THE NUMBERS OF SPANNING TREES, HAMILTON CYCLES
AND PERFECT MATCHINGS IN A RANDOM GRAPH

SVANTE JANSON

ABSTRACT. The numbers of spanning trees, Hamilton cycles and perfect matchings in a
random graph Gpnm are shown to be asymptotically normal if m is neither too large nor too
small. At the lower limit m =< n3/2, these numbers are asymptotically log-normal. For Gup,
the numbers are asymptotically log-normal for a wide range of p, including p constant.

The same results are obtained for random directed graphs and bipartite graphs.

The results are proved using decomposition and projection methods.

INTRODUCTION AND RESULTS

The number of small subgraphs of a given kind of a random graph has been studied by
many authors. Typical results are that for both standard models G, and G,,,,, of random
graphs, for wide ranges of p and m, the number of subgraphs isomorphic to a fixed graph
is asymptotically normally distributed as n — oo, see for example [7], [4].

In this paper we will study some examples of large subgraphs. More precisely, we will
study three examples of subgraph counts in G, and G,,, where the subgraphs have n
vertices and =< n edges. The results in these cases are rather different from the results
for small subgraphs; the asymptotic distribution is still normal for G,,, but log-normal
for Gy,p, provided the edge density is neither too small nor too big. For a smaller edge
density, m = n®/2, we find asymptotic log-normal distributions also for G,,,,.

In order to state the results smoothly, we let f(G), g(G) and h(G) denote the numbers
of spanning subtrees, Hamilton cycles and perfect matchings in a graph G. We assume
tacitly that n is restricted to be even whenever we consider h(G.,) or h(Gyp), since
h(G) = 0 when the order of G is odd.

For a random variable X (with positive, finite variance) let X* = (X —E X)/(Var X)'/2
denote its standardization. We write a < b when a and b are positive and a/b — 0.

Theorem 1. Assume that n — oo, m > n3/? and (g) —m > n. Then the standardized
variables f(Gnm)*, 9(Gnm)* and h(Gpm)* converge in distribution to a standard normal
distribution.

Moreover, with p = m/ (’2’), we have

n—2_n—1 ]-_p ’fl3
E f(Gpm) =n""p" " " exp <—T+O((1—p)m>> , (1.1)
’fl3 2
Var f(Gnm) ~ g5 (1=p)* (B f(Gam)) " (1.2)
1 n 1_p n®
Eg(Gnm) = 3(n —1)!p" exp <—T+0<(1—p)m)>» (1.3)
Varg(Grm) ~ 55 (1= p)” (Eg(Grum) . (14)
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Eh(Gnm) = (n — 1)1 p™2 exp <—%+o((1—p);—z)>, (1.5)

3

Var h(Gpm) ~ 871_2
m

2

If furthermore m/ (%) — m > 0, then

% (f(Gnm)/(nn_zpn_le_(l—m/p) _ 1)

4 N(o,
s (9(Gom) /(0 = 1)1 DI7) 1) SN (o,
n
4N

%(h(Gnm)/((n — )l pr/2e=(-p)/4py _ 1) (0,

(1-m)?%), (1.7)
(1-m)?), (1.8)
(1—m)?). (1.9)

N[ ool

o[

We do not know whether the upper bound for m, namely (Z) —m > n, is necessary for
the conclusions of Theorem 1; in fact, it seems likely that asymptotic normality holds as
soon as (Z) —m > n'/?, but we will not investigate this case any further here.

On the other hand, the lower bound m > n3/2 is indeed necessary, and we have the
following result for the limiting case, which shows that the asymptotic distribution then
is log-normal. We write X ~ LN(u,0?) when log X ~ N(u,0?).

Theorem 2. Assume that n — co and m/n?? — ¢ > 0. Then, with p = m/ (5),

B () ~ 1 exp(— L = L) (1.10)

Var f(Gm) ~ (/% = 1)(B f(Gpm))” (1.11)

Eg(Gpm) ~ 3(n—1)!p" exp(—lp%p - 6%)» (1.12)

Var g(Gum) ~ (€2 = 1) (B g(Gum)), (1.13)

Eh(Gpm) ~ (n — 1)l pn/? exp(—% - é), (1.14)

Var h(Gm) ~ (/% = 1) (Bh(Gpm))” (1.15)

and

F(Grun) /B F(Grm) S IN(= 55 <5). (1.16)

9(Go)B9(Gr) S IN(= 5, 212), (117

h(Grm)/ Eh(Grm) > LN(—lﬁl?, 8%). (1.18)

For G, we obtain asymptotic normality only when p — 1; for smaller p we have again
a log-normal distribution.

Theorem 3. Assume that n — oo, p — 1 and 1 — p > n~2. Then the standardized
variables f(Gnp)*, 9(Gnp)* and h(Gpp)* converge in distribution to the standard normal



distribution. Moreover,

Ef(Gnp) =n""2p" 1, (1.19)
Var f(Gup) ~ 2(1 = ) (E £ (Gup))’, (1.20)
Eg(Gnp) = (n—1)1p", (1.21)
Var g(Gp) ~ 2(1 — p) (Eg(Guyp))’, (1.22)
Eh(Gpp) = (n— 1) pn/2, (1.23)
Var h(Gp) ~ 31— ) (Eh(Gnp))”. (1.24)

Theorem 4. Assume thatn — 0o, p — 7 < 1 and liminfpn'/2 > 0. Then (1.19), (1.21),
(1.23) hold as above, and

pl/? <10g F(Gp) —10g(E £(Gnp)) + 1%’) 24 N(0,2(1 — ), (1.25)
pl/2 (log 9(Grp) — log(Eg(an)) + %) A, N(O, 2(1 — 7r)), (1.26)
p/? (log h(Gp) — 1og(Eh(Gnyp)) + 1%’) 4 N(0,1(1 - ). (1.27)

Remark 1.1. The results in Theorem 2 and in Theorem 4 for constant p may be written as
log X —a <, N(0, 0?) without scaling, where X is the random variable under consideration
and a = a(n) and o? are suitable constants. Equivalently, X/e? N LN(0,02). On the
other hand, if p — 0 in Theorem 4, it is necessary to scale log X to get convergence:
(log X — a)/b % N(0, 02), which translates to (X/e®)}/* % LN(0, 02), with b — co. Note
finally that the asymptotic normality in Theorems 1 and 3 also may be written

(log X — a)/b % N(0,0?),

where now b — 0.

Remark 1.2. Let p — 0, with p > n~='/2. The distribution of log f(G,) is concentrated
at log B(f(Gpp)) — (1—p)/p+O(p~1/?), which is below log E(f(Gpp))- Hence the distribu-
tion of f(Gyp) is concentrated way below its expectation; in particular, f(Gpp)/E f(Gnp)
2, 0. This may look surprising at first sight, but it is actually a natural consequence of the
large tail of a log-normal distribution. For example, by (1.25), the distribution of f(Gy,)
is well approximated by LN(logE f(G,,) — 1;%, 21%”), which has the same expectation
as f(Gnp), but is concentrated at substantially lower values.

Remark 1.3. Since (1.25)-(1.27) hold if pn!/? — ¢, for every fixed ¢ > 0, a simple
compactness argument shows that they hold also if pn'/2 — 0 sufficiently slowly. Similarly,
if we rewrite (1.13)-(1.15) as

n3

16m?2

= (108 £ (Gum) — 108(E f(Gum)) + 2 ) = N(0, ) (1.28)

etc., they hold also when m/n3/? — 0 slowly. (By Theorem 1, (1.28) etc. hold also when
m/n?/? = oo with m/(3) = 0.)



We do not know how small p and m can be for these results to hold; it is possible that
the asymptotic log-normality extends all the way down to the thresholds for the variables
to be non-zero, which are at p ~ logn/n and m ~ %nlog n, see [1].

Remark 1.4. Tt follows from the proofs below that the standardized variables f(Gpm)*,
9(Gpm)* and h(Gpm)* in Theorem 1 converge jointly to the same normal variable; thus
f(Gnm), 9(Gpm) and h(Gym) are approximatively linear functions of each other. Similar
results hold for joint convergence in Theorems 2-4.

