly. (By Theorem 1, (1.28) et
. hold also whenm=n3=2 !1 with m=�n2�! 0.)



4 We do not know how small p and m 
an be for these results to hold; it is possible thatthe asymptoti
 log-normality extends all the way down to the thresholds for the variablesto be non-zero, whi
h are at p � logn=n and m � 12n logn, see [1℄.Remark 1.4. It follows from the proofs below that the standardized variables f(Gnm)�,g(Gnm)� and h(Gnm)� in Theorem 1 
onverge jointly to the same normal variable; thusf(Gnm), g(Gnm) and h(Gnm) are approximatively linear fun
tions of ea
h other. Similarresults hold for joint 
onvergen
e in Theorems 2{4.After an informal dis
ussion in Se
tion 2, we prove generalizations of the results abovein Se
tions 3 and 4, whi
h together with some 
ombinatorial estimates derived in Se
tion5 prove the theorems above.In Se
tion 6, �nally, we give extensions to random dire
ted graphs and bipartite graphs.2. Some 
omments and heuristi
sIf we 
ompare the results above for Gnm and Gnp with p � m=�n2�, we see that thevariables vary on a larger s
ale for Gnp. In other words, the variation in f(Gnp), say, giventhe a
tual number of edges e(Gnp), is negligible 
ompared with the variation 
aused bythe 
u
tutation in the number of edges. Hen
e f(Gnp) is asymptoti
ally like a fun
tionof e(Gnp), whi
h is asymptoti
ally normal. (See the proof of Theorem 6 for details.) Onemight think that this would yield asymptoti
 normality for f(Gnp), as it does for smallsubgraphs, but that is true only when p! 1; in the situation of Theorem 4, it turns outthat we get a log-normal distribution be
ause E(f(Gnp) j e(Gnp) = m) = Ef (Gnm) growsrapidly with the number of edges m, or, equivalently, that E f(Gnp) = nn�2pn growsrapidly with p.We have no similar, simple explanation for the emergen
e of asymptoti
 log-normaldistributions for Gnm in Theorem 2, but note that in this 
ase we have VarX � (EX)2for our variables. This means that we have a natural end-point for the normal phase, sin
ethen X� � �EX=(VarX)1=2 is uniformly bounded below, and thus X� d�! N(0; 1) 
annothold.It is instru
tive to study the asymptoti
s of, say, f(Gnp) and f(Gnm) using the de
om-position in [4℄. Using the notation there, the de
omposition may be written asf(Gnp) =XH bf(H; p)Sn(H; p) (2.1)and it is easily seen (
f. the 
al
ulations in Se
tion 4 below or [4, Example 12.2℄), thatbf(H; p) vanishes unless H is a forest and that if H is a forest with 
omponents of or-ders v1; : : : ; vr, then bf(H; p) � (Ef )Q(np)1�vi and thus the normalized versions satisftbf�(H; p) � Ef Qn1�vi=2p(1�vi)=2.If p is 
onstant, then bf�(H; p) � Ef for all H = kK2, i.e. when H 
onsists of isolatededges, while all other bf�(H; p) are smaller. It follows that f(Gnp) 
an be approximatedby P1k=0 bf(kK2; p)Sn(kK2; p); moreover, Sn(kK2; p) 
an be approximated by a Hermitepolynomial in Sn(K2; p) and the sum may be approximated by1X0 Ef 1k!�21� pp �k=2hk(Sn(K2; p)�) = Ef exp��21� pp �1=2Sn(K2; p)� � 1� pp �; (2.2)whi
h gives (1.25), 
f. [4℄.



5If p! 0, then f�(kK2; p) � Ef p�k=2 is (asymptoti
ally) larger the larger k is. In this
ase, ea
h single term in the expansion (2.1) is negligible 
ompared with the others, andwe do not know how to make the argument above rigorous. It is, nevertheless, temptingto use the same approximations and arrive again at the approximation (2.2), whi
h wouldimply (1.25) if the error 
ould be 
ontrolled.This is not only an heuristi
al motivation for the log-normal limits in Theorem 4 (withthe proper s
aling); it also suggests a method for proving them. Re
alling that Sn(K2; p)and Sn(K2; p)� are linear fun
tions of e(Gnp), 
onsider instead of f(G) the modi�ed vari-able  (G) = e�ae(G)f(G); (2.3)where a is a suitable 
onstant (depending on n and p) su
h that the approximation (2.2)of f(Gnp) is equivalent to  (Gnp) � Cn, for some 
onstants Cn. As we shall see later(Remark 4.1), this 
an be veri�ed by estimating the varian
e of  (Gnp), at least whenp� n�1=2; this is perhaps the simplest proof of (1.25).Turning to Gnm, we use the heuristi
s from [4℄ that the asymptoti
s for Gnm usuallyare as for Gnp with p = m=�n2�, if we ignore all terms in (2.1) su
h that H 
ontains anisolated edge. In our 
ase, if n�1=2 � p � 1, f�(P2; p) � Ef (np2)�1=2, while all otherf�(H; p), for H su
h that every 
omponent of H has at least three verti
es, are smaller.This suggests that f(Gnm) has the same asymptoti
s as a linear fun
tion of Sn(P2; p),and thus is asymptoti
ally normal. Moreover, if pn1=2 ! 
, we have f�(kP2; p) � Ef forevery k, and the heuristi
s suggests an approximating exponential sum similar to (2.2)(but with Sn(P2; p)� instead), whi
h would give a log-normal limit as in (1.16). We warmthe reader, however, that these 
on
lusions are not 
ompletely 
orre
t; they happen togive the right qualitivative behaviour of f(Gnm), but the asymptoti
 varian
es they giveare wrong, e.g. by a fa
tor 9 for (1.7). (A 
loser examination shows that the error 
omesfrom repla
ing � i Theorem 5 below by limn2
2.)Again, we may make this argument rigorous (and obtain the 
orre
t varian
es) by
onsidering the modi�ed variable in (2.3). Note that the e�e
t of the modi�
ation isquite di�erent for Gnm 
ompared to Gnp whi
h was studied above; sin
e e(Gnm) = mis 
onstant,  (Gnm) is just a 
onstant times f(Gnm) so limit results for one of themtrivially transfers to the other. On the other hand, as we will see later, the expansion(2.1) of  (Gnp) is dominated by the P2 term (when p � n�1=2), whi
h gives asymptoti
normality of  (Gnp). Moreover, the modifying fa
tor in (2.3) 
an
els essentially the strongdependen
e of f(Gnp) on the number of edges present, whi
h enables us, by methods of [4℄,to 
on
lude that  (Gnm) and  (Gnp) have the same asymptoti
s. We will prove Theorems1 and 2 by this method in Se
tion 4, leaving some 
ombinatorial estimates to Se
tion 5.The heuristi
s above suggest, however, a short-
ut where Theorem 1 is proved withoutany of this ma
hinery. Noting that Sn(P2; p) is a linear fun
tion of the number of 
opies ofP2 in Gnp and e(Gnp), we see that ignoring all terms but the P2 term in (2.1), as suggestedabove, is equivalent to approximating  (Gnm) by a linear fun
tion of the number of 
opiesof P2 in Gnm. In the next se
tion, we shall prove that this 
an be done, with a negligibleerror, by simple moment estimates. This is very similar to the \�rst proje
tion method"to prove (normal) limits for Gnp, but has to our knowledge not been used before for Gnm.We �nally remark that these 
onsiderations also suggest a method to treat the 
asep� n�1=2. The argument above suggests an approximation  (Gnp) � C exp(bSn(P2; p)),for some 
onstants b and C, whi
h 
on
eivably 
ould be proved by 
omputing the varian
eof the modi�ed modi�
ation e�aSn(K2;p)�bSn(P2;p)f(Gnp)



