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Key Terms/Definitions 9 

Emergent Vegetation =  rooted vegetation that penetrates the free surface and thus occupies the 10 

full water depth 11 

Submerged Vegetation = rooted vegetation with a vertical extent less than the water depth 12 

Canopy Shear Layer = the region of velocity shear generated by the drag discontinuity at top 13 

of submerged canopy 14 

Canopy-Scale Turbulence = vortices generated within canopy-shear-layer by Kelvin-Helmholtz 15 

instability. 16 

Stem-Scale Turbulence =  turbulence generated in the wakes of individual stems and branches 17 

18 
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Sidebar: Waves over Submerged Canopies 1 

Because the flow beneath waves is unsteady, inertial forces can be comparable to or larger than 2 

canopy drag at high wave frequencies, including typical wind-wave frequencies.  For these 3 

conditions, the wave velocity is not significantly damped within the canopy, in contrast to the large 4 

degree of damping observed for dense canopies in uni-directional flow (Figure 3).  Further, in 5 

analogy to viscous boundary streaming, canopy drag induces a non-zero wave stress, which in turn 6 

generates a mean mass-drift within the canopy.  Steady currents with magnitudes up to 40% of the 7 

near-bed orbital velocity have been measured in model canopies.  8 

 9 

Lowe R, Koseff J, Monismith S. 2005. Oscillatory flow through submerged canopies: 1. Velocity 10 

structure. J. Geophys. Res., 110, C10016, doi:10.1029/2004JC002788 11 

Luhar M, Coutu S, Infantes E, Fox S, Nepf H.  2010. Wave induced velocities inside a model 12 

seagrass bed. J.Geophys. Res. 115, C12005, doi:10.1029/2010JC006345 13 

 14 
 15 
 16 

 17 

  18 

19 



 4 

Abstract: 1 

This paper describes mean and turbulent flow and mass transport in the presence of aquatic 2 

vegetation.  Within emergent canopies, the turbulent length-scales are set by the stem diameter and 3 

spacing, and the mean flow is determined by the distribution of canopy frontal area.  Sparse 4 

submerged canopies enhance bed roughness and near-bed turbulence, but the velocity profile 5 

remains logarithmic.  For dense submerged canopies, the drag-discontinuity at the top of the canopy 6 

generates a shear-layer, which contains canopy-scale vortices that control the exchange of mass and 7 

momentum between the canopy and the overflow.  The canopy-scale vortices penetrate a finite 8 

distance into the canopy, δe, set by the canopy drag.  This length-scale segregates the canopy into 9 

two regions: the upper canopy experiences energetic turbulent transport, controlled by canopy-scale 10 

vortices, while the lower canopy experiences diminished transport, associated with the smaller stem-11 

scale turbulence.  Flexible blades move in response to the canopy-scale vortices, called monami.  12 
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Introduction 1 

 Fresh- and saltwater vegetation provide a wide range of ecosystem services.  Seagrasses are 2 

essential primary producers, forming the foundation for many food webs (Green & Short 2003).  3 

Seagrass meadows also damp waves, stabilize the seabed, shelter economically important fish, and 4 

enhance local water quality by filtering nutrients from the water.  Based on nutrient cycling services 5 

alone, the global economic value of seagrass was estimated to be 3.8 trillion dollars per year by 6 

Costanza et al. (1997).  Aquatic vegetation is also abundant in lowland rivers, where it provides 7 

habitat, alters light availability and temperature, and mediates concentrations of oxygen, carbon, and 8 

nutrients (Carpenter & Lodge 1986).  Fresh- and saltwater wetlands provide habitat, improve water 9 

quality, and reduce coastal erosion (Mitsch & Gosselink 1986, Brampton 1992).  Most of the 10 

services mentioned above are influenced by the flow within the vegetated regions. 11 

 The presence of vegetation alters the velocity field across several scales, ranging from 12 

individual branches and blades on a single plant, to the community of plants, called the meadow or 13 

canopy.  The flow structure at the different scales is relevant to different processes.  For example, the 14 

uptake of nutrients by an individual blade depends on the boundary layer on that blade, i.e. on the 15 

blade-scale flow (e.g. Koch 1994, Hurd 2000).  Similarly, the capture of pollen is mediated by the 16 

flow structure generated around individual stigma (e.g. Ackerman 1997, 2000).  In contrast, the 17 

flushing of larvae and pollen from a seagrass meadow or kelp forest depends on the flow structure at 18 

the canopy-scale (e.g. Jackson & Winant 1983, Gaylord et al. 2004).     19 

 Some aspects of canopy flow have been described in recent reviews.  Monismith (2007) 20 

describes flow at branch- and canopy-scales in and around coral.  Canopy-scale flow structure for 21 

terrestrial plant and urban canopies is described in Finnigan (2000) and Belcher (2012, this volume), 22 

and the mechanical interactions between wind and terrestrial plants are described by de Langre 23 
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(2008).  To complement this rich literature, this review emphasizes conditions unique to aquatic 1 

vegetation.  Specifically, unlike terrestrial canopies, aquatic canopies can occupy all or a large 2 

fraction of the flow depth, such that the dynamic impact of the canopy is felt over the entire flow 3 

domain.  This review will focus on fully developed flow structure over and through long canopies.  4 