After an informal discussion in Section 2, we prove generalizations of the results above
in Sections 3 and 4, which together with some combinatorial estimates derived in Section
5 prove the theorems above.

In Section 6, finally, we give extensions to random directed graphs and bipartite graphs.

2. SOME COMMENTS AND HEURISTICS

If we compare the results above for Gy, and G,, with p ~ m/ (Z), we see that the
variables vary on a larger scale for G,,,,. In other words, the variation in f(Gy,), say, given
the actual number of edges e(Gyy), is negligible compared with the variation caused by
the fluctutation in the number of edges. Hence f(G,,) is asymptotically like a function
of e(Gpp), which is asymptotically normal. (See the proof of Theorem 6 for details.) One
might think that this would yield asymptotic normality for f(G,,;), as it does for small
subgraphs, but that is true only when p — 1; in the situation of Theorem 4, it turns out
that we get a log-normal distribution because E(f(Grp) | €(Gnp) = m) = Ef (Gpm) grows
rapidly with the number of edges m, or, equivalently, that E f(G,,) = n" ?p" grows
rapidly with p.

We have no similar, simple explanation for the emergence of asymptotic log-normal
distributions for Gy,,,, in Theorem 2, but note that in this case we have Var X ~ (E X)?
for our variables. This means that we have a natural end-point for the normal phase, since

then X* > — E X/(Var X)'/2 is uniformly bounded below, and thus X* KN N(0,1) cannot
hold.

It is instructive to study the asymptotics of, say, f(Gpnp) and f(Gpm) using the decom-
position in [4]. Using the notation there, the decomposition may be written as

F(Gup) =" J(H;p) S, (H;p) (2.1)
H

and it is easily seen (cf. the calculations in Section 4 below or [4, Example 12.2]), that
f(H;p) vanishes unless H is a forest and that if H is a forest with components of or-
ders vy,...,v,, then f(H;p) = (Ef)[](np)!~% and thus the normalized versions satisft
F*(H;p) < Bf [[ni-vi/2pli=vd/2,

If p is constant, then f*(Hp) =< Ef for all H = kK>, i.e. when H consists of isolated
edges, while all other f*(H ;p) are smaller. It follows that f(G,,) can be approximated
by > e f(ng;p)Sn(ng;p); moreover, S, (kKs;p) can be approximated by a Hermite
polynomial in S, (K>;p) and the sum may be approximated by

o0 N Y _
;Ef%(pr)k (8, (Kaip)) =Bf exp( (22) 5, (Kaip) - L), (22

which gives (1.25), cf. [4].



5

If p— 0, then f*(kK»;p) < Ef p~F/2 is (asymptotically) larger the larger k is. In this
case, each single term in the expansion (2.1) is negligible compared with the others, and
we do not know how to make the argument above rigorous. It is, nevertheless, tempting
to use the same approximations and arrive again at the approximation (2.2), which would
imply (1.25) if the error could be controlled.

This is not only an heuristical motivation for the log-normal limits in Theorem 4 (with
the proper scaling); it also suggests a method for proving them. Recalling that S, (Ko2;p)
and S,,(Kz;p)* are linear functions of e(G,,;), consider instead of f(G) the modified vari-
able

$(@) = e "D f(G), (2.3)

where a is a suitable constant (depending on n and p) such that the approximation (2.2)
of f(Grp) is equivalent to ¢(G,,) ~ C,, for some constants C,. As we shall see later
(Remark 4.1), this can be verified by estimating the variance of 1)(G,,;), at least when
p > n~12; this is perhaps the simplest proof of (1.25).

Turning to Gy, we use the heuristics from [4] that the asymptotics for G, usually
are as for G, with p = m/(}), if we ignore all terms in (2.1) such that H contains an
isolated edge. In our case, if n=/2 < p < 1, f*(Py:p) =< Ef (np?)~'/2, while all other
f*(H;p), for H such that every component of H has at least three vertices, are smaller.
This suggests that f(G,,) has the same asymptotics as a linear function of S, (Ps;p),
and thus is asymptotically normal. Moreover, if pn'/2 — ¢, we have f*(kPy;p) < Ef for
every k, and the heuristics suggests an approximating exponential sum similar to (2.2)
(but with S, (P»,p)* instead), which would give a log-normal limit as in (1.16). We warm
the reader, however, that these conclusions are not completely correct; they happen to
give the right qualitivative behaviour of f(Gy.,), but the asymptotic variances they give
are wrong, e.g. by a factor 9 for (1.7). (A closer examination shows that the error comes
from replacing 7 i Theorem 5 below by limn2+ys.)

Again, we may make this argument rigorous (and obtain the correct variances) by
considering the modified variable in (2.3). Note that the effect of the modification is
quite different for G, compared to G,, which was studied above; since e(Gp,) = m
is constant, ¥(Gpm) is just a constant times f(Gr.,) so limit results for one of them
trivially transfers to the other. On the other hand, as we will see later, the expansion
(2.1) of 9(G,,p) is dominated by the Py term (when p > n~'/2), which gives asymptotic
normality of ¢)(G ). Moreover, the modifying factor in (2.3) cancels essentially the strong
dependence of f(Gyp) on the number of edges present, which enables us, by methods of [4],
to conclude that 9(Gpm) and ¢(Gpp) have the same asymptotics. We will prove Theorems
1 and 2 by this method in Section 4, leaving some combinatorial estimates to Section 5.

The heuristics above suggest, however, a short-cut where Theorem 1 is proved without
any of this machinery. Noting that S, (Ps;p) is a linear function of the number of copies of
P, in G,,;, and e(G,,;,), we see that ignoring all terms but the P, term in (2.1), as suggested
above, is equivalent to approximating (G, ) by a linear function of the number of copies
of P, in G,,;,,. In the next section, we shall prove that this can be done, with a negligible
error, by simple moment estimates. This is very similar to the “first projection method”
to prove (normal) limits for G,,;,, but has to our knowledge not been used before for G,,,,.

We finally remark that these considerations also suggest a method to treat the case
p < n~'2. The argument above suggests an approximation Y(Gnp) = Cexp(bS, (P2;p)),
for some constants b and C, which conceivably could be proved by computing the variance
of the modified modification

e~ 0Sn (K2ip)—=bSn (P, ;p)f(an)
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for suitable a and b. (For small p one might add more terms in the exponent.) We have
not tried this approach.

3. A GENERAL RESULT

Since most of the argument is the same for the three variables that we consider, we
shall state and prove a more general result which will be used to prove Theorem 1.
Suppose that we are given, for each n, a set A of unlabelled graphs with < n vertices,
and, for a graph G with n vertices, let ¢©(G) be the number of subgraphs of G that are
isomorphic to some member in A. We assume that all graphs in A have the same number
p of edges. We let A be the set of subgraphs of K,, (the complete graph on the set of
vertices where our random graphs live) that are isomorphic to some member of .Z, and
let N = ¢(K,) be the number of elements of A. (Note that A, o, 1, A, N as well as m,
p and other quantities introduced below depend on n. A more careful notation would be
Z;, ©ns bns - - -, but for simplicity we will omit the subscripts.)
The three variables in Theorems 1-4 are evidently examples of such ¢, and we have:
f: A= {trees on n vertices}, y=n—1, N = n"~2;
qg: .Z:{Cn},,u:n,N:%n! (n > 3);
h: A= {5K>} (a graph consisting of n/2 disjoint edges), = 5, N = (n — 1)!1.
We further define
AMz) = +5 > (L a)na) (3.1)
A1, AreA

where ¢(G) denotes the number of edges in G.