6for suitable a and b. (For small p one might add more terms in the exponent.) We havenot tried this approa
h. 3. A general resultSin
e most of the argument is the same for the three variables that we 
onsider, weshall state and prove a more general result whi
h will be used to prove Theorem 1.Suppose that we are given, for ea
h n, a set eA of unlabelled graphs with � n verti
es,and, for a graph G with n verti
es, let '(G) be the number of subgraphs of G that areisomorphi
 to some member in eA. We assume that all graphs in eA have the same number� of edges. We let A be the set of subgraphs of Kn (the 
omplete graph on the set ofverti
es where our random graphs live) that are isomorphi
 to some member of eA, andlet N = '(Kn) be the number of elements of A. (Note that eA; '; �;A; N as well as m,p and other quantities introdu
ed below depend on n. A more 
areful notation would befAn; 'n; �n; : : : , but for simpli
ity we will omit the subs
ripts.)The three variables in Theorems 1{4 are evidently examples of su
h ', and we have:f : eA = ftrees on n verti
esg, � = n� 1, N = nn�2;g : eA = fCng, � = n, N = 12nn! (n � 3);h : eA = fn2K2g (a graph 
onsisting of n=2 disjoint edges), � = n2 , N = (n� 1)!!.We further de�ne �(x) = 1N2 XA1;A22A(1 + x)e(A1\A2); (3.1)where e(G) denotes the number of edges in G.Let N(H) denote the number of elements of A that 
ontain a given subgraph H of Knand de�ne 
(H) = N(H)=N . Then, summing over all subgraphs H of Kn without isolatedverti
es,�(x) = 1N2 XA1;A2 XH�A1\A2 xe(H) = 1N2 XH N(H)2xe(H) =XH 
(H)2xe(H): (3.2)Sin
e N(H) and 
(H) depend on H only up to isomorphism, (3.2) yields, for small x and�xed n, �(x) = 1 +�n2�
(K2)2x+� (n)32 
(P2)2 + (n)48 
(2K2)2�x2 +O(x3); (3.3)where K2 is an edge, P2 a path of length 2 and 2K2 
onsists of two independent edges.Thus, using the shorthand 
1 = 
(K2), 
2 = 
(P2) and 
3 = 
(2K2),log �(x) = 1 +�n2�
21x+� (n)32 
22 + (n)48 
23 � 12�n2�2
41�x2 +O(x3): (3.4)By 
ounting the number of edges and pairs of edges in element of A, we have N� =�n2�N(K2), and N �(��1)2 = (n)32 N(P2) + (n)48 N(2K2), and thus
1 = �=�n2�; (3.5)
3 = 4(n)4 (�(�� 1)� (n)3
2): (3.6)Substitution of this into (3.4) yields, after simpli�
ations, the following.



7Lemma 3.1. With the notations above, log �(x) has the Taylor expansionlog �(x) = �1x+ �2x2 +O(x3); jxj < 1; (3.7)with �1 = �2�n2� (3.8)�2 = n+ 1n� 3 (n)32 
22 � 4n� 3�(�� 1)
2 + 2�2n(n� 1) � (�� 1)2(n� 2)(n� 3) � �2n(n� 1)�= n32 (
2 � 
21)2 � �3�n2�2 +O(n2
22 + �2n4 + �4n6 ): (3.9)tuAfter these preliminaries, we state our result.Theorem 5. With the notations above, suppose that n!1 and � = O(n), that n2(
2�
21) ! � 2 (�1;1) (or, equivalently, n2N(P2)N � 4�2n2 ! �), and that for every sequen
ex = xn with n�1 � x� n1=2,�(x) � exp��1x+ �2x2 + o�x2n ��: (3.10)If m� n3=2 and �n2��m� n, then, with p =m=�n2�,E'(Gnm) = Np� exp�� �22m (1� p) +O�(1� p) n3m2��; (3.11)Var'(Gnm) = ��28 + o(1)�(1� p)2 n3m2 �E'(Gnm)�2 (3.12)and (1� p)�1 mn3=2�'(Gnm)�Np� exp�� �22m (1� p)�� 1� d�! N�0; �28 �: (3.13)If furthermore � 6= 0, the standardized variable '(Gnm)� 
onverges in distribution to thestandard normal distribution.Proof. Let X = '(Gnm) and let Y denote the number of 
opies of P2 in Gnm. We shallprove (3.11) and VarX � ��22 + o(1)� (1� p)2np2 (EX)2; (3.14)Cov(X;Y ) = (� + o(1)) (1 � p)2n2p2 EX EY; (3.15)Var Y = (2 + o(1)) (1 � p)2n3p2 (E Y )2: (3.16)The result then follows easily. First we must have equality in (3.14) by (3.15), (3.16) andthe Cau
hy{S
hwarz inequality; this is equivalent to (3.12). If � 6= 0, then (3.14){(3.16)yield E(X� � sign(�)Y �)2 = Var(X� � sign(�)Y �)! 0: (3.17)



8(This is another way of expressing the asymptoti
 equality in the Cau
hy{S
hwarz in-equality.) Sin
e Y � d�! N(0; 1) by [4,Theorem 19℄, X� d�! N(0; 1) now follows. Finally,this, (3.11) and (3.12) yield (3.13). The 
ase � = 0 is simpler, with (3.12) and (3.13)following dire
tly from (3.14).Hen
e we only have to prove the moment estimates. In order to do so, we use thewell-known estimate that, for 0 � l � k we have(k)l = kl exp l�1X0 log(1� ik )= kl exp�� l(l � 1)2k � 2l3 � 3l2 + l12k2 � l412k3 � l520k4 +O� l3k3 + l6k5��: (3.18)Thus, using that � = O(n), p� n�1=2 and 1� p� n�1,EX = N (m)��n2�� = Np� exp���(�� 1)2m (1� p)� �36m2 (1� p2) +O�1� pn2p3 ��; (3.19)in parti
ular, EX = Np� exp�� �22m (1� p) +O�1� pnp2 ��; (3.20)whi
h is (3.11).Moreover, EX2 = XA1;A22A (m)e(A1[A2)(�n2�)e(A1[A2) = XA1;A22A (m)2��e(A1\A2)(�n2�)2��e(A1\A2) ; (3.21)and, for 0 � e � �, using (3.18) as for (3.19),(m)2��e(�n2�)2��e= p2��e exp�� (2�� e)(2� � e� 1)2m (1� p)� (2�� e)36m2 (1� p2) +O(1� pn2p3 )�= p2��e exp���(2�� 1)1� pm + e(2�� 12 )1� pm � e22 1� pm � 8�36m2 (1� p2)+2e �2m2 (1� p2) +O� �m2 (1� p)e2�+O�1� pn2p3 ��= p2� exp���(2�� 1)1� pm � 4�33m2 (1� p2)�ye�1 +O�e2 1� pn2p �+O�1� pn2p3 ��; (3:22)wherey = p�1 exp�(2�� 12 )1� pm + 2 �2m2 (1� p2)� = p�1�1 + 2�1� pm +O�1� pn2p2 ��: (3.23)Sin
e e2 = O� 1p2 (1 + p)e�, we obtain from (3.21), (3.22), (3.19) and (3.1), thatEX2= N2p2� exp���(2�� 1)1 � pm � 4�33m2 (1� p2)���(y � 1) +O�1� pn2p3 �((1 + p)y � 1)��= (EX)2 exp���2 1� pm � �3m2 (1� p2)���(y � 1) +O�1� pn2p3 ��y +O(1)��� (3:24)



