
THE NUMBERS OF SPANNING TREES, HAMILTON CYCLESAND PERFECT MATCHINGS IN A RANDOM GRAPHSvante JansonAbstrat. The numbers of spanning trees, Hamilton yles and perfet mathings in arandom graph Gnm are shown to be asymptotially normal if m is neither too large nor toosmall. At the lower limit m � n3=2, these numbers are asymptotially log-normal. For Gnp,the numbers are asymptotially log-normal for a wide range of p, inluding p onstant.The same results are obtained for random direted graphs and bipartite graphs.The results are proved using deomposition and projetion methods.Introdution and resultsThe number of small subgraphs of a given kind of a random graph has been studied bymany authors. Typial results are that for both standard models Gnp and Gnm of randomgraphs, for wide ranges of p and m, the number of subgraphs isomorphi to a �xed graphis asymptotially normally distributed as n!1, see for example [7℄, [4℄.In this paper we will study some examples of large subgraphs. More preisely, we willstudy three examples of subgraph ounts in Gnp and Gnm where the subgraphs have nverties and � n edges. The results in these ases are rather di�erent from the resultsfor small subgraphs; the asymptoti distribution is still normal for Gnm but log-normalfor Gnp, provided the edge density is neither too small nor too big. For a smaller edgedensity, m � n3=2, we �nd asymptoti log-normal distributions also for Gnm.In order to state the results smoothly, we let f(G), g(G) and h(G) denote the numbersof spanning subtrees, Hamilton yles and perfet mathings in a graph G. We assumetaitly that n is restrited to be even whenever we onsider h(Gnm) or h(Gnp), sineh(G) = 0 when the order of G is odd.For a random variableX (with positive, �nite variane) let X� = (X�EX)=(VarX)1=2denote its standardization. We write a� b when a and b are positive and a=b! 0.Theorem 1. Assume that n ! 1, m� n3=2 and �n2��m � n. Then the standardizedvariables f(Gnm)�, g(Gnm)� and h(Gnm)� onverge in distribution to a standard normaldistribution.Moreover, with p = m=�n2�, we haveE f(Gnm) = nn�2pn�1 exp��1� pp +O�(1� p) n3m2�� ; (1.1)Var f(Gnm) � n38m2 (1� p)2�E f(Gnm)�2; (1.2)E g(Gnm) = 12 (n� 1)! pn exp��1� pp +O�(1� p) n3m2�� ; (1.3)Var g(Gnm) � n32m2 (1� p)2�E g(Gnm)�2; (1.4)Typeset by AMS-TEX1



2 Eh(Gnm) = (n� 1)!! pn=2 exp��1� p4p +O�(1� p) n3m2�� ; (1.5)Var h(Gnm) � n38m2 (1� p)2�Eh(Gnm)�2: (1.6)If furthermore m=�n2�! � � 0, thenmn3=2 �f(Gnm)=(nn�2pn�1e�(1�p)=p)� 1� d�! N�0; 18 (1� �)2�; (1.7)mn3=2 �g(Gnm)=( 12 (n� 1)! pne�(1�p)=p)� 1� d�! N�0; 12 (1� �)2�; (1.8)mn3=2 �h(Gnm)=((n� 1)!! pn=2e�(1�p)=4p)� 1� d�! N�0; 18 (1� �)2�: (1.9)We do not know whether the upper bound for m, namely �n2��m� n, is neessary forthe onlusions of Theorem 1; in fat, it seems likely that asymptoti normality holds assoon as �n2��m� n1=2, but we will not investigate this ase any further here.On the other hand, the lower bound m � n3=2 is indeed neessary, and we have thefollowing result for the limiting ase, whih shows that the asymptoti distribution thenis log-normal. We write X � LN(�; �2) when logX � N(�; �2).Theorem 2. Assume that n!1 and m=n3=2 !  > 0. Then, with p = m=�n2�,E f(Gnm) � nn�2pn�1 exp��1� pp � 162 �; (1.10)Var f(Gnm) � (e1=82 � 1)�E f(Gnm)�2; (1.11)E g(Gnm) � 12 (n� 1)! pn exp��1� pp � 162 �; (1.12)Var g(Gnm) � (e1=22 � 1)�E g(Gnm)�2; (1.13)Eh(Gnm) � (n� 1)!! pn=2 exp��1� p4p � 1482 �; (1.14)Var h(Gnm) � (e1=82 � 1)�Eh(Gnm)�2; (1.15)and f(Gnm)=E f(Gnm) d�! LN�� 1162 ; 182 �; (1.16)g(Gnm)=E g(Gnm) d�! LN�� 142 ; 122 �; (1.17)h(Gnm)=E h(Gnm) d�! LN�� 1162 ; 182 �: (1.18)For Gnp we obtain asymptoti normality only when p! 1; for smaller p we have againa log-normal distribution.Theorem 3. Assume that n ! 1, p ! 1 and 1 � p � n�2. Then the standardizedvariables f(Gnp)�, g(Gnp)� and h(Gnp)� onverge in distribution to the standard normal



3distribution. Moreover, E f(Gnp) = nn�2pn�1; (1.19)Var f(Gnp) � 2(1� p)�E f(Gnp)�2; (1.20)E g(Gnp) = 12 (n� 1)! pn; (1.21)Var g(Gnp) � 2(1� p)�E g(Gnp)�2; (1.22)Eh(Gnp) = (n� 1)!! pn=2; (1.23)Var h(Gnp) � 12 (1� p)�E h(Gnp)�2: (1.24)Theorem 4. Assume that n!1, p! � < 1 and lim inf pn1=2 > 0. Then (1.19), (1.21),(1.23) hold as above, andp1=2�log f(Gnp)� log�E f(Gnp)�+ 1� pp � d�! N�0; 2(1 � �)�; (1.25)p1=2�log g(Gnp)� log�E g(Gnp)�+ 1� pp � d�! N�0; 2(1 � �)�; (1.26)p1=2�log h(Gnp)� log�Eh(Gnp)�+ 1� p4p � d�! N�0; 12 (1� �)�: (1.27)Remark 1.1. The results in Theorem 2 and in Theorem 4 for onstant pmay be written aslogX�a d�! N(0; �2) without saling, where X is the random variable under onsiderationand a = a(n) and �2 are suitable onstants. Equivalently, X=ea d�! LN(0; �2). On theother hand, if p ! 0 in Theorem 4, it is neessary to sale logX to get onvergene:(logX � a)=b d�! N(0; �2), whih translates to (X=ea)1=b d�! LN(0; �2), with b!1. Note�nally that the asymptoti normality in Theorems 1 and 3 also may be written(logX � a)=b d�! N(0; �2);where now b! 0.Remark 1.2. Let p! 0, with p� n�1=2. The distribution of log f(Gnp) is onentratedat log E(f(Gnp))�(1�p)=p+O(p�1=2), whih is below log E(f(Gnp)). Hene the distribu-tion of f(Gnp) is onentrated way below its expetation; in partiular, f(Gnp)=E f(Gnp)p�! 0. This may look surprising at �rst sight, but it is atually a natural onsequene of thelarge tail of a log-normal distribution. For example, by (1.25), the distribution of f(Gnp)is well approximated by LN(log E f(Gnp) � 1�pp ; 2 1�pp ), whih has the same expetationas f(Gnp), but is onentrated at substantially lower values.Remark 1.3. Sine (1.25){(1.27) hold if pn1=2 ! , for every �xed  > 0, a simpleompatness argument shows that they hold also if pn1=2 ! 0 suÆiently slowly. Similarly,if we rewrite (1.13){(1.15) asmn3=2�log f(Gnm)� log�E f(Gnm)�+ n316m2 �! N(0; 18 ); (1.28)et., they hold also when m=n3=2 ! 0 slowly. (By Theorem 1, (1.28) et. hold also whenm=n3=2 !1 with m=�n2�! 0.)