Let N(H) denote the number of elements of A that contain a given subgraph H of K,
and define y(H) = N(H)/N. Then, summing over all subgraphs H of K,, without isolated
vertices,

Alz) = % DI A %;N(H)%e(fﬂ =EH:7(H)2xe(H). (3.2)

Al,AQ HgAlﬁAg

Since N(H) and y(H) depend on H only up to isomorphism, (3.2) yields, for small z and
fixed n,

Alz) =1+ <Z>7(K2)2x + <%7(P2)2 + %7(21(2)2) 2 + O(2?), (3.3)

where K5 is an edge, P; a path of length 2 and 2K5 consists of two independent edges.
Thus, using the shorthand v, = y(K3), 72 = v(P2) and 73 = 7(2K>),

log A(z) =1+ <Z> iz + (%73 + %73 — % (;”>2~y;‘> 2%+ O(2%). (3.4)

By counting the number of edges and pairs of edges in element of A, we have Ny =
(IYN(K5), and N2E= — (s y(pyy 4 (Wi N (2K,), and thus

/(3)7
s = (= 1) — (n)ya). (3.6)
(n)4

Substitution of this into (3.4) yields, after simplifications, the following.

1= M (3.5)



Lemma 3.1. With the notations above, log A(z) has the Taylor expansion

log A(z) = Mz + Xpz? + O(2?), |z < 1, (3.7)
with
A= 3.8
( ] (3.8)
n+1(n)s , > (n—1)° s
A= 2372 gl =Dz + o0 —1)<(n—2)( —3)_n(n—1)>
n3 3 2 4

=S -1 (5)2+0<n B+5+5) (3.9)
O

After these preliminaries, we state our result.

Theorem 5. With the notations above, suppose that n — oo and p = O(n), that n?(ys —

2 N(P>)
N

v2) = 7 € (—00,00) (or, equivalently, n — %2 — 1), and that for every sequence

T =z, withn ' Kz <K n'/?,
2
Az) < exp <)\1x + Xoz? + o(%)) (3.10)

If m>> n®/? and (721) —m > n, then, with p = m/(’;),

Ego(Gnm)=Np“exp<—%(l—p)—i—O((l—p)Z—Z)), (3.11)

2 n3
2

+o(1)) (1 -p)*=

T

Var o(Gpm) = (—

5 (B¢(Grm)” (3.12)

and

2

(1—p)_1%< - /Np eXp (1— ))-1) i>N(O,%). (3.13)

If furthermore T # 0, the standardized variable o(Gpm)* converges in distribution to the
standard normal distribution.

Proof. Let X = ¢(Gpym) and let Y denote the number of copies of Py in G,,,,,. We shall
prove (3.11) and

Var X < (%2 + 0(1)) %(EX){ (3.14)
Cov(X,Y) = (T—I—O(l))% EXEY, (3.15)
VarY = (2+o(1))%(Ey) (3.16)

The result then follows easily. First we must have equality in (3.14) by (3.15), (3.16) and
the Cauchy—Schwarz inequality; this is equivalent to (3.12). If 7 # 0, then (3.14)—(3.16)
yield

B(X* — sign(r)Y*)? = Var(X* — sign(r)Y*) — 0. (3.17)
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(This is another way of expressing the asymptotic equality in the Cauchy-Schwarz in-
equality.) Since Y* LN N(0,1) by [4,Theorem 19], X* N N(0,1) now follows. Finally,
this, (3.11) and (3.12) yield (3.13). The case 7 = 0 is simpler, with (3.12) and (3.13)
following directly from (3.14).

Hence we only have to prove the moment estimates. In order to do so, we use the
well-known estimate that, for 0 <[ < k we have

-1
= k! epolog(l - —
0

(—=1) 23 -312+1 14 1° AR A
:klexp<—( ) _ L - -I-O(—-I-—)). (3.18)

2k 12k2 12k3  20k*

Thus, using that g = O(n), p>>n~"? and 1 —p > n~",

EXA:N(m”‘=A@ﬂam(—ﬁﬂi11&1—p)——%%u—qﬁy+o(%i§)>; (3.19)

(’2’)“ 2m 6 2p3
in particular,
2
EXH=DMWexp(—fL{1— )+w?( p)), (3.20)
2m np?
which is (3.11).

Moreover,

EX2 _ Z (m)e(A1UA2) _ Z (m)Qp,—e(AlﬂAg) : (321)

Ay, A €A ((g))E(AlUA2) A, As€A ((g))2u—e(AlﬁA2)

and, for 0 < e < pu, using (3.18) as for (3.19),

(m)Qu—e
(@)
_ oue (2p—e)2u —e—1) (2n —e)® p
=t oy (AR = ) - B o)

l—p 1-p 8u®
R

L—p
=2 exp( —p@u—1)—L 1 e(2u— 1
p exp< H2p )m +eln = m 2 m 6m?2

+2eT/2—22(1—p2)+0(75 (1 —p)e )+o( ))

n?p?
1—p 43 1—p
.2 2 2
_p“exp<—u(2u—1)7—w(l—p) ye 1+O<€ n2p n2 3 322
where
- 1—p  u? _ 1-p 1—p
1 1 ) _ 1

Since €2 = O(%(l +p)¢), we obtain from (3.21), (3.22), (3.19) and (3.1), that
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Hence, using (3.10) and Lemma 3.1, and noting that our assumptions yield \; = O(1),
A =01 andy—1~ 1}%”,

BX® (1+O(

(EX)? n’p?
+ Xa(y — 1) +O((1n_p§)2>>
:exp< uz—p-l-)q(l; %1; ) :1_32(1_172)

— 14 (T_-I—o(l)) (—p)° (3.25)

which yields (3.14).
Let B be the set of the Ny = %(n)g copies of P, in K,,. Then

1-1
EY = Nym =N p2¢ (3.26)

() T 1-1/()

EXY = Z "'(AUB’ (3.27)
AEA AUB)
BeB

Now there are N(P,) = 2N elements of A containing a given element of B, and thus
~v2 N Ny pairs (A, B) with B C A and e(A U B) = pu. Further, given B € B, there are
N(K53) = 1N elements of A containing a given edge in B, and thus v N — 5N elements
of A whose intersection with B equals that edge. This gives 2(y; — 72) N Ny pairs (A, B)
with e(AN B) =1 and e(AU B) = u+ 1. There remain (1 — 2y; + 2) N Ny pairs (A, B)
with e(AN B) =0 and e(AU B) = u + 2. Hence

EXY = NNy <(1 — 271+ 72) ( — ) ((T)M1 s (((T))f >

(m p)(m —p—1) o m—p

() ,u ( — +2(71 '72) (g)_u+72>
_ 1—1/m (1—p/m)(1—(n+1)/m)
‘EXEY< ) ( S N (e 0/ ()

+2(71 — 72)p ‘I%erp 2)- (3.28)

= EXNy ((1 — 271 +72)

We use the expansion

l—v/m (1-pv/m I-p 5p(1 —p) v3(1 - p)
Tl oy e e ()
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valid for v = O(n), and the relations v1 = p/(5) = pu/m, 72 = O(n=2 +~3) = O(n™?),
and obtain after a straightforward but lengthy calculation, that

Cov(X,Y) EXY B oy (1 —p\2 pu(l —p)
EXEY _EXEY_l_(”_“)( D ) O( nip3 ) (3-29)

which yields (3.15).

Finally, we note that EY? is given by the same formulas as E XY, if we replace A by
B, N by Ny, u by 2, v1 by 2/(3) and v by 1/Ny = 2/(n)3. With these substitutions,
(3.29) becomes

VarY EY? 2 /1 —p\? 1—-p
— - 1="(—£ 0] 3.30
[EY)?  (EY) =1 » )+ (n4p3>’ (3:30)
which yields (3.16) and completes the proof. O

Remark 3.1. It follows from the proof that equality holds in (3.10). It is, however,
convenient to have to verify only the inequality.

Remark 3.2. The proof yields, implicitly, the approximation

n'p(1—p) " (EX)H(X — EX) ~ J57Y™, (3.31)

where the difference between the two sides tends to 0 in probability (and in L?) as n — oc.

Here Y may be replaced by the sum of the square of the degrees of the vertices.