9Hen
e, using (3.10) and Lemma 3.1, and noting that our assumptions yield �1 = O(1),�2 = O(n�1) and y � 1 � 1�pp ,EX2(EX)2 � �1 +O�1� pn2p3 �� exp���2 1� pm � �3m2 (1� p2) + �1(y � 1)+ �2(y � 1)2 + o� (1� p)2np2 ��= exp���2 1� pm + �1�1� pp + 2�m 1� pp �� �3m2 (1� p2)+ �2�1� pp �2 + o� (1� p)2np2 ��= exp�n32 (
2 � 
21)2�1� pp �2 + o� (1� p)2np2 ��= 1 + � �22 + o(1)� (1� p)2np2 ; (3.25)whi
h yields (3.14).Let B be the set of the NY = 12 (n)3 
opies of P2 in Kn. ThenEY = NY (m)2(�n2�)2 = NY p2 1� 1=m1� 1=�n2� ; (3.26)EXY = XA2AB2B (m)e(A[B)(�n2�)e(A[B) : (3.27)Now there are N(P2) = 
2N elements of A 
ontaining a given element of B, and thus
2NNY pairs (A;B) with B � A and e(A [ B) = �. Further, given B 2 B, there areN(K2) = 
1N elements of A 
ontaining a given edge in B, and thus 
1N � 
2N elementsof A whose interse
tion with B equals that edge. This gives 2(
1 � 
2)NNY pairs (A;B)with e(A \B) = 1 and e(A [B) = �+ 1. There remain (1� 2
1 + 
2)NNY pairs (A;B)with e(A \B) = 0 and e(A [B) = �+ 2. Hen
eEXY = NNY�(1� 2
1 + 
2) (m)�+2(�n2�)�+2 + 2(
1 � 
2) (m)�+1(�n2�)�+1 + 
2 (m)�(�n2�)��= EXNY�(1� 2
1 + 
2) (m� �)(m� �� 1)(�n2�� �)(�n2�� �� 1) + 2(
1 � 
2) m� ��n2�� � + 
2�= EX EY� 1� 1=m1� 1=�n2���1�(1� 2
1 + 
2) (1� �=m)(1� (�+ 1)=m)(1� �=�n2�)(1� (�+ 1)=�n2�)+2(
1 � 
2)p�1 1� �=m1� �=�n2� + 
2p�2�: (3:28)We use the expansion1� �=m1� �=�n2� = 1� (1� p)�=m1� �=�n2� = 1� � 1� pm � �2 p(1� p)m2 +O��3(1� p)n6p �;



10valid for � = O(n), and the relations 
1 = �=�n2� = p�=m, 
2 = O(n�2 + 
21) = O(n�2),and obtain after a straightforward but lengthy 
al
ulation, thatCov(X;Y )EX EY = EXYEX EY � 1 = (
2 � 
21)�1� pp �2 +O��(1� p)n4p3 �; (3.29)whi
h yields (3.15).Finally, we note that EY 2 is given by the same formulas as EXY , if we repla
e A byB, N by NY , � by 2, 
1 by 2=�n2� and 
2 by 1=NY = 2=(n)3. With these substitutions,(3.29) be
omes Var Y(EY )2 = EY 2(EY )2 � 1 = 2n3�1� pp �2 +O�1� pn4p3 �; (3.30)whi
h yields (3.16) and 
ompletes the proof. tuRemark 3.1. It follows from the proof that equality holds in (3.10). It is, however,
onvenient to have to verify only the inequality.Remark 3.2. The proof yields, impli
itly, the approximationn1=2p(1� p)�1(EX)�1(X � EX) � 1p2�Y �; (3.31)where the di�eren
e between the two sides tends to 0 in probability (and in L2) as n!1.Here Y may be repla
ed by the sum of the square of the degrees of the verti
es.It is likely that this method 
an be used also in the 
ase m � n3=2 to prove a generaliza-tion of Theorem 2, but we have not attempted this and will instead use another methodin the next se
tion.We now turn brie
y to Gnp, and obtain the following general version of Theorem 4 asa 
orollary of Theorem 5. A spe
ial 
ase was given as [3, Theorem 6℄.Theorem 6. With assumptions as in Theorem 5, suppose further that �=n ! � � 0. Ifp! � < 1 and p� n�1=2, thenp1=2�log'(Gnp)� log E'(Gnp) + �2(1� p)n2p � d�! N�0; 2�2(1� �)�; (3.32)with E'(Gnp) = Np�.Proof. Note that (3.13) implies'(Gnm)�N� m�n2��� exp��12�2� 1m � 1�n2��� p�! 1 (3.33)and thus log'(Gnm)��logN + � log m�n2� � 12�2� 1m � 1�n2��� p�! 0: (3.34)Let M = e(Gnp) be the number of edges in Gnp. ThenM=n3=2 p�!1 and (�n2��M)=n p�!1, and it follows by 
onditioning on M thatlog'(Gnp)��logN + � log M�n2� � 12�2� 1M � 1�n2��� p�! 0: (3.35)



11Moreover, M � Bi(�n2�; p) and thus M� d�! N(0; 1), whi
h implieslog M�n2� = log p+ log�1 + �1� p�n2�p �1=2M�� = log p+ �1� p�n2�p �1=2M� +Op�1� pn2p � (3.36)and �2=M � �2=�n2�p p�! 0. Now (3.32) follows by Cram�er's theorem. The formula forE'(Gnp) is evident (for any p). tuThe same proof yields asymptoti
 normality of '(Gnp) when p! 1 with 1� p� n�1and � > 0, but the following simpler proof, using the �rst proje
tion method, yields amore general result.Theorem 7. Suppose that n ! 1, �=n ! � > 0, p ! 1 and 1 � p � n�2, and that ifx = 1�pp , then �(x) � exp��1x+ o(x)�: (3.37)Then the standardized variable '(Gnp)� tends in distribution to N(0; 1), with E'(Gnp) =Np� and Var'(Gnp) � 2�2(1� p)�E'(Gnp)�2: (3.38)Proof. As in the proof of Theorem 5, it suÆ
es to prove that if X = '(Gnp) and Y =e(Gnp) � Bi(�n2�; p), then VarX � (2�2 + o(1))(1 � p)(EX)2; (3.39)Cov(X;Y ) = 2�+ o(1)n (1� p) EX EY; (3.40)Var Y = 2 + o(1)n2 (1� p)(E Y )2: (3.41)These are easily veri�ed. First, by (3.37),EX2 = XA1;A22A p2��e(A1\A2) = N2p2���1p � 1�� (EX)2�1 + �1 1� pp + o(1� p)�;whi
h gives (3.39) sin
e �1 = �2=�n2� � 2�2 by Lemma 3.1. Similarly,EXY = N�p� +N ��n2�� �� p�+1 = EX ��(1� p) + �n2�p� ;and thus Cov(X;Y )EX EY = �(1� p)EY � 2�n(1� p)n2p ;whi
h is (3.40). Finally, Var Y = �n2�p(1� p), whi
h implies (3.41). tuRemark 3.3. In Theorem 7, we only have to asssume an estimate of �(x) at x = 1=p�1.Similarly, in Theorems 5 and 6 it suÆ
es that (3.10) holds for x � �n2�=m � 1 and x �1=p� 1, respe
tively.