4 We do not know how small p and m an be for these results to hold; it is possible thatthe asymptoti log-normality extends all the way down to the thresholds for the variablesto be non-zero, whih are at p � logn=n and m � 12n logn, see [1℄.Remark 1.4. It follows from the proofs below that the standardized variables f(Gnm)�,g(Gnm)� and h(Gnm)� in Theorem 1 onverge jointly to the same normal variable; thusf(Gnm), g(Gnm) and h(Gnm) are approximatively linear funtions of eah other. Similarresults hold for joint onvergene in Theorems 2{4.After an informal disussion in Setion 2, we prove generalizations of the results abovein Setions 3 and 4, whih together with some ombinatorial estimates derived in Setion5 prove the theorems above.In Setion 6, �nally, we give extensions to random direted graphs and bipartite graphs.2. Some omments and heuristisIf we ompare the results above for Gnm and Gnp with p � m=�n2�, we see that thevariables vary on a larger sale for Gnp. In other words, the variation in f(Gnp), say, giventhe atual number of edges e(Gnp), is negligible ompared with the variation aused bythe ututation in the number of edges. Hene f(Gnp) is asymptotially like a funtionof e(Gnp), whih is asymptotially normal. (See the proof of Theorem 6 for details.) Onemight think that this would yield asymptoti normality for f(Gnp), as it does for smallsubgraphs, but that is true only when p! 1; in the situation of Theorem 4, it turns outthat we get a log-normal distribution beause E(f(Gnp) j e(Gnp) = m) = Ef (Gnm) growsrapidly with the number of edges m, or, equivalently, that E f(Gnp) = nn�2pn growsrapidly with p.We have no similar, simple explanation for the emergene of asymptoti log-normaldistributions for Gnm in Theorem 2, but note that in this ase we have VarX � (EX)2for our variables. This means that we have a natural end-point for the normal phase, sinethen X� � �EX=(VarX)1=2 is uniformly bounded below, and thus X� d�! N(0; 1) annothold.It is instrutive to study the asymptotis of, say, f(Gnp) and f(Gnm) using the deom-position in [4℄. Using the notation there, the deomposition may be written asf(Gnp) =XH bf(H; p)Sn(H; p) (2.1)and it is easily seen (f. the alulations in Setion 4 below or [4, Example 12.2℄), thatbf(H; p) vanishes unless H is a forest and that if H is a forest with omponents of or-ders v1; : : : ; vr, then bf(H; p) � (Ef )Q(np)1�vi and thus the normalized versions satisftbf�(H; p) � Ef Qn1�vi=2p(1�vi)=2.If p is onstant, then bf�(H; p) � Ef for all H = kK2, i.e. when H onsists of isolatededges, while all other bf�(H; p) are smaller. It follows that f(Gnp) an be approximatedby P1k=0 bf(kK2; p)Sn(kK2; p); moreover, Sn(kK2; p) an be approximated by a Hermitepolynomial in Sn(K2; p) and the sum may be approximated by1X0 Ef 1k!�21� pp �k=2hk(Sn(K2; p)�) = Ef exp��21� pp �1=2Sn(K2; p)� � 1� pp �; (2.2)whih gives (1.25), f. [4℄.



5If p! 0, then f�(kK2; p) � Ef p�k=2 is (asymptotially) larger the larger k is. In thisase, eah single term in the expansion (2.1) is negligible ompared with the others, andwe do not know how to make the argument above rigorous. It is, nevertheless, temptingto use the same approximations and arrive again at the approximation (2.2), whih wouldimply (1.25) if the error ould be ontrolled.This is not only an heuristial motivation for the log-normal limits in Theorem 4 (withthe proper saling); it also suggests a method for proving them. Realling that Sn(K2; p)and Sn(K2; p)� are linear funtions of e(Gnp), onsider instead of f(G) the modi�ed vari-able  (G) = e�ae(G)f(G); (2.3)where a is a suitable onstant (depending on n and p) suh that the approximation (2.2)of f(Gnp) is equivalent to  (Gnp) � Cn, for some onstants Cn. As we shall see later(Remark 4.1), this an be veri�ed by estimating the variane of  (Gnp), at least whenp� n�1=2; this is perhaps the simplest proof of (1.25).Turning to Gnm, we use the heuristis from [4℄ that the asymptotis for Gnm usuallyare as for Gnp with p = m=�n2�, if we ignore all terms in (2.1) suh that H ontains anisolated edge. In our ase, if n�1=2 � p � 1, f�(P2; p) � Ef (np2)�1=2, while all otherf�(H; p), for H suh that every omponent of H has at least three verties, are smaller.This suggests that f(Gnm) has the same asymptotis as a linear funtion of Sn(P2; p),and thus is asymptotially normal. Moreover, if pn1=2 ! , we have f�(kP2; p) � Ef forevery k, and the heuristis suggests an approximating exponential sum similar to (2.2)(but with Sn(P2; p)� instead), whih would give a log-normal limit as in (1.16). We warmthe reader, however, that these onlusions are not ompletely orret; they happen togive the right qualitivative behaviour of f(Gnm), but the asymptoti varianes they giveare wrong, e.g. by a fator 9 for (1.7). (A loser examination shows that the error omesfrom replaing � i Theorem 5 below by limn22.)Again, we may make this argument rigorous (and obtain the orret varianes) byonsidering the modi�ed variable in (2.3). Note that the e�et of the modi�ation isquite di�erent for Gnm ompared to Gnp whih was studied above; sine e(Gnm) = mis onstant,  (Gnm) is just a onstant times f(Gnm) so limit results for one of themtrivially transfers to the other. On the other hand, as we will see later, the expansion(2.1) of  (Gnp) is dominated by the P2 term (when p � n�1=2), whih gives asymptotinormality of  (Gnp). Moreover, the modifying fator in (2.3) anels essentially the strongdependene of f(Gnp) on the number of edges present, whih enables us, by methods of [4℄,to onlude that  (Gnm) and  (Gnp) have the same asymptotis. We will prove Theorems1 and 2 by this method in Setion 4, leaving some ombinatorial estimates to Setion 5.The heuristis above suggest, however, a short-ut where Theorem 1 is proved withoutany of this mahinery. Noting that Sn(P2; p) is a linear funtion of the number of opies ofP2 in Gnp and e(Gnp), we see that ignoring all terms but the P2 term in (2.1), as suggestedabove, is equivalent to approximating  (Gnm) by a linear funtion of the number of opiesof P2 in Gnm. In the next setion, we shall prove that this an be done, with a negligibleerror, by simple moment estimates. This is very similar to the \�rst projetion method"to prove (normal) limits for Gnp, but has to our knowledge not been used before for Gnm.We �nally remark that these onsiderations also suggest a method to treat the asep� n�1=2. The argument above suggests an approximation  (Gnp) � C exp(bSn(P2; p)),for some onstants b and C, whih oneivably ould be proved by omputing the varianeof the modi�ed modi�ation e�aSn(K2;p)�bSn(P2;p)f(Gnp)



6for suitable a and b. (For small p one might add more terms in the exponent.) We havenot tried this approah. 3. A general resultSine most of the argument is the same for the three variables that we onsider, weshall state and prove a more general result whih will be used to prove Theorem 1.Suppose that we are given, for eah n, a set eA of unlabelled graphs with � n verties,and, for a graph G with n verties, let '(G) be the number of subgraphs of G that areisomorphi to some member in eA. We assume that all graphs in eA have the same number� of edges. We let A be the set of subgraphs of Kn (the omplete graph on the set ofverties where our random graphs live) that are isomorphi to some member of eA, andlet N = '(Kn) be the number of elements of A. (Note that eA; '; �;A; N as well as m,p and other quantities introdued below depend on n. A more areful notation would befAn; 'n; �n; : : : , but for simpliity we will omit the subsripts.)The three variables in Theorems 1{4 are evidently examples of suh ', and we have:f : eA = ftrees on n vertiesg, � = n� 1, N = nn�2;g : eA = fCng, � = n, N = 12nn! (n � 3);h : eA = fn2K2g (a graph onsisting of n=2 disjoint edges), � = n2 , N = (n� 1)!!.We further de�ne �(x) = 1N2 XA1;A22A(1 + x)e(A1\A2); (3.1)where e(G) denotes the number of edges in G.Let N(H) denote the number of elements of A that ontain a given subgraph H of Knand de�ne (H) = N(H)=N . Then, summing over all subgraphs H of Kn without isolatedverties,�(x) = 1N2 XA1;A2 XH�A1\A2 xe(H) = 1N2 XH N(H)2xe(H) =XH (H)2xe(H): (3.2)Sine N(H) and (H) depend on H only up to isomorphism, (3.2) yields, for small x and�xed n, �(x) = 1 +�n2�(K2)2x+� (n)32 (P2)2 + (n)48 (2K2)2�x2 +O(x3); (3.3)where K2 is an edge, P2 a path of length 2 and 2K2 onsists of two independent edges.Thus, using the shorthand 1 = (K2), 2 = (P2) and 3 = (2K2),log �(x) = 1 +�n2�21x+� (n)32 22 + (n)48 23 � 12�n2�241�x2 +O(x3): (3.4)By ounting the number of edges and pairs of edges in element of A, we have N� =�n2�N(K2), and N �(��1)2 = (n)32 N(P2) + (n)48 N(2K2), and thus1 = �=�n2�; (3.5)3 = 4(n)4 (�(�� 1)� (n)32): (3.6)Substitution of this into (3.4) yields, after simpli�ations, the following.