It is likely that this method can be used also in the case m = n®/? to prove a generaliza-
tion of Theorem 2, but we have not attempted this and will instead use another method
in the next section.

We now turn briefly to G,,,, and obtain the following general version of Theorem 4 as
a corollary of Theorem 5. A special case was given as [3, Theorem 6].

Theorem 6. With assumptions as in Theorem 5, suppose further that u/n — k > 0. If
p—=m<1andp>n-t?, then

pl/? (log ©(Gnp) —log E 0(Gpp) + %ﬁ) A, N(O, 2K2(1 — 7T)), (3.32)

with E¢(Gpp) = NpH.
Proof. Note that (3.13) implies

@(Gnm)/N<%># exp (—%,ﬁ(% — (%)) 2 (3.33)
and thus
10g 9(Gnom) — (logN + ulog (T—) - llﬂ(i . %)) 20, (3.34)

o) 2 m (G
Let M = ¢(G,,,) be the number of edges in G,,,. Then M/n3/? 2 oo and ((5)—M)/n LN

2
00, and it follows by conditioning on M that

log 9(Gnp) — <10gN + ulog % - %;ﬂ(% - %)) 2. (3.35)
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Moreover, M ~ Bi((}),p) and thus M* N N(0, 1), which implies

M L—p\t/2 .\ 1—p\/2_ 1-p
log@—logp-l—log(l-l-((g)p) M)-logp-l—((g)p) M +Op<n2p) (3.36)

and p?/M — p2/(3)p 2, 0. Now (3.32) follows by Cramér’s theorem. The formula for
E ¢(Gyp) is evident (for any p). O

The same proof yields asymptotic normality of p(Gp,) when p — 1 with 1 —p > n~!
and k > 0, but the following simpler proof, using the first projection method, yields a
more general result.

Theorem 7. Suppose that n — oc, p/n — K >0, p — 1 and 1 —p > n~2, and that if
—1=p
T =", then
A(z) < exp(Aiz + o(z)). (3.37)
Then the standardized variable ¢(Gyyp)* tends in distribution to N(0, 1), with Ep(Gpp) =
Np* and
2
Var @(Gp) ~ 26%(1 = p) (B 9(Grp))* (3.39)

Proof. As in the proof of Theorem 5, it suffices to prove that if X = ¢(G,,) and Y =
(Gup) ~ Bi((3). ), then

Var X < (2x% + o(1))(1 — p)(E X)?, (3.39)
2K+ o(1)

Cov(X,Y)=""2"(1-p)EXEY, (3.40)

Vary = 2 +n‘;(1) (1-p)(EY)2. (3.41)

These are easily verified. First, by (3.37),

EX2 = Z p2p—e(A1r1A2) — N2p2uA<1 - 1)
A1,A2€eA p
1—

< (EX)2<1+>\1 b +o(1—p)),

which gives (3.39) since A; = p?/(}) ~ 2x% by Lemma 3.1. Similarly,

EXY = Nup" + N ((3) — p) p" ' =EX (u(1 —p) + (3)p) .

and thus
Cov(X,Y) _u(l—p) 2kn(l—p)
EXEY  EY n2p
which is (3.40). Finally, VarY = (5)p(1 — p), which implies (3.41). O

Remark 3.3. In Theorem 7, we only have to asssume an estimate of A(z) at x = 1/p—1.
Similarly, in Theorems 5 and 6 it suffices that (3.10) holds for z < (3)/m — 1 and z <
1/p — 1, respectively.
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4. A SECOND PROOF, AND THE CASE m =< n®/2

In this section we use the decomposition methods of [4] to give a second proof of
Theorem 5, at the same time proving the following result for the limiting case.

Theorem 8. Suppose that the conditions of Theorem & are fulfilled, with (3.10) holding
for x =< n'/? that u/n — k and that
Y(iPy + jK2) = (14 0(1))y(P2) v (K2)’ (4.1)
for any 1,7 > 0.
i) If m/n?? = c>0, then

3

E¢(Gnm) ~ N ( ) exr>< 2—(':?), (4.2)

N_
2m
Var o(Gpm) ~ (€7 2/8@ - )( ( m)) (4.3)

@(Crum) /| B (Gom) 5 IN(— 10 25 (4.4)

(i) If pnt/? — ¢ > 0, then

2
12 (108 6(Gp) ~ 108 B (Guy) + L ) 4 N(0.22), (45)

Proof of Theorems § (again) and 8.

We first observe that (4.2) follows by (3.19), and that part (ii) of Theorem 8 follows from
part (i) by the proof of Theorem 6 with only minor modifications. Moreover, the argument
n (3.24)—(3.25) yields

Var o(Gnm) E(‘p(Gnm))Q_ ox 7'_2 o _
Eo(Grm)®  EpGom))? = P(scﬁ (U) 1,

2

while (4.4) and Fatou’s lemma yield, with Z ~ LN(— 1662, =),

7.2

> Var(Z) = exp(862) -1,

and (4.3) follows. Thus we only have to prove (3.13) and (4.4). We let, as usual, p = m/(}),
and restrict ourselves, for simplicity, to the case p — 7 with 0 < 7 < 1.

As explained in Section 2, we will replace ¢ by another function, which on G, differs
from ¢ by only a constant factor, before applying the decomposition. It is convenient to
change (2.2) a little, and we define, for any graph G with n vertices,

$(G) = p(@)(1 = a)" D r, (4.6)

for some constant a = a,, € (0,1) to be chosen later.

Our method requires us to compare Gy, not only with a fixed G,,,, but also to vary
the edge probability. We therefore define a random graph process G, (t) as follows. Let,
for each edge e € K,,, T. be independent, identically distributed random variables with
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a uniform distribution on (0,1), and let G, (t) be the subgraph of K,, with edge set {e :
T. < t}. Thus G, (p) = G,,. We also define

I(t) = I(e € Gu(t)) = I(Te < t).
After these preliminaries, we begin by computing the expectation and variance of X (t) =

h(Gn(t)).

Since

X(0) = $(Gal) = 3 T 7)) T~ ale() = 3 vato), (47)

A€AecA e A AcA
say, we have
= 3" EY4(t) = Nt#(1 — at)(z) - (4.8)
A€eA

and, using EI.(t) = t, E(L.(t)(1 —al.(t))) = t(1—a) and E(1 —al.(t))? = 1—t+t(1—a)?,

EX()’= Y EYa(0)Ya,()

A, AseA
_ Z te(AmA2)(t(1 . a))2(u—e(AlﬁA2))(1 — (1 — a)2)(§)—2u+e(AlﬁA2)
A1, A
= (L= a1 = 11— o) B2y (O ) 1)
_ 24\ (3)—2n _
= 2(1 _ q)2 (L2 20t T a7t Capy-ep (At
=(EX()*(1 —a) < 1 —at)? ) (1 — at) A(t(l—a)2>' W)
Consequently we have, assuming a < 1/2 and letting
= 25(11_%)2 = O(%) and A(z) =logA(z),
E X ()2
8 X )
N a’(t —t?)
= 2u(log(1 — a) — log(1 — at)) + ((3) ~ >m4 o ))+Mm
= —2p(a — at) — p(a® - (at)?) + O(ua®) + 2m( +0((a®)?)) + ()
= —2pa(l —t) + (5)a’t(1 —t) + 2(5)a®t>(1 — t) an(l —t2-|-2t (1—1))

+0(pna® + na*t?) + A(z)
1+ 2at)(( ) a?t(1 —t) — 2pa(l — t)) — pa®(1 — t)? + O(ua® + n®a*t?) + ()
1-

—(1 4 2at)(1 — )—2:16—,ua (1 - t)2+O( !