12 4. A se
ond proof, and the 
ase m � n3=2In this se
tion we use the de
omposition methods of [4℄ to give a se
ond proof ofTheorem 5, at the same time proving the following result for the limiting 
ase.Theorem 8. Suppose that the 
onditions of Theorem 5 are ful�lled, with (3.10) holdingfor x � n1=2, that �=n! � and that
(iP2 + jK2) = �1 + o(1)�
(P2)i
(K2)j (4.1)for any i; j � 0.(i) If m=n3=2 ! 
 > 0, thenE'(Gnm) � N� m�n2��� exp�� �22m + �2 � �36
2�; (4.2)Var'(Gnm) � (e�2=8
2 � 1)�E'(Gnm)�2; (4.3)'(Gnm)=E'(Gnm) d�! LN�� �216
2 ; �28
2�: (4.4)(ii) If pn1=2 ! 
 > 0, thenp1=2�log'(Gnp)� log E'(Gnp) + �2n2p� d�! N(0; 2�2): (4.5)Proof of Theorems 5 (again) and 8.We �rst observe that (4.2) follows by (3.19), and that part (ii) of Theorem 8 follows frompart (i) by the proof of Theorem 6 with only minor modi�
ations. Moreover, the argumentin (3.24){(3.25) yieldsVar'(Gnm)(E'(Gnm))2 = E('(Gnm))2(E'(Gnm))2 � 1 � exp� �28
2 + o(1)�� 1;while (4.4) and Fatou's lemma yield, with Z � LN(� �216
2 ; �28
2 ),lim inf Var'(Gnm)(E'(Gnm))2 � Var(Z) = exp( �28
2 )� 1;and (4.3) follows. Thus we only have to prove (3.13) and (4.4). We let, as usual, p = m=�n2�,and restri
t ourselves, for simpli
ity, to the 
ase p! � with 0 � � < 1.As explained in Se
tion 2, we will repla
e ' by another fun
tion, whi
h on Gnm di�ersfrom ' by only a 
onstant fa
tor, before applying the de
omposition. It is 
onvenient to
hange (2.2) a little, and we de�ne, for any graph G with n verti
es, (G) = '(G)(1� a)e(G)��; (4.6)for some 
onstant a = an 2 (0; 1) to be 
hosen later.Our method requires us to 
ompare Gnm not only with a �xed Gnp, but also to varythe edge probability. We therefore de�ne a random graph pro
ess Gn(t) as follows. Let,for ea
h edge e 2 Kn, Te be independent, identi
ally distributed random variables with



13a uniform distribution on (0,1), and let Gn(t) be the subgraph of Kn with edge set fe :Te � tg. Thus Gn(p) �= Gnp. We also de�neIe(t) = I(e 2 Gn(t)) = I(Te � t):After these preliminaries, we begin by 
omputing the expe
tation and varian
e of X(t) = (Gn(t)).Sin
e X(t) =  (Gn(t)) = XA2AYe2A Ie(t)Ye=2A(1� aIe(t)) = XA2AYA(t); (4.7)say, we have EX(t) = XA2AEYA(t) = Nt�(1� at)(n2)�� (4.8)and, using E Ie(t) = t, E�Ie(t)(1�aIe(t))� = t(1�a) and E(1�aIe(t))2 = 1� t+ t(1�a)2,EX(t)2 = XA1;A22AEYA1(t)YA2(t)= XA1;A2 te(A1\A2)(t(1 � a))2(��e(A1\A2))(1� t+ t(1� a)2)(n2)�2�+e(A1\A2)= t2�(1� a)2�(1� t+ t(1� a)2)(n2)�2�N2�� t(1� t+ t(1� a)2)t2(1� a)2 � 1�= (EX(t))2(1� a)2��1� 2at+ a2t(1� at)2 �(n2)�2�(1� at)�2��� 1� tt(1� a)2� : (4.9)Consequently we have, assuming a < 1=2 and lettingx = 1� tt(1� a)2 = O�1t � and �(x) = log �(x);log EX(t)2(EX(t))2= 2��log(1� a)� log(1� at)�+ ��n2�� 2�� log�1 + a2(t� t2)(1 � at)2 �+ �(x)= �2�(a� at)� ��a2 � (at)2�+O(�a3) + ��n2�� 2���a2t(1� t)(1� at)2 +O�(a2t)2��+ �(x)= �2�a(1� t) + �n2�a2t(1� t) + 2�n2�a3t2(1� t)� �a2�1� t2 + 2t(1 � t)�+O(�a3 + n2a4t2) + �(x)= (1 + 2at)��n2�a2t(1� t)� 2�a(1� t)�� �a2(1� t)2 +O(�a3 + n2a4t2) + �(x)= (1 + 2at)1� t�n2�t ��n2�at� ��2 � (1 + 2at)1� t�n2�t �2 � �a2(1� t)2 +O(�a3 + n2a4t2) + �(x)= �(1 + 2at)(1� a)2 �2�n2�x� �a2(1� t)2 +O� 1�n2�t��n2�at� ��2 + �a3 + n2a4t2�+ �(x):(4.10)We 
hoose a = �m = ��n2�p (4.11)



14and 
onsider in the sequel of the proof only t witht = p+O(p1=2=n); (4.12)this implies that t � p and �n2�at�� = �( tp �1) = O( �np1=2 ) = O( �m1=2 ). For su
h t, (4.10)yields after simpli�
ationslog EX(t)2(EX(t))2 = �(x)� �2�n2�x+ �3�n2�2 x2 +O� �2n4t2 + �4n6t3�: (4.13)We now use our assumption (3.10) and the relations (3.8) and (3.9), noting that the lattergives �2 = 12n�2 � �3(n2)2 + o( 1n ), and obtain,log EX(t)2(EX(t))2 � �22nx2 + o�x2n �+O� 1n2t3�: (4.14)Sin
e x � 1=t � 1=p, (4.14) implies if p� n�1=2,VarX(t)(EX(t))2 = EX(t)2(EX(t))2 � 1 � �2 x22n + o�x2n � = (�2 + o(1)) (1 � p)22np2 ; (4.15)and if m=n3=2 ! 
 > 0 and thus p � 2
n�1=2,VarX(t)(EX(t))2 � exp( �28
2 )� 1 + o(1): (4.16)We next 
onsider the orthogonal de
omposition (G(t)) =XH b (H; t)Sn(H; t) (4.17)studied in [4℄. Here H ranges over all unlabelled graphs without isolated verti
es andSn(H; t) =PH1Qe2H1(Ie(t)� t), with the summation over the subgraphs H1 of Kn withH1 �= H (ea
h repeated aut(H) times).We may assume that H is a subgraph of Kn. Then, using (4.7),b (H; t) = E (G(t))Sn(H; t)E(Sn(H; t))2 = E� (G(t))Qe2H(Ie � t)�aut(H)(t(1� t))e(H) == 1aut(H) t�e(H)(1� t)�e(H)XA E�YA(t)Ye2H(Ie � t)�; (4.18)and, summing over F without isolated verti
es,E�YA(t)Ye2H(Ie � t)� = EYA(t)�E Ie(Ie � t)E Ie �e(H\A)�E(1� aIe)(Ie � t))E(1� aIe) �e(HnA)= EYA(t)(1 � t)e(H\A)��at(1� t)1� at �e(H)�e(H\A)= EYA(t)(1 � t)e(H)�1� at�at �e(H\A)�e(H)= EYA(t)(1 � t)e(H)�1� at�at ��e(H) XF�A\H� 1�at�e(F ):



15Consequently, with F ranging over the 2e(H) subgraphs of H without isolated verti
es,b (H; t) = 1autH EX(t)N (�a)e(H)(1� at)�e(H) XF�H�� 1at�e(F )N(F )= 1autH EX(t)(1 � at)�e(H)(�a)e(H) XF�H(�at)�e(F )
(F ): (4.19)In parti
ular, 
hoosing H = P2 we have 4 
hoi
es of F , namely P2, K2 (twi
e) and theempty graph. Hen
e, using ap = 
1 = 
(K2) and our assumptions on 
2 = 
(P2) and t,b (P2; t) = 12 EX(t)(1 � at)�2a2�1� 2at
(K2) + 1(at)2 
(P2)�:= 12 EX(t)(1 � at)�2p�2
21�1� 2pt + p2t2 
2
21 �= 12 EX(t) 1n2p2 (� + o(1)): (4.20)The varian
e of the P2 term in (4.17) is thusb (P2; t)2VarSn(P2; t) = 14(EX(t))2 1n4p4 (�2 + o(1)) � 2(n)3t2(1� t)2= (EX(t))2(�2 + o(1)) (1 � p)22np2 : (4.21)Moreover, it follows easily from (4.8) that EX(t) � EX(p) for the t that we 
onsider.Consider �rst the 
ase p� n�1=2 (Theorem 5), and de�ne� = n�1=2p�1 EX(p): (4.22)Comparing (4.21) with (4.15), we then see, sin
e the de
omposition (4.17) is orthogonaland thus VarX(t) � Var( b (P2; t)Sn(P2; t)), that equality holds in (4.15), whi
h now maybe written VarX(t) = � 12�2(1� �)2 + o(1)� �2: (4.23)Moreover, the varian
e of the remaining terms in (4.17) is o(�2). Thus, using the ter-minology of [4℄, and ex
epting the degnerate 
ase � = 0, X(t) is dominated by P2. Inparti
ular b �(H; t) = o(�) for every H 6= P2.It follows by [4, Theorem 2 or 3℄, and trivially when � = 0, that�X(p)� EX(p)�=� d�! N�0; 12�2(1� �)2�: (4.24)In the 
ase p � 2
n�1=2 (Theorem 8), we, more generally, have to 
onsiderH = kP2; k � 1.For su
h H, if F is a subgraph of H without isolated verti
es, then F �= iP2 + jK2 forsome i and j, and by the assumption (4.1),(�a)e(H)(�at)�e(F )
(F ) = �pt �e(F )p�e(H)(�
1)e(H)�e(F )
(F )= (1 + o(1))p�2k(�
1)2k�2i�j
i2
j1: (4.25)