7Lemma 3.1. With the notations above, log �(x) has the Taylor expansionlog �(x) = �1x+ �2x2 +O(x3); jxj < 1; (3.7)with �1 = �2�n2� (3.8)�2 = n+ 1n� 3 (n)32 22 � 4n� 3�(�� 1)2 + 2�2n(n� 1) � (�� 1)2(n� 2)(n� 3) � �2n(n� 1)�= n32 (2 � 21)2 � �3�n2�2 +O(n222 + �2n4 + �4n6 ): (3.9)tuAfter these preliminaries, we state our result.Theorem 5. With the notations above, suppose that n!1 and � = O(n), that n2(2�21) ! � 2 (�1;1) (or, equivalently, n2N(P2)N � 4�2n2 ! �), and that for every sequenex = xn with n�1 � x� n1=2,�(x) � exp��1x+ �2x2 + o�x2n ��: (3.10)If m� n3=2 and �n2��m� n, then, with p =m=�n2�,E'(Gnm) = Np� exp�� �22m (1� p) +O�(1� p) n3m2��; (3.11)Var'(Gnm) = ��28 + o(1)�(1� p)2 n3m2 �E'(Gnm)�2 (3.12)and (1� p)�1 mn3=2�'(Gnm)�Np� exp�� �22m (1� p)�� 1� d�! N�0; �28 �: (3.13)If furthermore � 6= 0, the standardized variable '(Gnm)� onverges in distribution to thestandard normal distribution.Proof. Let X = '(Gnm) and let Y denote the number of opies of P2 in Gnm. We shallprove (3.11) and VarX � ��22 + o(1)� (1� p)2np2 (EX)2; (3.14)Cov(X;Y ) = (� + o(1)) (1 � p)2n2p2 EX EY; (3.15)Var Y = (2 + o(1)) (1 � p)2n3p2 (E Y )2: (3.16)The result then follows easily. First we must have equality in (3.14) by (3.15), (3.16) andthe Cauhy{Shwarz inequality; this is equivalent to (3.12). If � 6= 0, then (3.14){(3.16)yield E(X� � sign(�)Y �)2 = Var(X� � sign(�)Y �)! 0: (3.17)



8(This is another way of expressing the asymptoti equality in the Cauhy{Shwarz in-equality.) Sine Y � d�! N(0; 1) by [4,Theorem 19℄, X� d�! N(0; 1) now follows. Finally,this, (3.11) and (3.12) yield (3.13). The ase � = 0 is simpler, with (3.12) and (3.13)following diretly from (3.14).Hene we only have to prove the moment estimates. In order to do so, we use thewell-known estimate that, for 0 � l � k we have(k)l = kl exp l�1X0 log(1� ik )= kl exp�� l(l � 1)2k � 2l3 � 3l2 + l12k2 � l412k3 � l520k4 +O� l3k3 + l6k5��: (3.18)Thus, using that � = O(n), p� n�1=2 and 1� p� n�1,EX = N (m)��n2�� = Np� exp���(�� 1)2m (1� p)� �36m2 (1� p2) +O�1� pn2p3 ��; (3.19)in partiular, EX = Np� exp�� �22m (1� p) +O�1� pnp2 ��; (3.20)whih is (3.11).Moreover, EX2 = XA1;A22A (m)e(A1[A2)(�n2�)e(A1[A2) = XA1;A22A (m)2��e(A1\A2)(�n2�)2��e(A1\A2) ; (3.21)and, for 0 � e � �, using (3.18) as for (3.19),(m)2��e(�n2�)2��e= p2��e exp�� (2�� e)(2� � e� 1)2m (1� p)� (2�� e)36m2 (1� p2) +O(1� pn2p3 )�= p2��e exp���(2�� 1)1� pm + e(2�� 12 )1� pm � e22 1� pm � 8�36m2 (1� p2)+2e �2m2 (1� p2) +O� �m2 (1� p)e2�+O�1� pn2p3 ��= p2� exp���(2�� 1)1� pm � 4�33m2 (1� p2)�ye�1 +O�e2 1� pn2p �+O�1� pn2p3 ��; (3:22)wherey = p�1 exp�(2�� 12 )1� pm + 2 �2m2 (1� p2)� = p�1�1 + 2�1� pm +O�1� pn2p2 ��: (3.23)Sine e2 = O� 1p2 (1 + p)e�, we obtain from (3.21), (3.22), (3.19) and (3.1), thatEX2= N2p2� exp���(2�� 1)1 � pm � 4�33m2 (1� p2)���(y � 1) +O�1� pn2p3 �((1 + p)y � 1)��= (EX)2 exp���2 1� pm � �3m2 (1� p2)���(y � 1) +O�1� pn2p3 ��y +O(1)��� (3:24)



9Hene, using (3.10) and Lemma 3.1, and noting that our assumptions yield �1 = O(1),�2 = O(n�1) and y � 1 � 1�pp ,EX2(EX)2 � �1 +O�1� pn2p3 �� exp���2 1� pm � �3m2 (1� p2) + �1(y � 1)+ �2(y � 1)2 + o� (1� p)2np2 ��= exp���2 1� pm + �1�1� pp + 2�m 1� pp �� �3m2 (1� p2)+ �2�1� pp �2 + o� (1� p)2np2 ��= exp�n32 (2 � 21)2�1� pp �2 + o� (1� p)2np2 ��= 1 + � �22 + o(1)� (1� p)2np2 ; (3.25)whih yields (3.14).Let B be the set of the NY = 12 (n)3 opies of P2 in Kn. ThenEY = NY (m)2(�n2�)2 = NY p2 1� 1=m1� 1=�n2� ; (3.26)EXY = XA2AB2B (m)e(A[B)(�n2�)e(A[B) : (3.27)Now there are N(P2) = 2N elements of A ontaining a given element of B, and thus2NNY pairs (A;B) with B � A and e(A [ B) = �. Further, given B 2 B, there areN(K2) = 1N elements of A ontaining a given edge in B, and thus 1N � 2N elementsof A whose intersetion with B equals that edge. This gives 2(1 � 2)NNY pairs (A;B)with e(A \B) = 1 and e(A [B) = �+ 1. There remain (1� 21 + 2)NNY pairs (A;B)with e(A \B) = 0 and e(A [B) = �+ 2. HeneEXY = NNY�(1� 21 + 2) (m)�+2(�n2�)�+2 + 2(1 � 2) (m)�+1(�n2�)�+1 + 2 (m)�(�n2�)��= EXNY�(1� 21 + 2) (m� �)(m� �� 1)(�n2�� �)(�n2�� �� 1) + 2(1 � 2) m� ��n2�� � + 2�= EX EY� 1� 1=m1� 1=�n2���1�(1� 21 + 2) (1� �=m)(1� (�+ 1)=m)(1� �=�n2�)(1� (�+ 1)=�n2�)+2(1 � 2)p�1 1� �=m1� �=�n2� + 2p�2�: (3:28)We use the expansion1� �=m1� �=�n2� = 1� (1� p)�=m1� �=�n2� = 1� � 1� pm � �2 p(1� p)m2 +O��3(1� p)n6p �;