(3)

= (1 + 2at) () (( )at — ) —(1-I-2at)1(n_):,uz—uaz(l—t)z-i-()(ua + n2a*t?) + \(z)
)

"at — 1)’ a® + n2a*t? Az).
e (Blot =)+ %) 0,

We choose

o= _ 4.11
m = () 1y
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and consider in the sequel of the proof only ¢ with
t=p+0@p/?/n); (4.12)

this implies that ¢ ~ p and (})at — p = u(;—) -1)= O(np“—m) = O(f7). For such ¢, (4.10)
yields after simplifications

EX(t)? W e oot
log ———— =\(z) - ~—~z+ ——z° + O(— + —) (4.13)
(E X (t))2 () (2) 442 pb¢3
We now use our assumption (3.10) and the relations (3.8) and (3.9), noting that the latter
gives Ay = 5-7% — G ;2 + o(%), and obtain,
E X (t)? 72 x2 1
log ——2 < I (%) +0(5)- 4.14
BEXM)? = 2 +o(5) + 0 (4.14)
Since z < 1/t < 1/p, (4.14) implies if p > n~1/2,
Var X (t) E X ()2 o T2 x? 5 (1—-p)?
_ 1< (—) - 1 : 4.1
EX0)E - Ex@RE ST o toly) = e 5 (4.15)
and if m/n%? — ¢ > 0 and thus p ~ 2en=1/2,
Var X (t) 72
— = < —)—1 1). 4.1
T < () — 1+ ol (4.16)
We next consider the orthogonal decomposition
= " (H:1)S,(H;t) (4.17)
H

studied in [4]. Here H ranges over all unlabelled graphs without isolated vertices and
Sp(H;t) =Y g, [leeq, (Ie(t) —t), with the summation over the subgraphs H; of K, with
H; = H (each repeated aut(H) times).

We may assume that H is a subgraph of K,,. Then, using (4.7),

~ o BG))Sa(H;t) _ B(GW) [een e — 1) _
VD = S BG 0P = (D = 0) =
1 —e(H) e(H
= aut(H) ( )Z ( ) [T e —t) (4.18)

ecH
and, summing over F' without isolated vertices,
EL (I —t)\*™ (E(l - al)(I, — )"\
B(valt) [T (L~ 1) =BYa(t) (—
Al )6161[( ) Al )< EI > E(1 —al,)

. —at(1 — t)\e(H)—e(HNA)
—EYa(t)(1— 1) <H“A)(1_7at)

. 1 — gt \e(HNA)—e(H)

=EYA(t)(1—t)e(H)(l_at>_e(H) Z (L)Q(F),

—at
FCANH
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Consequently, with F ranging over the 2°(#) subgraphs of H without isolated vertices,

@Z(H;t) — au:‘H E)Z(v(t) (_a)e(H) e(H) Z ( >e(F) F)
FCH
= auiH EX(t)(1 - at)—e(H)(_a)e(H) Z (—at)_e(F)ﬂy(F), (4.19)
FCH

In particular, choosing H = P, we have 4 choices of F', namely P, K, (twice) and the
empty graph. Hence, using ap = y; = y(K3) and our assumptions on v, = y(FP5) and ¢,

~ 1 o 2 1
B(Pait) = SEX(B)(1 - at) 2a? (1 = —(Ks) + Wm)).

- % BX(1)(1 - at)2p 23 (1 - 2L+ ])_3_2)

— 5 BX () s (7 + of1) (4:20)

The variance of the P, term in (4.17) is thus

P50 Var $0(Po ) = J(BX (D) (7% + 0(1) - 2m)s2°(1 — 7
_ EBX)2( 4 o(1)) L= (4.21)

2np?

Moreover, it follows easily from (4.8) that E X (¢) ~ E X (p) for the ¢ that we consider.
Consider first the case p > n~/2 (Theorem 5), and define

B=n"Y2p " E X(p). (4.22)

Comparing (4.21) with (4. 15) we then see, since the decomposition (4.17) is orthogonal
and thus Var X () > Var(zp( :1)Sp(Pa;t)), that equality holds in (4.15), which now may
be written

Var X (t) = (372(1 — )% + o(1)) B°. (4.23)

Moreover, the variance of the remaining terms in (4.17) is o(3?). Thus, using the ter-
minology of [4], and excepting the degnerate case 7 = 0, X (¢) is dominated by P,. In

particular @Z*(H, t) = o(p) for every H # P5.
It follows by [4, Theorem 2 or 3], and trivially when 7 = 0, that

(X(p) —EX(p))/8 % N(0, 17%(1 — 1)?). (4.24)

In the case p ~ 2en~1/2 (Theorem 8), we, more generally, have to consider H = kP, k > 1.

For such H, if F' is a subgraph of H without isolated vertices, then F' = 1P, + j K> for
some 4 and j, and by the assumption (4.1),

(—a)*U) (—at)4Fy ( >e(F) —yp ) H)=e(F)y(F)

(14o0(1))p ‘2’“( 1)y (4.25)
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It follows by (4.19), since each of the k components in H may contribute a P, a Ky (in
two ways) or nothing to F, that

b(kPy;t)/E X (t) 2kk' Zp—zk FR=Rini | (=2 =2k
p__% 2 2\k 2k, —2k
= 2kk| (72 - 271 +71) + O(n_ p_ )
k
_ =2k, —2k( T
=nop (M. + (1)) (4.26)
In this case we define
B =EX(p)
and obtain 1 )
_ 3k/2 BT 17
(kP27 )//6 n Q,b(kPQ, )/,3—) o (40) . (4.27)

By computing the contribution of the kP, terms in (4.17) to the variance of X (t), we
obtain

im |¢* (kPy; 1) /6% aut (kP,)

Mg

lim inf Var(X (t)) /5% >

=
Il
-

2

i(k') (410)%2%! - eXp(ST?> 1 (4.28)

k

Il
—

Thus equality holds in (4.16). Moreover, if 7 # 0, [4, Proposition 4.7] shows that X (p) is
almost finitely dominated by {kP»}72 ;, and [4, Theorem 2| then yields

(X() -EX(p)/8 = i%(@) U(Py; 1)F:

I
7N
»-l>|\‘
-
o
—
N—
|
N | —
~

N
=
~—
5
=]
-
—~
o
N—
|
\_I—\

with U(Py;1) ~ N(0,2), and thus
=) (4.29)
(When 7 = 0, this is trivial by (4.16).)

We now apply [4, Theorem 9(i) (or (iii), (iv))], which shows that (G,,,,) has the same
asymptotic distribution (4.24) or (4.29) as X (p), provided that furthermore

Var(¢(t) = o(n®5*/p), (4.30)

where &(1) is the drift of X (¢), see [4]. Since

$(Grm)/ E X (p) = @(Grm) (1 — )™ NpH(1 — ap) () =4, (4.31)

easy calculations then yield (3.13) and (4.4).
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It remains to prove (4.30). By [4, Proposition 2.8],

f=0-07 Y B0 - 1.0 - "YY Wil rm). (32)

e

where Y4(t) is as in (4.7) and the derivatives are interpreted formally. In other words,

) = (1= DY Yae(t), (4.33)

A€EA e

where Yy (t) is obtained from Y4 (¢ ) by replacing the factor I.(t) by 1 — I.(¢) if e € A,
and replacing 1 — al.(t) by —a(l — I.(t)) if e ¢ A. Hence,

BEW)=01-8)"2Y Y E(Va,e,Vaye)- (4.34)

Ai,Ar e1,e2

By the independence of I.(t) in G, (t), we easily obtain

( % e1 =eg € A; N Ay
S e1=es € (A1 \ As) U (A5 \ A1)
E(Y v 1_Iz+(tl(1_i)a)z' €1 =eg € AE N AE
W: 0 e1 ey and e; € Ay or ey € A
A LA _
(t(ll_ta))Q e1 € Ay \ Az, ex € Ay \ Ay
t(ll ta) 1_;1&%:21)2 e1 € A1\ As, e € A{ N AS  or conversely
{ (%)2 €1, €2 EAEHAS, e1 # eg

and thus, counting the number of different terms and completing a square,

Z E(Y4 e, Yase,)/ E(Ya,Ya,)