16It follows by (4.19), sin
e ea
h of the k 
omponents in H may 
ontribute a P2, a K2 (intwo ways) or nothing to F , thatb (kP2; t)=EX(t) = 12kk!XF p�2k(�1)j
2k�2i1 
i2 + o(n�2kp�2k)= p�2k2kk! (
2 � 2
21 + 
21)k + o(n�2kp�2k)= n�2kp�2k� �k2kk! + o(1)�: (4.26)In this 
ase we de�ne � = EX(p)and obtain b �(kP2; t)=� = n3k=2pk b (kP2; t)=� ! 1k!� �4
�k: (4.27)By 
omputing the 
ontribution of the kP2 terms in (4.17) to the varian
e of X(t), weobtain lim inf Var(X(t))=�2 � 1Xk=1 lim j b �(kP2; t)=�j2 aut(kP2)= 1Xk=1(k!)�2� �4
�2k2kk! = exp� �28
2 �� 1: (4.28)Thus equality holds in (4.16). Moreover, if � 6= 0, [4, Proposition 4.7℄ shows that X(p) isalmost �nitely dominated by fkP2g1k=1, and [4, Theorem 2℄ then yields�X(p)� EX(p)�=� d�! 1Xk=1 1k!� �4
�k :U(P2; 1)k := exp� �4
U(P2; 1)� 12� �4
�2VarU(P2; 1)� � 1;with U(P2; 1) � N(0; 2), and thusX(p)=� d�! LN(� �216
2 ; �28
2 ): (4.29)(When � = 0, this is trivial by (4.16).)We now apply [4, Theorem 9(i) (or (iii), (iv))℄, whi
h shows that  (Gnm) has the sameasymptoti
 distribution (4.24) or (4.29) as X(p), provided that furthermoreVar(�(t)) = o(n2�2=p); (4.30)where �(t) is the drift of X(t), see [4℄. Sin
e (Gnm)=EX(p) = '(Gnm)(1 � a)m��=Np�(1� ap)(n2)��; (4.31)easy 
al
ulations then yield (3.13) and (4.4).



17It remains to prove (4.30). By [4, Proposition 2.8℄,�(t) = (1� t)�1Xe �X(t)�Ie (1� Ie(t)) = (1� t)�1Xe XA �YA(t)�Ie (1� Ie(t)); (4.32)where YA(t) is as in (4.7) and the derivatives are interpreted formally. In other words,�(t) = (1� t)�1 XA2AXe YA;e(t); (4.33)where YA;e(t) is obtained from YA(t) by repla
ing the fa
tor Ie(t) by 1 � Ie(t) if e 2 A,and repla
ing 1� aIe(t) by �a(1� Ie(t)) if e =2 A. Hen
e,E �2(t) = (1� t)�2 XA1;A2 Xe1;e2E(YA1;e1YA2;e2): (4.34)By the independen
e of Ie(t) in Gn(t), we easily obtain
E(YA1e1YA2e2)EYA1YA2 =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
1�tt e1 = e2 2 A1 \A2�a(1�t)t(1�a) e1 = e2 2 (A1 n A2) [ (A2 nA1)a2(1�t)1�t+t(1�a)2 e1 = e2 2 A
1 \A
20 e1 6= e2 and e1 2 A2 or e2 2 A1( 1�tt(1�a) )2 e1 2 A1 nA2; e2 2 A2 n A11�tt(1�a) � �a(1�t)1�t+t(1�a)2 e1 2 A1 nA2; e2 2 A
1 \A
2 or 
onversely( �a(1�t)1�t+t(1�a)2 )2 e1; e2 2 A
1 \A
2; e1 6= e2and thus, 
ounting the number of di�erent terms and 
ompleting a square,Xe1;e2 E(YA1e1YA2e2)=E(YA1YA2)= e(A1 \A2)1� tt � 2e(A1 n A2)a(1� t)t(1� a)+ e(A
1 \A
2)� a2(1� t)1� t+ t(1� a)2 � � a(1� t)1� t+ t(1� a)2�2�+�e(A1 n A2) 1� tt(1� a) � e(A
1 \A
2) a(1� t)1� t+ t(1� a)2�2� e(A1 \A2)1t + �n2�a2 +� �t(1� a) +O�e(A1 \A2)t �� �n2� a1� 2ta+ ta2 +O(�a)�2= O�1 + �e(A1 \A2)t �2 + n2a2 + �2a2 + ��t (1� 2ta+ ta2)� �n2�(a� a2)�2�= O�1 + �e(A1 \A2)t �2 + �2a2 + n4a4 + ��t ��n2� �m�2�= O�1 + �e(A1 \A2)t �2 + n4�4m4 + �2�1t � 1p�2�: (4.35)



18Using the assumptions � = O(n) and t = p+O(p1=2=n), this redu
es toO��e(A1 \A2)t �2 + 1t4� = O� 1t4 (1 + t)e(A1\A2)�:Consequently, E(�(t))2 = O�t�4 XA1;A2(1 + t)e(A1\A2) EYA1(t)YA2(t)�: (4.36)This sum, S say, is evaluated as in (4.9), the only di�eren
e being that the argument1�tt(1�a)2 = x of � is repla
ed by (1 + t)(1 + x)� 1 = x+ t+ xt = x+O(1). The argumentin (4.10){(4.14) now yieldslog S(EX(t))2 = �(x+O(1)) � �2�n2�x+ �3�n2�2 x2 +O� 1n2t3�� �22nx2 + o�x2n �+O(�1 + �2x)= O(1); (4.37)and thus S = O�(EX(t))2� = O(np2�2); (4.38)E(�(t))2 = O(p�4S) = O(np�2�2) = o(n2�2=p); (4.39)whi
h proves (4.30) and 
ompletes the proof. tuRemark 4.1. It is easy to give a dire
t proof of Theorem 6 using (4.15) in the weakversion VarX(p)(EX(p))2 ! 0 whi
h, by Chebyshev's inequality, yields X(p)=EX(p) p�! 1 andthus logX(p)� log EX(p) p�! 0:Sin
e X(p) =  (Gnp) = '(Gnp)(1 � a)e(Gnp)��, we havelog'(Gnp) = logX(p)� (e(Gnp)� �) log(1� a);and it follows easily thatp1=2�log'(Gnp)� log EX(p) + (�n2�p� �) log(1� a)� d�! N�0; 2�2(1� �)�;whi
h gives (3.32) by elementary 
al
ulations.Remark 4.2. Note that this proof gives an asymptoti
 distribution with normalizing
onstants derived from the mean and varian
e of  (Gnp), without 
aring about the a
tualmean and varian
e of '(Gnm) whi
h we have 
omputed separately.5. Proofs of Theorems 1{4In this se
tion we shall prove that the three variables 
onsidered in the introdu
tionsatisfy the 
onditions of Theorems 5{8, with the following parameters:f , spanning subtrees: 
1 = 2=n, 
2 = 3=n2 and thus � = �1; � = 1.g, Hamilton 
y
les: 
1 � 2=n, 
2 � 2=n2 and thus � = �2; � = 1.h, perfe
t mat
hings: 
1 � 1=n, 
2 = 0 and thus � = �1; � = 1=2.Theorems 1{4 then follow immediately from Theorems 5, 8(i), 7, 6 and 8(ii), respe
tively.The main problem is to verify (3.10), and we begin with a simple estimate.