The adjustment of flow at the leading edge of a canopy is described in Belcher et al. (2003), 5 

Rominger & Nepf (2011), and Belcher (2012, this volume). 6 

 7 

Geometric scales and momentum balance - 8 

The canopy geometry is defined by the scale of individual stems and blades, and the number of these 9 

elements per bed area.  If the canopy elements have a characteristic diameter or width, d, and the 10 

average spacing between elements is ∆S, then the frontal area per canopy volume is a = d/∆S2.  In 11 

terrestrial canopy literature, this is called the leaf area index (e.g. Kaimal & Finnegan 1994, p.79).  A 12 

non-dimensional measure of the canopy density is the frontal area per bed area, λf, known as the 13 

roughness density (Wooding, Bradley & Marshall 1973).  For canopy height h, and z = 0 at the bed, 14 

 15 

! 

" f = adz = ah
z=0

h

# ,             (1) 16 

 17 

with the right-most expression valid for vertically uniform a.  The canopy density can also be 18 

described by the solid volume fraction occupied by the canopy elements, φ.  If the individual 19 

elements approximate a circular cylinder, e.g. reed stems, then φ ≈ (π/4) ad.  If the morphology is 20 

strap-like, e.g. seagrasses, with blade width d and thickness b, then φ = db/∆S2  =ab  21 

Aquatic canopies exhibit a wide range of geometry.  Marsh grasses are relatively sparse with 22 
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d = 0.1 cm to 1 cm, φ = 0.001 to 0.01, a = 0.01 to 0.07 cm-1 (based on Valiela et al. 1978; Leonard & 1 

Luther 1995, Lightbody & Nepf 2006).  Mangroves are among the densest canopies, with φ as high 2 

as 0.45, mean trunk diameters of 4 to 9 cm, and a up to 0.2 cm-1 (Mazda et al. 1997; Furukawa et al. 3 

1997).  Seagrasses have a = 0.01 to 1 cm-1, φ = 0.01 to 0.1 (Chandler et al. 1996, Luhar et al. 2010).  4 

Emergent plants tend to have rounded stems for higher stiffness, and submerged grasses tend to have 5 

a blade geometry in which the width (0.3 to 1 cm) is larger than the thickness (≈ 0.1 cm), in which 6 

case d is the blade width.   7 

 Within a canopy, flow is forced to move around each branch or blade, so that the velocity 8 

field is spatially heterogeneous at the scale of these elements.  A double-averaging method is used to 9 

remove the element-scale spatial heterogeneity, in addition to the more common temporal averaging 10 

(Gray & Lee 1977; Raupach & Shaw 1982, and references therein).  Let the coordinates x and z be 11 

parallel and normal to the local mean bed-slope, with z = 0 at the bed and positive away from the 12 

bed.  The velocity vector     

! 

! 
u = ( u,v ,w )  corresponds to the coordinates (x, y, z), respectively.  The 13 

instantaneous velocity and pressure (p) fields are first decomposed into a time average (overbar) and 14 

deviations from the time-average (single prime).  The time-averaged quantities are further 15 

decomposed into a spatial mean (angle bracket) and deviations from the spatial mean (double 16 

prime).  The spatial averaging volume is thin in the vertical, to preserve vertical variation in canopy 17 

density, and large enough in the horizontal plane to include several stems (> ∆S).   18 

Using the double-average method, the stream-wise momentum equation becomes 19 

 20 
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Here, ρ is the water density, ν is the kinematic viscosity, θ is the bed slope, and g is the gravitational 1 

acceleration.  Term (i) is the spatial-average of the Reynolds’ stress.  Term (ii), called the dispersive 2 

stress, is the momentum flux associated with spatial correlations in the time-averaged velocity field.  3 

Poggi et al. (2004b) have shown that the dispersive stress is less than 10% of the Reynolds stress (i) 4 

for λf = ah > 0.1.  Term (iii) is the viscous stress associated with the spatial variation in  

! 

u .  The 5 

final term, Dx, is the spatially-averaged drag associated with the canopy elements, which is often 6 

represented by a quadratic drag law (e.g. Kaimal & Finnegan 1994, p. 95).   7 

 8 
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 10 

CD is the canopy drag coefficient.  Since the drag acts upon the fluid within the canopy, which 11 

occupies only (1-φ) of the total volume, the drag is divided by the factor (1-φ).  The canopy-drag 12 

length-scale, Lc, is defined from the quadratic drag law, i.e. based on dimensional reasoning 13 

    

! 