10valid for � = O(n), and the relations 1 = �=�n2� = p�=m, 2 = O(n�2 + 21) = O(n�2),and obtain after a straightforward but lengthy alulation, thatCov(X;Y )EX EY = EXYEX EY � 1 = (2 � 21)�1� pp �2 +O��(1� p)n4p3 �; (3.29)whih yields (3.15).Finally, we note that EY 2 is given by the same formulas as EXY , if we replae A byB, N by NY , � by 2, 1 by 2=�n2� and 2 by 1=NY = 2=(n)3. With these substitutions,(3.29) beomes Var Y(EY )2 = EY 2(EY )2 � 1 = 2n3�1� pp �2 +O�1� pn4p3 �; (3.30)whih yields (3.16) and ompletes the proof. tuRemark 3.1. It follows from the proof that equality holds in (3.10). It is, however,onvenient to have to verify only the inequality.Remark 3.2. The proof yields, impliitly, the approximationn1=2p(1� p)�1(EX)�1(X � EX) � 1p2�Y �; (3.31)where the di�erene between the two sides tends to 0 in probability (and in L2) as n!1.Here Y may be replaed by the sum of the square of the degrees of the verties.It is likely that this method an be used also in the ase m � n3=2 to prove a generaliza-tion of Theorem 2, but we have not attempted this and will instead use another methodin the next setion.We now turn briey to Gnp, and obtain the following general version of Theorem 4 asa orollary of Theorem 5. A speial ase was given as [3, Theorem 6℄.Theorem 6. With assumptions as in Theorem 5, suppose further that �=n ! � � 0. Ifp! � < 1 and p� n�1=2, thenp1=2�log'(Gnp)� log E'(Gnp) + �2(1� p)n2p � d�! N�0; 2�2(1� �)�; (3.32)with E'(Gnp) = Np�.Proof. Note that (3.13) implies'(Gnm)�N� m�n2��� exp��12�2� 1m � 1�n2��� p�! 1 (3.33)and thus log'(Gnm)��logN + � log m�n2� � 12�2� 1m � 1�n2��� p�! 0: (3.34)Let M = e(Gnp) be the number of edges in Gnp. ThenM=n3=2 p�!1 and (�n2��M)=n p�!1, and it follows by onditioning on M thatlog'(Gnp)��logN + � log M�n2� � 12�2� 1M � 1�n2��� p�! 0: (3.35)



11Moreover, M � Bi(�n2�; p) and thus M� d�! N(0; 1), whih implieslog M�n2� = log p+ log�1 + �1� p�n2�p �1=2M�� = log p+ �1� p�n2�p �1=2M� +Op�1� pn2p � (3.36)and �2=M � �2=�n2�p p�! 0. Now (3.32) follows by Cram�er's theorem. The formula forE'(Gnp) is evident (for any p). tuThe same proof yields asymptoti normality of '(Gnp) when p! 1 with 1� p� n�1and � > 0, but the following simpler proof, using the �rst projetion method, yields amore general result.Theorem 7. Suppose that n ! 1, �=n ! � > 0, p ! 1 and 1 � p � n�2, and that ifx = 1�pp , then �(x) � exp��1x+ o(x)�: (3.37)Then the standardized variable '(Gnp)� tends in distribution to N(0; 1), with E'(Gnp) =Np� and Var'(Gnp) � 2�2(1� p)�E'(Gnp)�2: (3.38)Proof. As in the proof of Theorem 5, it suÆes to prove that if X = '(Gnp) and Y =e(Gnp) � Bi(�n2�; p), then VarX � (2�2 + o(1))(1 � p)(EX)2; (3.39)Cov(X;Y ) = 2�+ o(1)n (1� p) EX EY; (3.40)Var Y = 2 + o(1)n2 (1� p)(E Y )2: (3.41)These are easily veri�ed. First, by (3.37),EX2 = XA1;A22A p2��e(A1\A2) = N2p2���1p � 1�� (EX)2�1 + �1 1� pp + o(1� p)�;whih gives (3.39) sine �1 = �2=�n2� � 2�2 by Lemma 3.1. Similarly,EXY = N�p� +N ��n2�� �� p�+1 = EX ��(1� p) + �n2�p� ;and thus Cov(X;Y )EX EY = �(1� p)EY � 2�n(1� p)n2p ;whih is (3.40). Finally, Var Y = �n2�p(1� p), whih implies (3.41). tuRemark 3.3. In Theorem 7, we only have to asssume an estimate of �(x) at x = 1=p�1.Similarly, in Theorems 5 and 6 it suÆes that (3.10) holds for x � �n2�=m � 1 and x �1=p� 1, respetively.



12 4. A seond proof, and the ase m � n3=2In this setion we use the deomposition methods of [4℄ to give a seond proof ofTheorem 5, at the same time proving the following result for the limiting ase.Theorem 8. Suppose that the onditions of Theorem 5 are ful�lled, with (3.10) holdingfor x � n1=2, that �=n! � and that(iP2 + jK2) = �1 + o(1)�(P2)i(K2)j (4.1)for any i; j � 0.(i) If m=n3=2 !  > 0, thenE'(Gnm) � N� m�n2��� exp�� �22m + �2 � �362�; (4.2)Var'(Gnm) � (e�2=82 � 1)�E'(Gnm)�2; (4.3)'(Gnm)=E'(Gnm) d�! LN�� �2162 ; �282�: (4.4)(ii) If pn1=2 !  > 0, thenp1=2�log'(Gnp)� log E'(Gnp) + �2n2p� d�! N(0; 2�2): (4.5)Proof of Theorems 5 (again) and 8.We �rst observe that (4.2) follows by (3.19), and that part (ii) of Theorem 8 follows frompart (i) by the proof of Theorem 6 with only minor modi�ations. Moreover, the argumentin (3.24){(3.25) yieldsVar'(Gnm)(E'(Gnm))2 = E('(Gnm))2(E'(Gnm))2 � 1 � exp� �282 + o(1)�� 1;while (4.4) and Fatou's lemma yield, with Z � LN(� �2162 ; �282 ),lim inf Var'(Gnm)(E'(Gnm))2 � Var(Z) = exp( �282 )� 1;and (4.3) follows. Thus we only have to prove (3.13) and (4.4). We let, as usual, p = m=�n2�,and restrit ourselves, for simpliity, to the ase p! � with 0 � � < 1.As explained in Setion 2, we will replae ' by another funtion, whih on Gnm di�ersfrom ' by only a onstant fator, before applying the deomposition. It is onvenient tohange (2.2) a little, and we de�ne, for any graph G with n verties, (G) = '(G)(1� a)e(G)��; (4.6)for some onstant a = an 2 (0; 1) to be hosen later.Our method requires us to ompare Gnm not only with a �xed Gnp, but also to varythe edge probability. We therefore de�ne a random graph proess Gn(t) as follows. Let,for eah edge e 2 Kn, Te be independent, identially distributed random variables with



13a uniform distribution on (0,1), and let Gn(t) be the subgraph of Kn with edge set fe :Te � tg. Thus Gn(p) �= Gnp. We also de�neIe(t) = I(e 2 Gn(t)) = I(Te � t):After these preliminaries, we begin by omputing the expetation and variane of X(t) = (Gn(t)).Sine X(t) =  (Gn(t)) = XA2AYe2A Ie(t)Ye=2A(1� aIe(t)) = XA2AYA(t); (4.7)say, we have EX(t) = XA2AEYA(t) = Nt�(1� at)(n2)�� (4.8)and, using E Ie(t) = t, E�Ie(t)(1�aIe(t))� = t(1�a) and E(1�aIe(t))2 = 1� t+ t(1�a)2,EX(t)2 = XA1;A22AEYA1(t)YA2(t)= XA1;A2 te(A1\A2)(t(1 � a))2(��e(A1\A2))(1� t+ t(1� a)2)(n2)�2�+e(A1\A2)= t2�(1� a)2�(1� t+ t(1� a)2)(n2)�2�N2�� t(1� t+ t(1� a)2)t2(1� a)2 � 1�= (EX(t))2(1� a)2��1� 2at+ a2t(1� at)2 �(n2)�2�(1� at)�2��� 1� tt(1� a)2� : (4.9)Consequently we have, assuming a < 1=2 and lettingx = 1� tt(1� a)2 = O�1t � and �(x) = log �(x);log EX(t)2(EX(t))2= 2��log(1� a)� log(1� at)�+ ��n2�� 2�� log�1 + a2(t� t2)(1 � at)2 �+ �(x)= �2�(a� at)� ��a2 � (at)2�+O(�a3) + ��n2�� 2���a2t(1� t)(1� at)2 +O�(a2t)2��+ �(x)= �2�a(1� t) + �n2�a2t(1� t) + 2�n2�a3t2(1� t)� �a2�1� t2 + 2t(1 � t)�+O(�a3 + n2a4t2) + �(x)= (1 + 2at)��n2�a2t(1� t)� 2�a(1� t)�� �a2(1� t)2 +O(�a3 + n2a4t2) + �(x)= (1 + 2at)1� t�n2�t ��n2�at� ��2 � (1 + 2at)1� t�n2�t �2 � �a2(1� t)2 +O(�a3 + n2a4t2) + �(x)= �(1 + 2at)(1� a)2 �2�n2�x� �a2(1� t)2 +O� 1�n2�t��n2�at� ��2 + �a3 + n2a4t2�+ �(x):(4.10)We hoose a = �m = ��n2�p (4.11)