= oAy 1 Ap) 2oy \ Az)f((ll__g
¢ g a®(1—1) a(l — ) ?
+6M1ﬂAﬁ<1_t+ﬂ1_@2_(1—t+ﬂ1—aP)>
1—t e re a(l —1) ’
< (A; \Az)ﬁ e(Af mAz)l —tt+ (1 - a)2>
5 € Al AQ n a i
<oA1 N Ao) 7 + (3)a” + (t(l’ia) so((REN +O(““)>

— O(l + (M)Q +n2a® + p*a® + (u(l —2ta+ta®) — (3)(a — a2)>2>

o1+ (4P sttt (- (3) 2

O<1+(6(AIHA2)>2+TL4M4+u2<1_1>2>. (4.35)

t m?
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Using the assumptions p = O(n) and t = p + O(p*/?/n), this reduces to
e(A1 NA3)\2 1 1 .
O<<#) + ) - O(t_4(1 +1) (A10A2))‘

t t4
Consequently,
BEn)? =0t > (1+ NI BY,, (1)Ya, (1)), (4.36)
A1,Az

This sum, S say, is evaluated as in (4.9), the only difference being that the argument
15(11_%)2 =z of A isreplaced by (14+¢)(1+2z) —1=xz+t+ 2t =2+ O(1). The argument
in (4.10)—(4.14) now yields

S p B, 1
log ——  — 1) L .
og EX0)? Az +0(1)) (g)x—i- (n)Q:v + O(n2t3)
2
2 72
< %xQ + o(—) + O(\1 + Ao)
= 0(1), (4.37)
and thus
S = O((EX(1)?) = O(np*6?), (4.38)
E(£(1)” = O(p™*S) = O(np™2f%) = o(n*5/p), (4.39)
which proves (4.30) and completes the proof. O
Remark 4.1. It is easy to give a direct proof of Theorem 6 using (4.15) in the weak
version % — 0 which, by Chebyshev’s inequality, yields X (p)/E X (p) 2 1 and
thus

log X (p) — log E X (p) 2 0.
Since X (p) = 1(Grnp) = ©(Gpp)(1 — a)*(Cre)~H  we have

log o(Gryp) = log X (p) — (e(Gnp) — p) log(1 — a),

and it follows easily that

n d
p/?(log p(Gp) — log E X (p) + ((3)p — 1) log(1 — a)) = N(0,2x>(1 — 7)),
which gives (3.32) by elementary calculations.

Remark 4.2. Note that this proof gives an asymptotic distribution with normalizing
constants derived from the mean and variance of ¢(G,,,), without caring about the actual
mean and variance of ¢(G,,,) which we have computed separately.

5. PROOFS OF THEOREMS 1-4

In this section we shall prove that the three variables considered in the introduction
satisfy the conditions of Theorems 5-8, with the following parameters:
f, spanning subtrees: vy; = 2/n, v2 = 3/n? and thus 7 = —1; kK = 1.
g, Hamilton cycles: y; ~ 2/n, 7o ~ 2/n? and thus 7 = —2; k = 1.
h, perfect matchings: y; ~ 1/n, 72 = 0 and thus 7 = —1; k = 1/2.
Theorems 1-4 then follow immediately from Theorems 5, 8(i), 7, 6 and 8(ii), respectively.
The main problem is to verify (3.10), and we begin with a simple estimate.
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Lemma 5.1. If z,e > 0, and £?(x + x*) is sufficiently small, then
Zz— —ek? —exp<3:—5x—53:2+O(52(a:+:1:3))). (5.1)
If furthermore C < oo is fized, then also

n k 2 3 2
Z %e‘gk +OR " < exp(m —ex—ex® +O((* +n7?)(z + m?’))) (5.2)

Proof. We have, with y = ze72°% = 1 — 2ex? + O(£223),

) zF 2k

§ : —ek? _ § : —2ckx—e(k—z)?+ex? _ ex? y —5(k—a:)2
—€ = —€ =€
k! k! k!

k=0 k k

= 6”2“’ (1 —e(y+ly —2)) +O(2((y —2)* + 2 +1)))
R G (1 —ex + 0?2 + %z + %2 + £%2%)). (5.3)

Hence (5.1) follows by taking the logarithm, using e2z? < £2(z + z3) and e°2® < (?(z +
x3))3.

For (5.2) we note that if a, = 77 e~ sR*+CR 0 and k< n, then apy1/ap < e3¢, Hence
app1far < e lifn >k > ko= le 3C+1 x], and Zk0+210gn+1 ar < (1—e 1~ 1n 2Qp011 =
O(5ag,). Consequently, it suffices to consider the sum with k < ko + 2logn + 1. If
x > logn, this implies Ck®/n? = O(z3/n?), and (5.2) follows by (5.1). If z < logn, we
have k = O(logn) and thus

3 2 3
S BN e
n n
and again the result follows by (5.1) since
- (k)3 +k —ck? z® + T\ N T —ck?
Sl or (afmFtor
=1 =0

Spanning subtrees. In this case, the graphs H that appear in (2.2) are the forests. If
H is a forest with j; components with ¢ vertices, 1 = 2,3, ..., then

i =TI(==) (5.4)

2

by a result of Moon [6]. There are, for each sequence js, js, ..., with v = Y0745 < n,

exactly |
n)y ioovg (M) o0/ i—2 . Ji q
szz('T)z(Z')j’ H(l V= (n')/ ,_2< i " > ﬂ (5.5)
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such forest H C K, and thus

L (n)v 1 /42 : ;2 Ji i
27 2t () :Z v Hﬁ 22 2 307D
{7} i=2""
() 77 L (4 amii- "
:{Z:} — llﬁ EnQ ). (5.6)
Ji 1=
We use the estimate
v—1 v—1 . .
v k k -1 279 — 1
(Z)u =H(1_E) SeXp(_ZE) =exp(_7/(l/2n )) Sexp(—h( .7; )) (5.7)
1 1

and obtain finally, now summing over all sequences {j;} of non-negative integers and using
Lemma 5.1,

oo .7
<Ze‘32(232 1/“1_‘[—'<Z'n2 gt 1>J
git \i

{7} i=2

_ ZOO i fn24% /n (22)7 ﬁ i(fnz—z‘xi—ly
ol ARV
e’ jot % gt Nl
1 =i
_ 1/mn 2 1/n 2 1/ny\2 - 3 v 2—i,0—1
_exp<2me 2ze (2ze™'™) +O(n (x+a )) + 5_3 G >
) 8 33 2 3
= exp 2x——x——x2+—$—+0($+$ ) (5.8)
n n 3 n n?

for x > 0 with z3/n? sufficiently small. Moreover, for the terms up to z? in the Taylor
expanssion, the estimate above gives an error of at most O(n~2) in each coefficient. Hence

3
A(z) < exp <)\1x + Aoz + O(m ;:;E )), (5.9)

which implies (3.10) for n=! < z < én?/3 and (3.37) for £ = o(1). The remaining
conditions in the theorems are immediately verified. Note, in particular, that

V(iPy + jK3) = 7(Py)"y(K>)’

exactly, as soon as n > 3i + 27.