Dx = u 2 / Lc  (Belcher et al. 2003).  From (3) 14 

 15 
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CDa
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 17 

This represents the length-scale over which the mean and turbulent flow components adjust to 18 

canopy drag.  Since, most aquatic canopies have high porosity (φ < 0.1), this scale is commonly 19 

approximated by (CDa)-1.  20 
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 The drag coefficient, CD, is affected by the canopy density, a, the element-Reynolds’ 1 

number, Red =   

! 

< u > d / v , and the morphology of the individual canopy elements.  A review of CD’s 2 

dependence on Reynolds’ number and canopy density can be found in Tanino and Nepf (2008a) and 3 

Nepf (2011).  A linear drag law provides a better fit for rigid vegetation under low element Reynolds 4 

number (Red < 50, Tanino et al. 2005).  The Darcy-Forscheimer equation (e.g. Whitaker 1996) has 5 

also been used to describe drag in wetlands (Oldham & Sturman 2001) and coral canopies (Lowe et 6 

al. 2008).  For flexible vegetation, the posture of the blade is affected by the flow speed, a 7 

phenomenon called reconfiguration.  As velocity increases, the blades are pushed over into more 8 

streamlined positions, so that the drag force increases more slowly with increasing velocity than 9 

predicted by the quadratic drag law.  The impact of a changing plant shape on drag force has been 10 

represented by altering the exponent in the drag law, while holding a, the frontal area, constant at the 11 

undisturbed (no flow) value, ao.  Specifically, the square power in (3) is replaced with a variable 12 

power 2+E.  The exponent E assumes values between 0 (rigid blade) and -2 (extremely flexible) 13 

depending on the type of vegetation (see e.g. Vogel, Ch.6, 1994, Alben et al. 2002, O’Hare et al. 14 

2007, Sand-Jensen 2008, Gosselin et al. 2010, Green 2005).  In practice, it is difficult to characterize 15 

the frontal area a for real plants, which has lead to contradictory results in the dependency of drag on 16 

velocity (e.g. see discussion of Sand-Jensen 2003 by Sukhodolov 2005, Green 2005, Statzner et al. 17 

2006). 18 

 19 

Emergent Canopies  20 

   An emergent canopy fills the entire water depth, H, and typically penetrates through the 21 

water surface.  This type of canopy occurs in tidal marshes, kelp forests, and seagrass meadows 22 

during periods of low tide.  Emergent canopies impose structure on both the mean and turbulent flow 23 
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over the entire water column.  The canopy dissipates eddies with scales greater than the stem-scales 1 

of ∆S and d, while contributing additional turbulent energy at these stem scales (Figure 1).  As a 2 

result, the dominant turbulent length-scale within a canopy is shifted downward from analogous 3 

conditions without vegetation.  In an open channel (no vegetation) eddies scale with the water depth, 4 

H.  In a channel with rigid vegetation, the integral length-scale of the turbulence, , is set by the 5 

smaller of the stem diameter, d, or the average distance to the nearest neighboring stem, Sn, 6 

regardless of water depth (Tanino & Nepf 2008b).  In a square array of stems the average spacing 7 

and the average nearest neighbor spacing are the same, ∆S = Sn, but in a random array, Sn < ∆S.  For 8 

d ≤ Sn, turbulence is generated within stem wakes (if the Reynolds number is sufficient), so that  = 9 

d.  For d >Sn, turbulence is generated within the pore channels, so that  =Sn.  These two regimes are 10 

depicted in Figure 2a.  Even for solid volume fractions as low as 0.6% (a = 0.01cm-1) the production 11 

of turbulence by the canopy exceeds the production by bed shear over most of the flow depth (Nepf 12 

et al. 1997, Burke & Stolzenbach 1983, Lopez & Garcia 1998).  Therefore, turbulence level cannot 13 

be predicted from the bed-friction velocity, as it is for open-channel flow.  Instead, it is a function of 14 

the canopy drag, as described below.  15 

  Vortex generation by stem wakes and/or in pore channels drains energy from the mean flow 16 