14and onsider in the sequel of the proof only t witht = p+O(p1=2=n); (4.12)this implies that t � p and �n2�at�� = �( tp �1) = O( �np1=2 ) = O( �m1=2 ). For suh t, (4.10)yields after simpli�ationslog EX(t)2(EX(t))2 = �(x)� �2�n2�x+ �3�n2�2 x2 +O� �2n4t2 + �4n6t3�: (4.13)We now use our assumption (3.10) and the relations (3.8) and (3.9), noting that the lattergives �2 = 12n�2 � �3(n2)2 + o( 1n ), and obtain,log EX(t)2(EX(t))2 � �22nx2 + o�x2n �+O� 1n2t3�: (4.14)Sine x � 1=t � 1=p, (4.14) implies if p� n�1=2,VarX(t)(EX(t))2 = EX(t)2(EX(t))2 � 1 � �2 x22n + o�x2n � = (�2 + o(1)) (1 � p)22np2 ; (4.15)and if m=n3=2 !  > 0 and thus p � 2n�1=2,VarX(t)(EX(t))2 � exp( �282 )� 1 + o(1): (4.16)We next onsider the orthogonal deomposition (G(t)) =XH b (H; t)Sn(H; t) (4.17)studied in [4℄. Here H ranges over all unlabelled graphs without isolated verties andSn(H; t) =PH1Qe2H1(Ie(t)� t), with the summation over the subgraphs H1 of Kn withH1 �= H (eah repeated aut(H) times).We may assume that H is a subgraph of Kn. Then, using (4.7),b (H; t) = E (G(t))Sn(H; t)E(Sn(H; t))2 = E� (G(t))Qe2H(Ie � t)�aut(H)(t(1� t))e(H) == 1aut(H) t�e(H)(1� t)�e(H)XA E�YA(t)Ye2H(Ie � t)�; (4.18)and, summing over F without isolated verties,E�YA(t)Ye2H(Ie � t)� = EYA(t)�E Ie(Ie � t)E Ie �e(H\A)�E(1� aIe)(Ie � t))E(1� aIe) �e(HnA)= EYA(t)(1 � t)e(H\A)��at(1� t)1� at �e(H)�e(H\A)= EYA(t)(1 � t)e(H)�1� at�at �e(H\A)�e(H)= EYA(t)(1 � t)e(H)�1� at�at ��e(H) XF�A\H� 1�at�e(F ):



15Consequently, with F ranging over the 2e(H) subgraphs of H without isolated verties,b (H; t) = 1autH EX(t)N (�a)e(H)(1� at)�e(H) XF�H�� 1at�e(F )N(F )= 1autH EX(t)(1 � at)�e(H)(�a)e(H) XF�H(�at)�e(F )(F ): (4.19)In partiular, hoosing H = P2 we have 4 hoies of F , namely P2, K2 (twie) and theempty graph. Hene, using ap = 1 = (K2) and our assumptions on 2 = (P2) and t,b (P2; t) = 12 EX(t)(1 � at)�2a2�1� 2at(K2) + 1(at)2 (P2)�:= 12 EX(t)(1 � at)�2p�221�1� 2pt + p2t2 221 �= 12 EX(t) 1n2p2 (� + o(1)): (4.20)The variane of the P2 term in (4.17) is thusb (P2; t)2VarSn(P2; t) = 14(EX(t))2 1n4p4 (�2 + o(1)) � 2(n)3t2(1� t)2= (EX(t))2(�2 + o(1)) (1 � p)22np2 : (4.21)Moreover, it follows easily from (4.8) that EX(t) � EX(p) for the t that we onsider.Consider �rst the ase p� n�1=2 (Theorem 5), and de�ne� = n�1=2p�1 EX(p): (4.22)Comparing (4.21) with (4.15), we then see, sine the deomposition (4.17) is orthogonaland thus VarX(t) � Var( b (P2; t)Sn(P2; t)), that equality holds in (4.15), whih now maybe written VarX(t) = � 12�2(1� �)2 + o(1)� �2: (4.23)Moreover, the variane of the remaining terms in (4.17) is o(�2). Thus, using the ter-minology of [4℄, and exepting the degnerate ase � = 0, X(t) is dominated by P2. Inpartiular b �(H; t) = o(�) for every H 6= P2.It follows by [4, Theorem 2 or 3℄, and trivially when � = 0, that�X(p)� EX(p)�=� d�! N�0; 12�2(1� �)2�: (4.24)In the ase p � 2n�1=2 (Theorem 8), we, more generally, have to onsiderH = kP2; k � 1.For suh H, if F is a subgraph of H without isolated verties, then F �= iP2 + jK2 forsome i and j, and by the assumption (4.1),(�a)e(H)(�at)�e(F )(F ) = �pt �e(F )p�e(H)(�1)e(H)�e(F )(F )= (1 + o(1))p�2k(�1)2k�2i�ji2j1: (4.25)



16It follows by (4.19), sine eah of the k omponents in H may ontribute a P2, a K2 (intwo ways) or nothing to F , thatb (kP2; t)=EX(t) = 12kk!XF p�2k(�1)j2k�2i1 i2 + o(n�2kp�2k)= p�2k2kk! (2 � 221 + 21)k + o(n�2kp�2k)= n�2kp�2k� �k2kk! + o(1)�: (4.26)In this ase we de�ne � = EX(p)and obtain b �(kP2; t)=� = n3k=2pk b (kP2; t)=� ! 1k!� �4�k: (4.27)By omputing the ontribution of the kP2 terms in (4.17) to the variane of X(t), weobtain lim inf Var(X(t))=�2 � 1Xk=1 lim j b �(kP2; t)=�j2 aut(kP2)= 1Xk=1(k!)�2� �4�2k2kk! = exp� �282 �� 1: (4.28)Thus equality holds in (4.16). Moreover, if � 6= 0, [4, Proposition 4.7℄ shows that X(p) isalmost �nitely dominated by fkP2g1k=1, and [4, Theorem 2℄ then yields�X(p)� EX(p)�=� d�! 1Xk=1 1k!� �4�k :U(P2; 1)k := exp� �4U(P2; 1)� 12� �4�2VarU(P2; 1)� � 1;with U(P2; 1) � N(0; 2), and thusX(p)=� d�! LN(� �2162 ; �282 ): (4.29)(When � = 0, this is trivial by (4.16).)We now apply [4, Theorem 9(i) (or (iii), (iv))℄, whih shows that  (Gnm) has the sameasymptoti distribution (4.24) or (4.29) as X(p), provided that furthermoreVar(�(t)) = o(n2�2=p); (4.30)where �(t) is the drift of X(t), see [4℄. Sine (Gnm)=EX(p) = '(Gnm)(1 � a)m��=Np�(1� ap)(n2)��; (4.31)easy alulations then yield (3.13) and (4.4).