Hamilton cycles. In this case, the graphs H with N(H) # 0 are C,, itself and all unions
of disjoint paths. If H is a disjoint union of j; paths of length [, 1 =1,2,3,..., then

N(H) = L(n—Y, 15 — 1)12>7,

since by collapsing each component in H to a single vertex, each Hamilton cycle (in K,,)
containing H may be obtained from a Hamilton cycle in the smaller set by choosing one
of two possible orientations for each component in H; thus, with = lj,

A(H) =279/ (n — 1), (5.10)
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Given ji,7j2,... with v =Y (I + 1)j; < n, there are

such graphs H C K,. Finally, there are N = %(n — 1)! choices of H = C,,, each having
N(H) =1 and y(H) = 1/N. Consequently,

_ (’I’L),/ 2_'jlwu 2 xn
Mo =2 e L+ e 512

We use the estimate

(n)y nQ(n),,

(n=1))%  ((0)41)?
vip—1)  ,(ut+1) S

24v—2(p+1) _ K (U_ ’u_>
n exp( o + o +0 2 + 2

-2 (241 +352) (21 +372 = 1), (1 + 272 + (51 +2j2)
- b 2n + 2n

-3 -3 n
+0(&L+ 2 + Zm))
3

_2 -2 _ 4 . . _ -2 2 7 -3 -3 n )
— -2 exp< J1 J1J2 — J2 + 2 )2 + O(% + % + lel>> (5.13)
3

2n n 2n

and obtain, for some C' < oo, using Lemma 5.1, when z3/n? is sufficiently small,

Y <Y exp( 2ol T +Cﬁ+igl- TT L 2 atiin-0i
= AT n2 ' on’? n? . I 7! v

{51} l

n/2 n/3
1 n\it —j?/n+Cj} /n? 2° n32C n eClply1-1
<> ﬁ(zx&/ )7 emdt mtCit/n® ™ . ( 7/2 i3 /n? HZ 1-1)d
Jj1=0 J2=0 1=351= 07
1 1
Sexp<2ez/"$(1——)——(262/"3:) ZeT/m 2+Z2n( ) O(n _2($+3:3))>
n n
2 2
:exp<(2+—)$——$2+0(x+2x )) (5.14)
n n n

(The term ﬁx” is negligible and may be incorporated in e.g. the term with j; = 1,
jo = -+ =0, without altering the estimates.)

Again, the estimates have errors at most O(n=2) for the Taylor coefficients up to z2
and the result may be written

3

3
A(z) < exp()\la: + Aoz? + O(m :;;E )), 0 <z <dn?? (5.15)

The conditions in Theorems 5-8 follow.
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Perfect Matchings. We only have to consider H = j K>, for which

1 1 1
1 Ks) = . = 5.16
YGK2) n—1 n-3 n—25+1 (5.16)
Hence
2 (n)2, 2 T 2
_ D mi( s 2,0 — —(Z =
A@")—Z 31 VUK _Zj!<2> Hn—2i—1' (5.17)
3=0 7=0 =0
Denote this product by b;. If j < n/4 we have, for 0 < < j,
n—2 n (1+ 21 )< n . (ﬂ)
n—2%-1 n-1\ "nm-2i—1)/) "n-1P\p2
and thus
4 -1 . : . : o
no o\ 4i no\ 2j(j — 1) no\ j(G—1)
i< (o) ee(X ) = (7)) e (=) < (=) (1+355);
is\n—1) P kz::OnQ n_1) P n2 ~“\n-1 3 n?
if n/4 < j < n/2 we have, for large n,
b= —— ﬁ n=2 <ol <5l
]_n—2j+11n—2i+1 e =
Consequently, for £ > 0 and n large,
— Lyzyic n i (7)2 (4)3
Mo <5 (5) (o) (1353 5 2)
(x)_jz:%j! 5) (- + 32 4653
n 3 \2 65n z\3
= _ 1 [ (=
P (Z(n—l)x>( +(n—1)2<2) +(n—1)3<2)>
n z? + 23
or , s
A(w)Sexp()\la:-l-)\szz-l-O(x :23: )), (5.19)

where A\; = n/2(n — 1), Ay = O(n~2). Hence the conditions of Theorems 5-8 are satisfied
in this case as well.

6. OTHER RANDOM GRAPHS

The results and proofs above hold with minor changes also for several other random
graph models. We consider here two cases, omitting the detailed verifications that the
arguments above and in the relevant parts of [4] still are valid.

Directed graphs. Let D,,, be the random digraph without loops with n (labelled) ver-
tices and m edges drawn without replacement from the n(n — 1) possible edges. Similarly,
let Dy, be the random digraph without loops with n vertices where each edge appears
with probability p, independently of all others.



23

We now assume that A is a set of unlabelled digraphs, and argue as above. There
are two differences from the undirected case. First, (’2’) has to be replaced by n(n — 1)
everywhere, which leads to new factors % in some constants in the asymptotic results.
Secondly, in formulas as (3.2) and (4.17), we should sum over digraphs H. This makes
no essential difference for the Ks-terms, if we interpret K> as a directed edge, but P; is

replaced by three different digraphs Py;, ¢ = 0, +, —.

e—e—e 0L —0—3e e—ei—o
Py Py Py

There is also a fourth connected digraph with two edges, namely the cycle Cy with two
vertices.

Let v1 = y(K32) = p/n(n — 1) and define, as before, A\; and Ay by (3.7). (Note that
(3.8) and (3.9) have to be modified.) Then the following analogue of Theorem 5 holds.

Theorem 9. Suppose that n — oo and u = O(n), that n?(y(Ps) —v3) = 7; € (—00, 00)
for i = 0,4+, —, that v(Cy) = O(n=2), and that for every sequence x = x, with n=1 <
r <K n1/2,
2
Az) < eXp<>\133+)\2{172 -I—o(x—)). (6.1)

n
If m > 0?2 and n(n — 1) — m > n then, with p = m/n(n — 1),

2

B(Dun) = Ny exp (=215 +0(1-0) 25 ) (6:2)

m

Var (D) = (o2 + o)) (1 = p)* 2 (B (D)) (6.3
and
=97 2 (D) [N e~ o= ) 1) SN0, (60
where

o =15+ i 4+ 372, (6.5)
If furthermore 0 > 0, the standardized variable o(D,,,)* converges in distribution to the
standard normal distribution. O

In the proof, we let Y; be the number of P; in Dy,,; then Y, Y and Y* converge
jointly to three independent standard normal distributions. The formula in Remark 3.2 is
replaced by

n'p(1—p) N EX)THX —EX) = 1Yy + ST Y]+ oY (6.6)

Theorems 6-8 are valid for digraphs if we replace 2 /n? by p?/2n? in (3.32) and (4.5);
k2 by 1x% in (3.32), (3.38), (4.2) and (4.5); 72/8 by 02 in (4.3) and (4.4); and allow
different Ps; in (4.1).

For example, if g(D) denotes the number of directed Hamilton cycles in D, we have
N =(n-1)k g =nm=1/(n—1), 7Pa) = n/(n)s = 1/(n - D(n - 2), Pry) =
Y(P—) =0,7(C3) =0, 79=1—1=0, 7, =7 = —1 and 02 = 1. We can verify (6.1) as
in Section 5 and obtain the following.
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Theorem 10. Assume that n — oo and let p=m/n(n —1).
(1) If m > n3? and n(n —1) — m > n, then

Eg(Dam) = (n— 1! p" exp (—12%’ +o(n —p)%)) , (6.7)
Var g(Dum) ~ (1= )25 (Bg(Dom))? (6.8)

and
9(Dym)* % N(0, 1). (6.9)

(i) If m/n3/? = ¢ >0, then

n 1-p 1
Eg(Dnm) ~ (n—=1)!p eXP(—W - 6?)’ (6.10)
c? 2
Var g(Dypm) ~ (€€ — 1) (Eg(Dpm)) (6.11)
and L1
d
9(Dnm)/Bg(Dnm) = IN(=5, ). (6.12)
O
Theorem 11. Assume that n — oo and p — © < 1. Then
Eg(Dyp) = (n—1)!p". (6.13)
(i) Ifr=1and1—p>n~2, then
2
Var g(Dyp) ~ (1= p)(Eg(Dyp)) ", (6.14)
9(Dpp)* — N(0,1). (6.15)
(i) If0 <7 <1 and liminfpn'/? > 0, then
1/2 (1og g(Dy,) — log(E g(D L-p) 4 x
b Ogg( np) - Og( g( np)) + W — (Oal - 7T)' (6'16)
O

If we consider several variables, we can obtain multivariate normal limits of rank 1, 2
or 3. For example, let h as before denote the number of perfect matchings (for even n),
which has = n/2, y1 =1/2(n — 1), 7(Pao) = v(P24) = 7(P2-) =7(C2) =0, 1o = 74 =
T_ = —% and o2 = %. We verify (6.1) as in Section 5; in fact A(x) = Aundirected (2/2),
where the latter is given by (5.17). If n — oo, m > n3/?
by (6.6) after standardization,

and n(n —1) —m > n, we have

9(Dnm)" = =Y — 5YZ, (6.17)

hence these standardized variables converge jointly to two standard normal variables with
. 1 11 11 1
correlation 0 - 7 + ok

Ry AR Ryt
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Let us now consider digraphs with loops, and let D), and D;w denote the random
digraphs defined as D,,, and D,, but allowing loops. The situation is now more com-
plicated, since there is a further connected digraph with one edge, viz. the loop C7, and
several more digraphs with two edges. We therefore consider only the case when we count
the number of some loopless subgraphs, i.e. when A is a set of digraphs without loops.
In this case, we can ignore all loops in the random graph and use the results above for
digraphs without loops. Note in particular that A(z), and thus condition (6.1), do not
depend on whether we consider digraphs with loops or without.