19Lemma 5.1. If x; " > 0, and "2(x+ x3) is suÆ
iently small, then1Xk=0 xkk! e�"k2 = exp�x� "x� "x2 +O�"2(x+ x3)��: (5.1)If furthermore C <1 is �xed, then alsonXk=0 xkk! e�"k2+Ck3=n2 � exp�x� "x� "x2 +O�("2 + n�2)(x+ x3)��: (5.2)Proof. We have, with y = xe�2"x = x� 2"x2 +O("2x3),1Xk=0 xkk! e�"k2 =Xk xkk! e�2"kx�"(k�x)2+"x2 = e"x2Xk ykk! e�"(k�x)2= e"x2Xk ykk! �1� "(k � x)2 +O("2(k � x)4)�= e"x2+y�1� "(y + (y � x)2) +O�"2((y � x)4 + y2 + y)��= ex�"x2+O("2x3)�1� "x+O("2x2 + "2x+ "3x4 + "6x8)�: (5.3)Hen
e (5.1) follows by taking the logarithm, using "2x2 � "2(x+ x3) and "6x8 � �"2(x+x3)�3.For (5.2) we note that if ak = xkk! e�"k2+Ck3=n2 and k < n, then ak+1=ak < xke3C . Hen
eak+1=ak < e�1 if n � k � k0 = de3
+1xe, and Pnk0+2 logn+1 ak � (1 � e�1)�1n�2ak0+1 =O( xn2 ak0). Consequently, it suÆ
es to 
onsider the sum with k < k0 + 2 log n + 1. Ifx � logn, this implies Ck3=n2 = O(x3=n2), and (5.2) follows by (5.1). If x < logn; wehave k = O(log n) and thuseCk3=n2 � 1 + C1 k3n2 � 1 + C2 (k)3 + kn2 ;and again the result follows by (5.1) sin
e1Xk=1�1 + C2 (k)3 + kn2 �xkk! e�"k2 � �1 + C2x3 + xn2 � 1Xk=0 xkk! e�"k2 : tuSpanning subtrees. In this 
ase, the graphs H that appear in (2.2) are the forests. IfH is a forest with ji 
omponents with i verti
es, i = 2; 3; : : : , then
(H) =Yi � ini�1�ji (5.4)by a result of Moon [6℄. There are, for ea
h sequen
e j2; j3; : : : , with � = P12 iji � n,exa
tly (n)�Qi ji!Qi(i!)ji Yi (ii�2)ji = (n)�n� 1Yi=2� ii�2i! ni�ji 1ji! (5.5)



20su
h forest H � Kn, and thus�(x) =XH 
(H)2xe(H) =Xfjig (n)�n� 1Yi=2 1ji!� ii�2i! ni i2n2i�2�jixP ji(i�1)=Xfjig (n)�n� 1Yi=2 1ji!� iii!n2�ixi�1�ji : (5.6)We use the estimate(n)�n� = ��1Y1 �1� kn� � exp�� ��1X1 kn� = exp���(� � 1)2n � � exp��j2(2j2 � 1)n � (5.7)and obtain �nally, now summing over all sequen
es fjig of non-negative integers and usingLemma 5.1,�(x) �Xfjig e�j2(2j2�1)=n 1Yi=2 1ji!� iii!n2�ixi�1�ji= 1Xj2=0 ej2=n�2j22=n (2x)j2j2! 1Yi=3 1ji!� iii!n2�ixi�1�ji= exp�2xe1=n � 2n2xe1=n � 2n (2xe1=n)2 +O� 1n2 (x+ x3)�+ 1Xi=3 iii!n2�ixi�1�= exp�2x� 2nx� 8nx2 + 333! x2n +O�x+ x3n2 �� (5.8)for x � 0 with x3=n2 suÆ
iently small. Moreover, for the terms up to x2 in the Taylorexpanssion, the estimate above gives an error of at most O(n�2) in ea
h 
oeÆ
ient. Hen
e�(x) � exp��1x+ �2x2 +O�x+ x3n2 ��; (5.9)whi
h implies (3.10) for n�1 � x � Æn2=3 and (3.37) for x = o(1). The remaining
onditions in the theorems are immediately veri�ed. Note, in parti
ular, that
(iP2 + jK2) = 
(P2)i
(K2)jexa
tly, as soon as n � 3i+ 2j.Hamilton 
y
les. In this 
ase, the graphs H with N(H) 6= 0 are Cn itself and all unionsof disjoint paths. If H is a disjoint union of jl paths of length l, l = 1; 2; 3; : : : , thenN(H) = 12 (n�Pl ljl � 1)! 2P jl ;sin
e by 
ollapsing ea
h 
omponent in H to a single vertex, ea
h Hamilton 
y
le (in Kn)
ontaining H may be obtained from a Hamilton 
y
le in the smaller set by 
hoosing oneof two possible orientations for ea
h 
omponent in H; thus, with � =P ljl,
(H) = 2P jl=(n� 1)�: (5.10)



21Given j1; j2; : : : with � =P(l + 1)jl � n, there are(n)�Ql jl!Ql(l!)jl Yl ( 12 l!)jl = (n)�Ql jl! 2�P jl (5.11)su
h graphs H � Kn. Finally, there are N = 12 (n � 1)! 
hoi
es of H �= Cn, ea
h havingN(H) = 1 and 
(H) = 1=N . Consequently,�(x) =Xfjlg (n)�((n� 1)�)2 Yl 2jljl! x� + 2(n� 1)!xn: (5.12)We use the estimate(n)�((n� 1)�)2 = n2(n)�((n)�+1)2= n2+��2(�+1) exp���(� � 1)2n + 2(�+ 1)�2n +O��3n2 + �3n2��= n��2� exp�� (2j1 + 3j2)(2j1 + 3j2 � 1)2n + 2(j1 + 2j2 + 1)(j1 + 2j2)2n+O� j31n2 + j32n2 + nX3 ljl��= n��2� exp��2j21 � 4j1j2 � j222n + 2j1n + 7j22n +O� j31n2 + j32n2 + nX3 ljl�� (5.13)and obtain, for some C <1, using Lemma 5.1, when x3=n2 is suÆ
iently small,�(x) �Xfjlg exp� 2nj1 � j21n + C j31n2 + 72nj2 + C j32n2 + nX3 Cljl�Yl 1jl! 2jlxljln(1�l)jl� n=2Xj1=0 1j1!�2xe2=n�j1e�j21=n+Cj31=n2 n=3Xj2=0 1j2!�2x2n e7=2n�j2eCj32=n2 1Yl=3 1Xjl=0 1jl!�2eClxln1�l�jl� exp�2e2=nx(1� 1n)� 1n (2e2=nx)2 + 2ne7=2nx2 + 1Xi=3 2n�eCxn �l +O�n�2(x+ x3)��= exp�(2 + 2n)x� 2nx2 +O�x+ x3n2 ��: (5.14)(The term 2(n�1)!xn is negligible and may be in
orporated in e.g. the term with j1 = 1,j2 = � � � = 0, without altering the estimates.)Again, the estimates have errors at most O(n�2) for the Taylor 
oeÆ
ients up to x2,and the result may be written�(x) � exp��1x+ �2x2 +O�x+ x3n2 ��; 0 � x � Æn2=3: (5.15)The 
onditions in Theorems 5{8 follow.