17It remains to prove (4.30). By [4, Proposition 2.8℄,�(t) = (1� t)�1Xe �X(t)�Ie (1� Ie(t)) = (1� t)�1Xe XA �YA(t)�Ie (1� Ie(t)); (4.32)where YA(t) is as in (4.7) and the derivatives are interpreted formally. In other words,�(t) = (1� t)�1 XA2AXe YA;e(t); (4.33)where YA;e(t) is obtained from YA(t) by replaing the fator Ie(t) by 1 � Ie(t) if e 2 A,and replaing 1� aIe(t) by �a(1� Ie(t)) if e =2 A. Hene,E �2(t) = (1� t)�2 XA1;A2 Xe1;e2E(YA1;e1YA2;e2): (4.34)By the independene of Ie(t) in Gn(t), we easily obtain
E(YA1e1YA2e2)EYA1YA2 =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
1�tt e1 = e2 2 A1 \A2�a(1�t)t(1�a) e1 = e2 2 (A1 n A2) [ (A2 nA1)a2(1�t)1�t+t(1�a)2 e1 = e2 2 A1 \A20 e1 6= e2 and e1 2 A2 or e2 2 A1( 1�tt(1�a) )2 e1 2 A1 nA2; e2 2 A2 n A11�tt(1�a) � �a(1�t)1�t+t(1�a)2 e1 2 A1 nA2; e2 2 A1 \A2 or onversely( �a(1�t)1�t+t(1�a)2 )2 e1; e2 2 A1 \A2; e1 6= e2and thus, ounting the number of di�erent terms and ompleting a square,Xe1;e2 E(YA1e1YA2e2)=E(YA1YA2)= e(A1 \A2)1� tt � 2e(A1 n A2)a(1� t)t(1� a)+ e(A1 \A2)� a2(1� t)1� t+ t(1� a)2 � � a(1� t)1� t+ t(1� a)2�2�+�e(A1 n A2) 1� tt(1� a) � e(A1 \A2) a(1� t)1� t+ t(1� a)2�2� e(A1 \A2)1t + �n2�a2 +� �t(1� a) +O�e(A1 \A2)t �� �n2� a1� 2ta+ ta2 +O(�a)�2= O�1 + �e(A1 \A2)t �2 + n2a2 + �2a2 + ��t (1� 2ta+ ta2)� �n2�(a� a2)�2�= O�1 + �e(A1 \A2)t �2 + �2a2 + n4a4 + ��t ��n2� �m�2�= O�1 + �e(A1 \A2)t �2 + n4�4m4 + �2�1t � 1p�2�: (4.35)



18Using the assumptions � = O(n) and t = p+O(p1=2=n), this redues toO��e(A1 \A2)t �2 + 1t4� = O� 1t4 (1 + t)e(A1\A2)�:Consequently, E(�(t))2 = O�t�4 XA1;A2(1 + t)e(A1\A2) EYA1(t)YA2(t)�: (4.36)This sum, S say, is evaluated as in (4.9), the only di�erene being that the argument1�tt(1�a)2 = x of � is replaed by (1 + t)(1 + x)� 1 = x+ t+ xt = x+O(1). The argumentin (4.10){(4.14) now yieldslog S(EX(t))2 = �(x+O(1)) � �2�n2�x+ �3�n2�2 x2 +O� 1n2t3�� �22nx2 + o�x2n �+O(�1 + �2x)= O(1); (4.37)and thus S = O�(EX(t))2� = O(np2�2); (4.38)E(�(t))2 = O(p�4S) = O(np�2�2) = o(n2�2=p); (4.39)whih proves (4.30) and ompletes the proof. tuRemark 4.1. It is easy to give a diret proof of Theorem 6 using (4.15) in the weakversion VarX(p)(EX(p))2 ! 0 whih, by Chebyshev's inequality, yields X(p)=EX(p) p�! 1 andthus logX(p)� log EX(p) p�! 0:Sine X(p) =  (Gnp) = '(Gnp)(1 � a)e(Gnp)��, we havelog'(Gnp) = logX(p)� (e(Gnp)� �) log(1� a);and it follows easily thatp1=2�log'(Gnp)� log EX(p) + (�n2�p� �) log(1� a)� d�! N�0; 2�2(1� �)�;whih gives (3.32) by elementary alulations.Remark 4.2. Note that this proof gives an asymptoti distribution with normalizingonstants derived from the mean and variane of  (Gnp), without aring about the atualmean and variane of '(Gnm) whih we have omputed separately.5. Proofs of Theorems 1{4In this setion we shall prove that the three variables onsidered in the introdutionsatisfy the onditions of Theorems 5{8, with the following parameters:f , spanning subtrees: 1 = 2=n, 2 = 3=n2 and thus � = �1; � = 1.g, Hamilton yles: 1 � 2=n, 2 � 2=n2 and thus � = �2; � = 1.h, perfet mathings: 1 � 1=n, 2 = 0 and thus � = �1; � = 1=2.Theorems 1{4 then follow immediately from Theorems 5, 8(i), 7, 6 and 8(ii), respetively.The main problem is to verify (3.10), and we begin with a simple estimate.



19Lemma 5.1. If x; " > 0, and "2(x+ x3) is suÆiently small, then1Xk=0 xkk! e�"k2 = exp�x� "x� "x2 +O�"2(x+ x3)��: (5.1)If furthermore C <1 is �xed, then alsonXk=0 xkk! e�"k2+Ck3=n2 � exp�x� "x� "x2 +O�("2 + n�2)(x+ x3)��: (5.2)Proof. We have, with y = xe�2"x = x� 2"x2 +O("2x3),1Xk=0 xkk! e�"k2 =Xk xkk! e�2"kx�"(k�x)2+"x2 = e"x2Xk ykk! e�"(k�x)2= e"x2Xk ykk! �1� "(k � x)2 +O("2(k � x)4)�= e"x2+y�1� "(y + (y � x)2) +O�"2((y � x)4 + y2 + y)��= ex�"x2+O("2x3)�1� "x+O("2x2 + "2x+ "3x4 + "6x8)�: (5.3)Hene (5.1) follows by taking the logarithm, using "2x2 � "2(x+ x3) and "6x8 � �"2(x+x3)�3.For (5.2) we note that if ak = xkk! e�"k2+Ck3=n2 and k < n, then ak+1=ak < xke3C . Heneak+1=ak < e�1 if n � k � k0 = de3+1xe, and Pnk0+2 logn+1 ak � (1 � e�1)�1n�2ak0+1 =O( xn2 ak0). Consequently, it suÆes to onsider the sum with k < k0 + 2 log n + 1. Ifx � logn, this implies Ck3=n2 = O(x3=n2), and (5.2) follows by (5.1). If x < logn; wehave k = O(log n) and thuseCk3=n2 � 1 + C1 k3n2 � 1 + C2 (k)3 + kn2 ;and again the result follows by (5.1) sine1Xk=1�1 + C2 (k)3 + kn2 �xkk! e�"k2 � �1 + C2x3 + xn2 � 1Xk=0 xkk! e�"k2 : tuSpanning subtrees. In this ase, the graphs H that appear in (2.2) are the forests. IfH is a forest with ji omponents with i verties, i = 2; 3; : : : , then(H) =Yi � ini�1�ji (5.4)by a result of Moon [6℄. There are, for eah sequene j2; j3; : : : , with � = P12 iji � n,exatly (n)�Qi ji!Qi(i!)ji Yi (ii�2)ji = (n)�n� 1Yi=2� ii�2i! ni�ji 1ji! (5.5)



20suh forest H � Kn, and thus�(x) =XH (H)2xe(H) =Xfjig (n)�n� 1Yi=2 1ji!� ii�2i! ni i2n2i�2�jixP ji(i�1)=Xfjig (n)�n� 1Yi=2 1ji!� iii!n2�ixi�1�ji : (5.6)We use the estimate(n)�n� = ��1Y1 �1� kn� � exp�� ��1X1 kn� = exp���(� � 1)2n � � exp��j2(2j2 � 1)n � (5.7)and obtain �nally, now summing over all sequenes fjig of non-negative integers and usingLemma 5.1,�(x) �Xfjig e�j2(2j2�1)=n 1Yi=2 1ji!� iii!n2�ixi�1�ji= 1Xj2=0 ej2=n�2j22=n (2x)j2j2! 1Yi=3 1ji!� iii!n2�ixi�1�ji= exp�2xe1=n � 2n2xe1=n � 2n (2xe1=n)2 +O� 1n2 (x+ x3)�+ 1Xi=3 iii!n2�ixi�1�= exp�2x� 2nx� 8nx2 + 333! x2n +O�x+ x3n2 �� (5.8)for x � 0 with x3=n2 suÆiently small. Moreover, for the terms up to x2 in the Taylorexpanssion, the estimate above gives an error of at most O(n�2) in eah oeÆient. Hene�(x) � exp��1x+ �2x2 +O�x+ x3n2 ��; (5.9)whih implies (3.10) for n�1 � x � Æn2=3 and (3.37) for x = o(1). The remainingonditions in the theorems are immediately veri�ed. Note, in partiular, that(iP2 + jK2) = (P2)i(K2)jexatly, as soon as n � 3i+ 2j.Hamilton yles. In this ase, the graphs H with N(H) 6= 0 are Cn itself and all unionsof disjoint paths. If H is a disjoint union of jl paths of length l, l = 1; 2; 3; : : : , thenN(H) = 12 (n�Pl ljl � 1)! 2P jl ;sine by ollapsing eah omponent in H to a single vertex, eah Hamilton yle (in Kn)ontaining H may be obtained from a Hamilton yle in the smaller set by hoosing oneof two possible orientations for eah omponent in H; thus, with � =P ljl,(H) = 2P jl=(n� 1)�: (5.10)