For D,,, we obtain Dy, by deleting all loops. Hence the results above for D,,, are valid

for D,,, as well.
For D!, .. we have a random number M of non-loops, but conditioned on M, the graph
obtained by deleting all loops may be regarded as D, ;. Here M has a hypergeometric
distribution with parameters n?, n?> — n and m; thus M is asymptotically normal and
Var M ~ p(1 — p)n, where p = m/n?. An argument similar to the one in the proof of
Theorem 6 gives the asymptotic distribution, but it now depends on p whether the extra
variation caused by the variation in M dominates the variation of ¢(D,s) for a fixed
M ~m(1 — 1) or not.

A simple calculation shows that if p — 0, then the variation of ¢(D,s) dominates
and we obtain the same results as before; if p — 1, the variation in M dominates (as
was the case in Theorem 6); if p — m € (0, 1), both variations are of the same order and
have to be combined in the final result. The expectation and variance of p(D),,) are
computed as in (3.19)-(3.25); the only significant difference is that in (3.25), the terms
p2(1 —p)/m = p2(1 —p)/pn? and A\ (1 — p)/p = p?(1 — p)/pn(n — 1) no longer cancel
exactly, which leads to an extra term in the variance estimate (which is negligible if p — 0).
We omit the details, but state the resulting version of Theorem 9.

Theorem 12. Suppose that n — 0o and p/n — K, that n?(y(Py;) —v?) — 7; € (—00, 00)
for i = 0,4+, —, that v(C3) = O(n=2), and that for every sequence x = x, with n™1 <
< n'?, (6.1) holds. If m > n®?, n?> —m > n and p=m/n® — w >0, then

2

BolD}) = Nyt exp~ -1 - )+ 0((1- )23 ) (6.19

m

Var (D!, ) = ((1 — 7)o + 1K + 0(1)) (1 —p)% (Eo(D,,)’ (6.20)

and

2

(l—p)_l/zﬁ <go(D7'1m)/Np“ exp(—éu—m(l—p)> —1) 4, N(O, (1—71')02-1-7'(,%2), (6.21)

where o2 is given by (6.5). If furthermore 0® > 0, or if 0> =0, © > 0 and > 0, then the
standardized variable (D, )* converges in distribution to a standard normal distributiond

Theorems 6-8 are valid for random digraphs with loops with the same modifications as
for digraphs without loops.

For example, for the number of directed Hamilton cycles we have 02> = 1 and x = 1,
which gives the following. (A weaker version of the variance estimate (6.23) is given in

21)

Theorem 13. Assume that n — oo, m > n®? and n> —m > n, and let p = m/n?.
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Then
_ ’fl3
Eg(D., )= (n—1)!p"exp (—12—pp+o((1 —p)m>>, (6.22)
’fl3 2
Varg(Dy) ~ (1= p)—5 (B 9(Dy,)) (6.23)
and

g(D!. ) % N(0, 1). (6.24)
O

The results in Theorem 10(ii) and Theorem 11 remain valid for D;,,, and Dy,,,.

As a further example, we observe that Theorem 12 implies that, for m as above and n
even, Var h(D),,,) ~ £(1+p)(1—p)n®m~2, since 0 = § and k = 3. Moreover, (6.21) may
be generalized to vector-valued variables. For example, if m is as above, then, by (6.6),

1—p)! ( 1, —1)—>N0,Z, 6.25
=97 573 B g(Dur) Eh(Dyr) (0,%) (6.25)

with covariance matrix 11 = 1, 010 = %, 099 = é. Hence, if furthermore p — 7 < 1, then

- ) h(Dpm) d
1 — 12 M ( g( nm/ nm/ 1) N Y 9
( p) n3/2 Eg(D;zm) ’Eh(D;lm) - (Oa )7 (6 6)
with covariance matrix oy =(1-m+r=1o0y =(0-mi+7r; =01+n)/4,

ohy = (1 —7)t + 71 = (1 + m)/8. In particular, g(D,,)* and h(D’ )* converge jointly

to two normal variables with correlation 1+”/1/ Itr — 1/

Bipartite graphs. We consider bipartite graphs with an explicit bipartition, i.e. graphs
whose vertex set is partitioned into two subsets, which we assume are coloured white and
black, such that no edge joins two vertices of the same colour.

For simplicity we consider only random bipartite graphs with equally many vertices of
each colour, although at least the case when the numbers are within a constant of each
other presents no further difficulties.

Thus, let B, be the random bipartite graph with 2n labelled vertices, n white and n
black, and m edges drawn without replacement from the n? possible edges. Similarly, let
B, be the random bipartite graph with n + n vertices and edges drawn independently
with probability p.

We now assume that A is a set of bipartite graphs. In the arguments above, (’;) has
to be replaced by n? everywhere, which again leads to new factors % in some constants.
Moreover, we should sum over bipartite graphs H. Thus P> should be replaced by two
different bipartite graphs, with the middle vertex white and black, respectively, but if we
restrict ourselves to sets A that are invariant under colour inversion, the two terms may
be combined into one and we may proceed as before.

Hence, for colour symmetric .Z, Theorems 5-8 are valid for bipartite graphs if we replace
(%) by n?, in particular p = m/n? in Theorem 5; 72/8 by 72 in (3.12), (3.13), (4.3) and
(4.4); p?/n? by p?/2n? in (3.32) and (4.5); k% by 1% in (3.32), (3.38), (4.2) and (4.5);
and allow different colourings of the P in (4.1).

For example, for the number of perfect matchings we have N = n!, u = n, v = 1/n,
v =0, 7= —1, kK = 1. Furthermore,

" /n\ (n) ., . R
M) =3 (1) ()it = 35 < expta), (6.27)
—\j) \Jj — j!

j j
which verifies (6.1) with A\; = 1 and A, = 0. This gives the following results.
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Theorem 14. Assume that n — oo and let p = m/n?.
(i) Ifm > n3? and n®> —m > n, then

E h(Bpm) = n!p" exp <—% +o((1 —p);—i)), (6.28)
Var i(Bpm) ~ (1 —,9)2:;—32(Eh(Bnm))2 (6.29)

and
h(Bpm)* <5 N(0,1). (6.30)

(i) If m/n3/? = ¢ >0, then

1—0p 1

Eh(Bpm) ~ nlp" exp(—W — @), (6.31)
Var h(Bum) ~ (€ = 1) (B h(Bpm)) (6.32)
and
h(Bpm)/ Eh(Bum) 3 LN(—%, Ciz). (6.33)
O

Theorem 15. Assume that n — oo and p — © < 1. Then
Eh(B,,) =n!p". (6.34)
(i) Ifr=1and1—p>n~2, then

2

Var i(Bpy) ~ (1 = p)(ER(Byy)) ", (6.35)
h(Bnp)* — N(0,1). (6.36)
(i) If0 <7 <1 and liminfpn'/? > 0, then
1_
p/? <log h(Bpp) — log(Eh(Bnp)) + #) 2 N(0,1 — 7). (6.37)

O

These theorems can also be interpreted as asymptotic results for the permanent of a
random (-1 matrix. A weaker version of the variance estimate (6.29) is given in [5].
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