22Perfe
t Mat
hings. We only have to 
onsider H = jK2, for whi
h
(jK2) = 1n� 1 � 1n� 3 � : : : � 1n� 2j + 1 : (5.16)Hen
e �(x) = n=2Xj=0 (n)2j2jj! 
(jK2)2xj = n=2Xj=0 1j!�x2�j j�1Yi=0 n� 2in� 2i� 1 : (5.17)Denote this produ
t by bj . If j � n=4 we have, for 0 � i < j,n� 2in� 2i� 1 = nn� 1�1 + 2in(n� 2i� 1)� � nn� 1 exp� 4in2�and thusbj � � nn� 1�j exp�j�1Xk=0 4in2� = � nn� 1�j exp�2j(j � 1)n2 � � � nn� 1�j�1 + 3j(j � 1)n2 �;if n=4 < j � n=2 we have, for large n,bj = nn� 2j + 1 j�1Y1 n� 2in� 2i+ 1 < n � 64 j3n2 � 65(j)3n2 :Consequently, for x � 0 and n large,�(x) � 1Xj=0 1j!�x2�j� nn� 1�j�1 + 3(j)2n2 + 65(j)3n2 �= exp� n2(n� 1)x��1 + 3(n� 1)2�x2�2 + 65n(n� 1)3�x2�3�= exp� n2(n� 1)x+O�x2 + x3n2 ��; (5.18)or �(x) � exp��1x+ �2x2 +O�x2 + x3n2 ��; (5.19)where �1 = n=2(n� 1), �2 = O(n�2). Hen
e the 
onditions of Theorems 5{8 are satis�edin this 
ase as well. 6. Other random graphsThe results and proofs above hold with minor 
hanges also for several other randomgraph models. We 
onsider here two 
ases, omitting the detailed veri�
ations that thearguments above and in the relevant parts of [4℄ still are valid.Dire
ted graphs. Let Dnm be the random digraph without loops with n (labelled) ver-ti
es and m edges drawn without repla
ement from the n(n� 1) possible edges. Similarly,let Dnp be the random digraph without loops with n verti
es where ea
h edge appearswith probability p, independently of all others.



23We now assume that eA is a set of unlabelled digraphs, and argue as above. Thereare two di�eren
es from the undire
ted 
ase. First, �n2� has to be repla
ed by n(n � 1)everywhere, whi
h leads to new fa
tors 12 in some 
onstants in the asymptoti
 results.Se
ondly, in formulas as (3.2) and (4.17), we should sum over digraphs H. This makesno essential di�eren
e for the K2-terms, if we interpret K2 as a dire
ted edge, but P2 isrepla
ed by three di�erent digraphs P2i, i = 0;+;�.��!��!� � ���!� ��!� ��P20 P2+ P2�There is also a fourth 
onne
ted digraph with two edges, namely the 
y
le C2 with twoverti
es.Let 
1 = 
(K2) = �=n(n � 1) and de�ne, as before, �1 and �2 by (3.7). (Note that(3.8) and (3.9) have to be modi�ed.) Then the following analogue of Theorem 5 holds.Theorem 9. Suppose that n!1 and � = O(n), that n2(
(P2i)� 
21)! �i 2 (�1;1)for i = 0;+;�, that 
(C2) = O(n�2), and that for every sequen
e x = xn with n�1 �x� n1=2, �(x) � exp��1x+ �2x2 + o�x2n ��: (6.1)If m� n3=2 and n(n� 1)�m� n then, with p = m=n(n� 1),E'(Dnm) = Np� exp�� �22m (1� p) +O�(1� p) n3m2��; (6.2)Var'(Dnm) = ��2 + o(1)�(1� p)2 n3m2 �E'(Dnm)�2 (6.3)and (1� p)�1 mn3=2�'(Dnm)�Np� exp�� �22m (1� p)�� 1� d�! N�0; �2�; (6.4)where �2 = �20 + 12�2+ + 12 �2�: (6.5)If furthermore �2 > 0, the standardized variable '(Dnm)� 
onverges in distribution to thestandard normal distribution. tuIn the proof, we let Yi be the number of P2i in Dnm; then Y �0 , Y �+ and Y �� 
onvergejointly to three independent standard normal distributions. The formula in Remark 3.2 isrepla
ed by n1=2p(1� p)�1(EX)�1(X � EX) � �0Y �0 + 1p2�+Y �+ + 1p2��Y ��: (6.6)Theorems 6{8 are valid for digraphs if we repla
e �2=n2 by �2=2n2 in (3.32) and (4.5);�2 by 12�2 in (3.32), (3.38), (4.2) and (4.5); �2=8 by �2 in (4.3) and (4.4); and allowdi�erent P2i in (4.1).For example, if g(D) denotes the number of dire
ted Hamilton 
y
les in D, we haveN = (n � 1)!, � = n, 
1 = 1=(n � 1), 
(P20) = n=(n)3 = 1=(n � 1)(n � 2), 
(P2+) =
(P2�) = 0, 
(C2) = 0, �0 = 1� 1 = 0, �+ = �� = �1 and �2 = 1. We 
an verify (6.1) asin Se
tion 5 and obtain the following.



24Theorem 10. Assume that n!1 and let p = m=n(n� 1).(i) If m� n3=2 and n(n� 1)�m� n, thenE g(Dnm) = (n� 1)! pn exp��1� p2p +O�(1� p) n3m2�� ; (6.7)Var g(Dnm) � (1� p)2 n3m2 �E g(Dnm)�2 (6.8)and g(Dnm)� d�! N(0; 1): (6.9)(ii) If m=n3=2 ! 
 > 0, thenE g(Dnm) � (n� 1)! pn exp��1� p2p � 16
2 �; (6.10)Var g(Dnm) � (e1=
2 � 1)�E g(Dnm)�2 (6.11)and g(Dnm)=E g(Dnm) d�! LN�� 12
2 ; 1
2 �: (6.12)tuTheorem 11. Assume that n!1 and p! � � 1. ThenE g(Dnp) = (n� 1)! pn: (6.13)(i) If � = 1 and 1� p� n�2, thenVar g(Dnp) � (1� p)�E g(Dnp)�2; (6.14)g(Dnp)� ! N(0; 1): (6.15)(ii) If 0 � � < 1 and lim inf pn1=2 > 0, thenp1=2 �log g(Dnp)� log�E g(Dnp)�+ 1� p2p � d�! N(0; 1 � �): (6.16)tuIf we 
onsider several variables, we 
an obtain multivariate normal limits of rank 1, 2or 3. For example, let h as before denote the number of perfe
t mat
hings (for even n),whi
h has � = n=2, 
1 = 1=2(n � 1), 
(P20) = 
(P2+) = 
(P2�) = 
(C2) = 0, �0 = �+ =�� = � 14 and �2 = 18 . We verify (6.1) as in Se
tion 5; in fa
t �(x) = �undire
ted(x=2),where the latter is given by (5.17). If n!1, m� n3=2 and n(n� 1)�m� n, we haveby (6.6) after standardization,g(Dnm)� � � 1p2Y �+ � 1p2Y ��; (6.17)h(Dnm)� � � 1p2Y �0 � 12Y �+ � 12Y ��; (6.18)hen
e these standardized variables 
onverge jointly to two standard normal variables with
orrelation 0 � 1p2 + 1p2 � 12 + 1p2 � 12 = 1p2 .