(expressed as canopy drag) and feeds it into the turbulent kinetic energy.  If this conversion is 100% 17 

efficient, then the rate at which turbulent energy is produced, PW, is equal to the rate at which mean 18 

flow energy is extracted, i.e. the rate of work done by the flow against canopy drag (e.g. Raupach 19 

and Shaw 1982).  20 

 21 
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Pw =
1
2
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 23 



 11 

In fact, only the form drag is converted into turbulent kinetic energy.  The viscous drag component is 1 

immediately dissipated to heat.  For stiff canopies, i.e. most emergent canopies, and Red > ≈200, the 2 

majority of the drag is form drag, and (5) is a reasonable approximation (Tanino & Nepf 2008 a, b).  3 

In contrast, Nikora & Nikora (2007) suggest that for flexible canopies, which are typically 4 

submerged, the drag is predominantly viscous, and (5) would be an overestimate of stem-scale 5 

turbulence production.  The relative contributions of viscous drag and form drag depend on the 6 

morphology and alignment (streamlined vs. bluff) of the blades and stems within the canopy.   7 

Within a homogenous emergent canopy, transport terms are negligible, and the wake 8 

production (5) is balanced by viscous dissipation, ε, i.e. PW = ε.  In addition, for turbulence kinetic 9 

energy, k, the dissipation rate within the canopy has the scale (Tennekes & Lumley 1972),  10 

 11 

      

! 

" ~ k 
3 / 2
!#1            (6) 12 

 13 

Equating (5) and (6), the turbulence intensity in the canopy is, 14 

 15 

      

! 

k 

u 
~ CDa!( )1/ 3 .           (7) 16 

 17 

As describe above, the turbulence length scale, , is set by the smaller of the stem diameter, d, and 18 

nearest-neighbor stem spacing, Sn.  In a canopy of low solid volume fraction, or specifically Sn >d, 19 

the turbulence intensity increases rapidly with increasing canopy density (Figure 2b), because  =d, 20 

and thus a ≈ d2/Sn
2 in (7).  In a canopy of high solid volume fraction, Sn < d, the turbulence intensity 21 

increases more slowly, because  =Sn, and thus a ≈ d/Sn in (7). 22 
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 1 

 2 

Mean Velocity Profile 3 

Within an emergent canopy, the momentum equation (2) will generally simplify to a balance 4 

between potential forcing (associated with hydrostatic pressure or bed slope) and canopy drag.  First, 5 

viscous stress, 

! 

" #2 u #z
2 , is negligible compared to vegetative drag over most of the depth, 6 

excluding a thin layer near the bed of a scale comparable to the stem diameter, d (Nepf & Koch 7 

1999).  Second, as discussed above, the eddy length-scale is small compared to the water depth, 8 

which limits the turbulence flux of momentum, i.e. the turbulence stresses are typically negligible.  9 

For example, from numerical experiments the eddy scales are 1-3% of the water depth, and turbulent 10 

stresses are only 2% of the total drag for aH = 0.1 (Burke & Stolzenbach 1983).  Similar ratios have 11 

measured in model emergent canopies (Nepf & Vivoni 2000).  A notable exception occurs near the 12 

surface, as wind-generated stress can sometimes play a role in the momentum balance (Jenter & 13 

Duff 1999).  Third, we assume that dispersive fluxes are negligible because the canopy density is 14 

commonly above the threshold ah > 0.1 suggested by Poggi et al (2004b).  For steady, uniform flow, 15 

the momentum equation then reduces to 16 

 17 
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 19 

The hydrostatic pressure and potential gradients that drive the flow (left-hand side) are not functions 20 

of the vertical coordinate, z.  The right-hand side must then also be independent of z, so that the 21 

velocity varies inversely with the frontal area, a, and in proportion to the canopy-drag length scale, 22 

Lc.  For plants with a distinct basal stem, this produces a velocity maximum close to the bed, because 23 
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a is reduced below the level at which branching begins (Figure 1).  A near-bed velocity maximum is 1 

often observed in the marsh grass Spartina alterniflora (Leonard & Luther 1995, Leonard & Croft 2 

2006).  In contrast, the more vine-like Atriplex portuloides has leaves (and thus CDa) that are more 3 

evenly distributed over depth, and the resulting velocity profile is uniform over depth (Leonard & 4 

Reed 2002).    5 

 Equation 8 implies that the velocity profile within an emergent canopy has a self-similar 6 

form.   When the velocity is normalized by its value at an arbitrary reference depth, denoted by 7 

subscript ref, the normalized profiles collapse together, regardless of the absolute magnitude of the 8 

current.  The shape of the normalized profile depends on the vertical distribution of Lc. 9 