21Given j1; j2; : : : with � =P(l + 1)jl � n, there are(n)�Ql jl!Ql(l!)jl Yl ( 12 l!)jl = (n)�Ql jl! 2�P jl (5.11)suh graphs H � Kn. Finally, there are N = 12 (n � 1)! hoies of H �= Cn, eah havingN(H) = 1 and (H) = 1=N . Consequently,�(x) =Xfjlg (n)�((n� 1)�)2 Yl 2jljl! x� + 2(n� 1)!xn: (5.12)We use the estimate(n)�((n� 1)�)2 = n2(n)�((n)�+1)2= n2+��2(�+1) exp���(� � 1)2n + 2(�+ 1)�2n +O��3n2 + �3n2��= n��2� exp�� (2j1 + 3j2)(2j1 + 3j2 � 1)2n + 2(j1 + 2j2 + 1)(j1 + 2j2)2n+O� j31n2 + j32n2 + nX3 ljl��= n��2� exp��2j21 � 4j1j2 � j222n + 2j1n + 7j22n +O� j31n2 + j32n2 + nX3 ljl�� (5.13)and obtain, for some C <1, using Lemma 5.1, when x3=n2 is suÆiently small,�(x) �Xfjlg exp� 2nj1 � j21n + C j31n2 + 72nj2 + C j32n2 + nX3 Cljl�Yl 1jl! 2jlxljln(1�l)jl� n=2Xj1=0 1j1!�2xe2=n�j1e�j21=n+Cj31=n2 n=3Xj2=0 1j2!�2x2n e7=2n�j2eCj32=n2 1Yl=3 1Xjl=0 1jl!�2eClxln1�l�jl� exp�2e2=nx(1� 1n)� 1n (2e2=nx)2 + 2ne7=2nx2 + 1Xi=3 2n�eCxn �l +O�n�2(x+ x3)��= exp�(2 + 2n)x� 2nx2 +O�x+ x3n2 ��: (5.14)(The term 2(n�1)!xn is negligible and may be inorporated in e.g. the term with j1 = 1,j2 = � � � = 0, without altering the estimates.)Again, the estimates have errors at most O(n�2) for the Taylor oeÆients up to x2,and the result may be written�(x) � exp��1x+ �2x2 +O�x+ x3n2 ��; 0 � x � Æn2=3: (5.15)The onditions in Theorems 5{8 follow.



22Perfet Mathings. We only have to onsider H = jK2, for whih(jK2) = 1n� 1 � 1n� 3 � : : : � 1n� 2j + 1 : (5.16)Hene �(x) = n=2Xj=0 (n)2j2jj! (jK2)2xj = n=2Xj=0 1j!�x2�j j�1Yi=0 n� 2in� 2i� 1 : (5.17)Denote this produt by bj . If j � n=4 we have, for 0 � i < j,n� 2in� 2i� 1 = nn� 1�1 + 2in(n� 2i� 1)� � nn� 1 exp� 4in2�and thusbj � � nn� 1�j exp�j�1Xk=0 4in2� = � nn� 1�j exp�2j(j � 1)n2 � � � nn� 1�j�1 + 3j(j � 1)n2 �;if n=4 < j � n=2 we have, for large n,bj = nn� 2j + 1 j�1Y1 n� 2in� 2i+ 1 < n � 64 j3n2 � 65(j)3n2 :Consequently, for x � 0 and n large,�(x) � 1Xj=0 1j!�x2�j� nn� 1�j�1 + 3(j)2n2 + 65(j)3n2 �= exp� n2(n� 1)x��1 + 3(n� 1)2�x2�2 + 65n(n� 1)3�x2�3�= exp� n2(n� 1)x+O�x2 + x3n2 ��; (5.18)or �(x) � exp��1x+ �2x2 +O�x2 + x3n2 ��; (5.19)where �1 = n=2(n� 1), �2 = O(n�2). Hene the onditions of Theorems 5{8 are satis�edin this ase as well. 6. Other random graphsThe results and proofs above hold with minor hanges also for several other randomgraph models. We onsider here two ases, omitting the detailed veri�ations that thearguments above and in the relevant parts of [4℄ still are valid.Direted graphs. Let Dnm be the random digraph without loops with n (labelled) ver-ties and m edges drawn without replaement from the n(n� 1) possible edges. Similarly,let Dnp be the random digraph without loops with n verties where eah edge appearswith probability p, independently of all others.



23We now assume that eA is a set of unlabelled digraphs, and argue as above. Thereare two di�erenes from the undireted ase. First, �n2� has to be replaed by n(n � 1)everywhere, whih leads to new fators 12 in some onstants in the asymptoti results.Seondly, in formulas as (3.2) and (4.17), we should sum over digraphs H. This makesno essential di�erene for the K2-terms, if we interpret K2 as a direted edge, but P2 isreplaed by three di�erent digraphs P2i, i = 0;+;�.��!��!� � ���!� ��!� ��P20 P2+ P2�There is also a fourth onneted digraph with two edges, namely the yle C2 with twoverties.Let 1 = (K2) = �=n(n � 1) and de�ne, as before, �1 and �2 by (3.7). (Note that(3.8) and (3.9) have to be modi�ed.) Then the following analogue of Theorem 5 holds.Theorem 9. Suppose that n!1 and � = O(n), that n2((P2i)� 21)! �i 2 (�1;1)for i = 0;+;�, that (C2) = O(n�2), and that for every sequene x = xn with n�1 �x� n1=2, �(x) � exp��1x+ �2x2 + o�x2n ��: (6.1)If m� n3=2 and n(n� 1)�m� n then, with p = m=n(n� 1),E'(Dnm) = Np� exp�� �22m (1� p) +O�(1� p) n3m2��; (6.2)Var'(Dnm) = ��2 + o(1)�(1� p)2 n3m2 �E'(Dnm)�2 (6.3)and (1� p)�1 mn3=2�'(Dnm)�Np� exp�� �22m (1� p)�� 1� d�! N�0; �2�; (6.4)where �2 = �20 + 12�2+ + 12 �2�: (6.5)If furthermore �2 > 0, the standardized variable '(Dnm)� onverges in distribution to thestandard normal distribution. tuIn the proof, we let Yi be the number of P2i in Dnm; then Y �0 , Y �+ and Y �� onvergejointly to three independent standard normal distributions. The formula in Remark 3.2 isreplaed by n1=2p(1� p)�1(EX)�1(X � EX) � �0Y �0 + 1p2�+Y �+ + 1p2��Y ��: (6.6)Theorems 6{8 are valid for digraphs if we replae �2=n2 by �2=2n2 in (3.32) and (4.5);�2 by 12�2 in (3.32), (3.38), (4.2) and (4.5); �2=8 by �2 in (4.3) and (4.4); and allowdi�erent P2i in (4.1).For example, if g(D) denotes the number of direted Hamilton yles in D, we haveN = (n � 1)!, � = n, 1 = 1=(n � 1), (P20) = n=(n)3 = 1=(n � 1)(n � 2), (P2+) =(P2�) = 0, (C2) = 0, �0 = 1� 1 = 0, �+ = �� = �1 and �2 = 1. We an verify (6.1) asin Setion 5 and obtain the following.