25Let us now 
onsider digraphs with loops, and let D0nm and D0np denote the randomdigraphs de�ned as Dnm and Dnp but allowing loops. The situation is now more 
om-pli
ated, sin
e there is a further 
onne
ted digraph with one edge, viz. the loop C1, andseveral more digraphs with two edges. We therefore 
onsider only the 
ase when we 
ountthe number of some loopless subgraphs, i.e. when eA is a set of digraphs without loops.In this 
ase, we 
an ignore all loops in the random graph and use the results above fordigraphs without loops. Note in parti
ular that �(x), and thus 
ondition (6.1), do notdepend on whether we 
onsider digraphs with loops or without.For D0np we obtain Dnp by deleting all loops. Hen
e the results above for Dnp are validfor D0np as well.For D0nm, we have a random numberM of non-loops, but 
onditioned on M , the graphobtained by deleting all loops may be regarded as DnM . Here M has a hypergeometri
distribution with parameters n2, n2 � n and m; thus M is asymptoti
ally normal andVarM � p(1 � p)n, where p = m=n2. An argument similar to the one in the proof ofTheorem 6 gives the asymptoti
 distribution, but it now depends on p whether the extravariation 
aused by the variation in M dominates the variation of '(DnM ) for a �xedM � m(1� 1n ) or not.A simple 
al
ulation shows that if p ! 0, then the variation of '(DnM ) dominatesand we obtain the same results as before; if p ! 1, the variation in M dominates (aswas the 
ase in Theorem 6); if p ! � 2 (0; 1), both variations are of the same order andhave to be 
ombined in the �nal result. The expe
tation and varian
e of '(D0nm) are
omputed as in (3.19){(3.25); the only signi�
ant di�eren
e is that in (3.25), the terms�2(1 � p)=m = �2(1 � p)=pn2 and �1(1 � p)=p = �2(1 � p)=pn(n � 1) no longer 
an
elexa
tly, whi
h leads to an extra term in the varian
e estimate (whi
h is negligible if p! 0).We omit the details, but state the resulting version of Theorem 9.Theorem 12. Suppose that n!1 and �=n! �, that n2(
(P2i)� 
21)! �i 2 (�1;1)for i = 0;+;�, that 
(C2) = O(n�2), and that for every sequen
e x = xn with n�1 �x� n1=2, (6.1) holds. If m� n3=2, n2 �m� n and p = m=n2 ! � � 0, thenE'(D0nm) = Np� exp�� �22m (1� p) +O�(1� p) n3m2��; (6.19)Var'(D0nm) = �(1� �)�2 + ��2 + o(1)�(1� p) n3m2 �E'(D0nm)�2 (6.20)and(1�p)�1=2 mn3=2�'(D0nm)�Np� exp�� �22m (1�p)��1� d�! N�0; (1��)�2+��2�; (6.21)where �2 is given by (6.5). If furthermore �2 > 0, or if �2 = 0, � > 0 and � > 0, then thestandardized variable '(D0nm)� 
onverges in distribution to a standard normal distribution.tuTheorems 6{8 are valid for random digraphs with loops with the same modi�
ations asfor digraphs without loops.For example, for the number of dire
ted Hamilton 
y
les we have �2 = 1 and � = 1,whi
h gives the following. (A weaker version of the varian
e estimate (6.23) is given in[2℄.)Theorem 13. Assume that n ! 1, m � n3=2 and n2 � m � n, and let p = m=n2.



26Then E g(D0nm) = (n� 1)! pn exp��1� p2p +O�(1� p) n3m2�� ; (6.22)Var g(D0nm) � (1� p) n3m2 �E g(D0nm)�2 (6.23)and g(D0nm)� d�! N(0; 1): (6.24)tuThe results in Theorem 10(ii) and Theorem 11 remain valid for D0nm and D0np.As a further example, we observe that Theorem 12 implies that, for m as above and neven, Var h(D0nm) � 18 (1+p)(1�p)n3m�2, sin
e �2 = 18 and � = 12 . Moreover, (6.21) maybe generalized to ve
tor-valued variables. For example, if m is as above, then, by (6.6),(1� p)�1 mn3=2� g(Dnm)E g(Dnm) � 1; h(Dnm)Eh(Dnm) � 1� d�! N(0;�); (6.25)with 
ovarian
e matrix �11 = 1, �12 = 14 , �22 = 18 . Hen
e, if furthermore p! � � 1, then(1� p)�1=2 mn3=2� g(D0nm)E g(D0nm) � 1; h(D0nm)Eh(D0nm) � 1� d�! N(0;�0); (6.26)with 
ovarian
e matrix �011 = (1 � �) + � = 1, �012 = (1 � �) 14 + � 12 = (1 + �)=4,�022 = (1 � �) 18 + � 14 = (1 + �)=8. In parti
ular, g(D0nm)� and h(D0nm)� 
onverge jointlyto two normal variables with 
orrelation 1+�4 Æq 1+�8 =q 1+�2 .Bipartite graphs. We 
onsider bipartite graphs with an expli
it bipartition, i.e. graphswhose vertex set is partitioned into two subsets, whi
h we assume are 
oloured white andbla
k, su
h that no edge joins two verti
es of the same 
olour.For simpli
ity we 
onsider only random bipartite graphs with equally many verti
es ofea
h 
olour, although at least the 
ase when the numbers are within a 
onstant of ea
hother presents no further diÆ
ulties.Thus, let Bnm be the random bipartite graph with 2n labelled verti
es, n white and nbla
k, and m edges drawn without repla
ement from the n2 possible edges. Similarly, letBnp be the random bipartite graph with n + n verti
es and edges drawn independentlywith probability p.We now assume that eA is a set of bipartite graphs. In the arguments above, �n2� hasto be repla
ed by n2 everywhere, whi
h again leads to new fa
tors 12 in some 
onstants.Moreover, we should sum over bipartite graphs H. Thus P2 should be repla
ed by twodi�erent bipartite graphs, with the middle vertex white and bla
k, respe
tively, but if werestri
t ourselves to sets eA that are invariant under 
olour inversion, the two terms maybe 
ombined into one and we may pro
eed as before.Hen
e, for 
olour symmetri
 eA, Theorems 5{8 are valid for bipartite graphs if we repla
e�n2� by n2, in parti
ular p = m=n2 in Theorem 5; �2=8 by �2 in (3.12), (3.13), (4.3) and(4.4); �2=n2 by �2=2n2 in (3.32) and (4.5); �2 by 12�2 in (3.32), (3.38), (4.2) and (4.5);and allow di�erent 
olourings of the P2 in (4.1).For example, for the number of perfe
t mat
hings we have N = n!, � = n, 
1 = 1=n,
2 = 0, � = �1, � = 1. Furthermore,�(x) = nXj=0�nj��nj�j! 
(jK2)2xj = nXj=0 xjj! � exp(x); (6.27)whi
h veri�es (6.1) with �1 = 1 and �2 = 0. This gives the following results.



27Theorem 14. Assume that n!1 and let p = m=n2.(i) If m� n3=2 and n2 �m� n, thenEh(Bnm) = n! pn exp��1� p2p +O�(1� p) n3m2�� ; (6.28)Var h(Bnm) � (1� p)2 n3m2 �Eh(Bnm)�2 (6.29)and h(Bnm)� d�! N(0; 1): (6.30)(ii) If m=n3=2 ! 
 > 0, thenEh(Bnm) � n! pn exp��1� p2p � 16
2 �; (6.31)Var h(Bnm) � (e1=
2 � 1)�Eh(Bnm)�2 (6.32)and h(Bnm)=Eh(Bnm) d�! LN�� 12
2 ; 1
2 �: (6.33)tuTheorem 15. Assume that n!1 and p! � � 1. ThenEh(Bnp) = n! pn: (6.34)(i) If � = 1 and 1� p� n�2, thenVar h(Bnp) � (1� p)�Eh(Bnp)�2; (6.35)h(Bnp)� ! N(0; 1): (6.36)(ii) If 0 � � < 1 and lim inf pn1=2 > 0, thenp1=2�log h(Bnp)� log�Eh(Bnp)�+ 1� p2p � d�! N(0; 1� �): (6.37)tuThese theorems 
an also be interpreted as asymptoti
 results for the permanent of arandom 0{1 matrix. A weaker version of the varian
e estimate (6.29) is given in [5℄.Referen
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