24Theorem 10. Assume that n!1 and let p = m=n(n� 1).(i) If m� n3=2 and n(n� 1)�m� n, thenE g(Dnm) = (n� 1)! pn exp��1� p2p +O�(1� p) n3m2�� ; (6.7)Var g(Dnm) � (1� p)2 n3m2 �E g(Dnm)�2 (6.8)and g(Dnm)� d�! N(0; 1): (6.9)(ii) If m=n3=2 !  > 0, thenE g(Dnm) � (n� 1)! pn exp��1� p2p � 162 �; (6.10)Var g(Dnm) � (e1=2 � 1)�E g(Dnm)�2 (6.11)and g(Dnm)=E g(Dnm) d�! LN�� 122 ; 12 �: (6.12)tuTheorem 11. Assume that n!1 and p! � � 1. ThenE g(Dnp) = (n� 1)! pn: (6.13)(i) If � = 1 and 1� p� n�2, thenVar g(Dnp) � (1� p)�E g(Dnp)�2; (6.14)g(Dnp)� ! N(0; 1): (6.15)(ii) If 0 � � < 1 and lim inf pn1=2 > 0, thenp1=2 �log g(Dnp)� log�E g(Dnp)�+ 1� p2p � d�! N(0; 1 � �): (6.16)tuIf we onsider several variables, we an obtain multivariate normal limits of rank 1, 2or 3. For example, let h as before denote the number of perfet mathings (for even n),whih has � = n=2, 1 = 1=2(n � 1), (P20) = (P2+) = (P2�) = (C2) = 0, �0 = �+ =�� = � 14 and �2 = 18 . We verify (6.1) as in Setion 5; in fat �(x) = �undireted(x=2),where the latter is given by (5.17). If n!1, m� n3=2 and n(n� 1)�m� n, we haveby (6.6) after standardization,g(Dnm)� � � 1p2Y �+ � 1p2Y ��; (6.17)h(Dnm)� � � 1p2Y �0 � 12Y �+ � 12Y ��; (6.18)hene these standardized variables onverge jointly to two standard normal variables withorrelation 0 � 1p2 + 1p2 � 12 + 1p2 � 12 = 1p2 .



25Let us now onsider digraphs with loops, and let D0nm and D0np denote the randomdigraphs de�ned as Dnm and Dnp but allowing loops. The situation is now more om-pliated, sine there is a further onneted digraph with one edge, viz. the loop C1, andseveral more digraphs with two edges. We therefore onsider only the ase when we ountthe number of some loopless subgraphs, i.e. when eA is a set of digraphs without loops.In this ase, we an ignore all loops in the random graph and use the results above fordigraphs without loops. Note in partiular that �(x), and thus ondition (6.1), do notdepend on whether we onsider digraphs with loops or without.For D0np we obtain Dnp by deleting all loops. Hene the results above for Dnp are validfor D0np as well.For D0nm, we have a random numberM of non-loops, but onditioned on M , the graphobtained by deleting all loops may be regarded as DnM . Here M has a hypergeometridistribution with parameters n2, n2 � n and m; thus M is asymptotially normal andVarM � p(1 � p)n, where p = m=n2. An argument similar to the one in the proof ofTheorem 6 gives the asymptoti distribution, but it now depends on p whether the extravariation aused by the variation in M dominates the variation of '(DnM ) for a �xedM � m(1� 1n ) or not.A simple alulation shows that if p ! 0, then the variation of '(DnM ) dominatesand we obtain the same results as before; if p ! 1, the variation in M dominates (aswas the ase in Theorem 6); if p ! � 2 (0; 1), both variations are of the same order andhave to be ombined in the �nal result. The expetation and variane of '(D0nm) areomputed as in (3.19){(3.25); the only signi�ant di�erene is that in (3.25), the terms�2(1 � p)=m = �2(1 � p)=pn2 and �1(1 � p)=p = �2(1 � p)=pn(n � 1) no longer anelexatly, whih leads to an extra term in the variane estimate (whih is negligible if p! 0).We omit the details, but state the resulting version of Theorem 9.Theorem 12. Suppose that n!1 and �=n! �, that n2((P2i)� 21)! �i 2 (�1;1)for i = 0;+;�, that (C2) = O(n�2), and that for every sequene x = xn with n�1 �x� n1=2, (6.1) holds. If m� n3=2, n2 �m� n and p = m=n2 ! � � 0, thenE'(D0nm) = Np� exp�� �22m (1� p) +O�(1� p) n3m2��; (6.19)Var'(D0nm) = �(1� �)�2 + ��2 + o(1)�(1� p) n3m2 �E'(D0nm)�2 (6.20)and(1�p)�1=2 mn3=2�'(D0nm)�Np� exp�� �22m (1�p)��1� d�! N�0; (1��)�2+��2�; (6.21)where �2 is given by (6.5). If furthermore �2 > 0, or if �2 = 0, � > 0 and � > 0, then thestandardized variable '(D0nm)� onverges in distribution to a standard normal distribution.tuTheorems 6{8 are valid for random digraphs with loops with the same modi�ations asfor digraphs without loops.For example, for the number of direted Hamilton yles we have �2 = 1 and � = 1,whih gives the following. (A weaker version of the variane estimate (6.23) is given in[2℄.)Theorem 13. Assume that n ! 1, m � n3=2 and n2 � m � n, and let p = m=n2.



26Then E g(D0nm) = (n� 1)! pn exp��1� p2p +O�(1� p) n3m2�� ; (6.22)Var g(D0nm) � (1� p) n3m2 �E g(D0nm)�2 (6.23)and g(D0nm)� d�! N(0; 1): (6.24)tuThe results in Theorem 10(ii) and Theorem 11 remain valid for D0nm and D0np.As a further example, we observe that Theorem 12 implies that, for m as above and neven, Var h(D0nm) � 18 (1+p)(1�p)n3m�2, sine �2 = 18 and � = 12 . Moreover, (6.21) maybe generalized to vetor-valued variables. For example, if m is as above, then, by (6.6),(1� p)�1 mn3=2� g(Dnm)E g(Dnm) � 1; h(Dnm)Eh(Dnm) � 1� d�! N(0;�); (6.25)with ovariane matrix �11 = 1, �12 = 14 , �22 = 18 . Hene, if furthermore p! � � 1, then(1� p)�1=2 mn3=2� g(D0nm)E g(D0nm) � 1; h(D0nm)Eh(D0nm) � 1� d�! N(0;�0); (6.26)with ovariane matrix �011 = (1 � �) + � = 1, �012 = (1 � �) 14 + � 12 = (1 + �)=4,�022 = (1 � �) 18 + � 14 = (1 + �)=8. In partiular, g(D0nm)� and h(D0nm)� onverge jointlyto two normal variables with orrelation 1+�4 Æq 1+�8 =q 1+�2 .Bipartite graphs. We onsider bipartite graphs with an expliit bipartition, i.e. graphswhose vertex set is partitioned into two subsets, whih we assume are oloured white andblak, suh that no edge joins two verties of the same olour.For simpliity we onsider only random bipartite graphs with equally many verties ofeah olour, although at least the ase when the numbers are within a onstant of eahother presents no further diÆulties.Thus, let Bnm be the random bipartite graph with 2n labelled verties, n white and nblak, and m edges drawn without replaement from the n2 possible edges. Similarly, letBnp be the random bipartite graph with n + n verties and edges drawn independentlywith probability p.We now assume that eA is a set of bipartite graphs. In the arguments above, �n2� hasto be replaed by n2 everywhere, whih again leads to new fators 12 in some onstants.Moreover, we should sum over bipartite graphs H. Thus P2 should be replaed by twodi�erent bipartite graphs, with the middle vertex white and blak, respetively, but if werestrit ourselves to sets eA that are invariant under olour inversion, the two terms maybe ombined into one and we may proeed as before.Hene, for olour symmetri eA, Theorems 5{8 are valid for bipartite graphs if we replae�n2� by n2, in partiular p = m=n2 in Theorem 5; �2=8 by �2 in (3.12), (3.13), (4.3) and(4.4); �2=n2 by �2=2n2 in (3.32) and (4.5); �2 by 12�2 in (3.32), (3.38), (4.2) and (4.5);and allow di�erent olourings of the P2 in (4.1).For example, for the number of perfet mathings we have N = n!, � = n, 1 = 1=n,2 = 0, � = �1, � = 1. Furthermore,�(x) = nXj=0�nj��nj�j! (jK2)2xj = nXj=0 xjj! � exp(x); (6.27)whih veri�es (6.1) with �1 = 1 and �2 = 0. This gives the following results.
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