 10 
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u 
u ref

=
Lc

Lc"ref
#

CDa( )ref

CDa( )
               (9) 11 
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The right-most approximation holds in most salt- and fresh-water wetlands canopies, for which the 13 

canopy solid volume fraction is small (φ < 0.1), so that (1-φ) ≈ 1.  A self-similar velocity structure 14 

was confirmed by measurements in a coastal marsh (Lightbody & Nepf 2006) and in the freshwater 15 

wetlands of the Everglades (Huang et al 2008).  The normalization in (9) provides an important tool 16 

for extrapolating a full velocity profile from records at a single vertical position.  17 

An interesting non-linear behavior emerges when we compare flow conditions under 18 

different canopy density, but the same potential and/or pressure gradient.  To include the no canopy 19 

limit, i.e. bare-bed, the bed resistance must be included in the momentum balance.  Figure 2c and 2d 20 

depict the change in velocity and turbulent kinetic energy, respectively, relative to bare-bed 21 

conditions, with the later denoted by subscript b.  The details of this comparison are given in Nepf 22 
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(1999).  Because the vegetation offers additional resistance, the velocity within the canopy is always 1 

less than that over a bare bed, and the velocity ratio, 

! 

< u > /u
b
, decreases as the vegetation density 2 

increases (Figure 2c).  Changes in turbulent kinetic energy with increasing vegetation density reflect 3 

the competing effects the reduced velocity and the additional turbulence production in stem wakes 4 

(7).  These opposing tendencies produce a non-linear response in which the turbulence levels 5 

initially increase with increasing canopy density, but decrease as a increases further (Figure 2d).  6 

This non-linear response was predicted numerically for flow through emergent vegetation (Burke & 7 

Stolzenbach 1983) and within submerged roughness elements (Eckman 1990).  It has been observed 8 

in flume studies of flow through real stems of Zostera Marina  (Gambi et al. 1990).  The enhanced 9 

turbulence levels in sparse canopies have important implications for canopy ecology.  An increase in 10 

turbulence, particularly element-scale turbulence, could benefit vegetation by augmenting nutrient 11 

uptake and/or gas exchange (Anderson & Charters 1982), and similarly enhance uptake by microbes 12 

living on plant surfaces (e.g. Gantzer et al. 1991).  Significant contributions to the turbulence 13 

intensity from stem-scale turbulence has also been observed in beds of channel macrophytes (Naden 14 

et al. 2006).   15 

It is commonly expected that dense patches of vegetation, because they damp flow and 16 

turbulence, are associated with muddification, an increase in fine particles and organic content of the 17 

underlying sediment relative to adjacent bare bed conditions.  Recently, van Katwijk et al (2010) 18 

observed that sparse patches of vegetation are associated with sandification, a decrease in fine 19 

particles and organic matter, and they attribute this to higher levels of turbulence within the sparse 20 

patch, relative to adjacent bare regions.  A transition from a tendency for sandification (elevated 21 

turbulence) to a tendency for muddification (diminished turbulence intensity) with increasing canopy 22 

density is consistent with the non-linear model shown in Figure 2d.  23 
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 1 

 2 

Submerged Canopies 3 

The velocity within a submerged canopy has a range of behavior depending on the relative depth of 4 

submergence, defined as the ratio of flow depth, H, to canopy height, h.  The flow within the canopy 5 

is driven by the turbulent stress at the top of the canopy as well as by the gradients of pressure and 6 

gravitational potential (bed slope).  The relative importance of these driving forces varies with the 7 

depth of submergence (Nepf & Vivoni 2000).  8 

 9 

    

! 

turbulent stress
pressure gradient

~ H
h
"1          (10) 10 

 11 

Three classes of canopy flow can be defined from (10): deeply submerged or unconfined (H/h > 10); 12 

shallow submergence (H/h < 5); and emergent (H/h = 1).  A great deal is known about unconfined 13 

canopy flow based on work in terrestrial canopies (e.g. Raupach et al. 1996, Finnegan 2000, Belcher 14 

2012).  When unconfined, the flow within a canopy is driven by the turbulent stress at the top of the 15 

canopy, i.e. by the vertical turbulent transport of momentum from the overflow, with negligible 16 

contribution from pressure gradients.  The terrestrial canopy model can be applied to aquatic 17 

canopies that are deeply submerged.   However, due to the limitation of light penetration, most 18 

submerged aquatic canopies occur in the range of shallow submergence H/h < 5 (e.g. Duarte 1991, 19 

Chambers and Kalff 1985), for which both turbulent stress and potential gradients are important in 20 

driving flow in the canopy.  For emergent conditions (H/h = 1) flow is driven by the potential 21 

gradients, as described in the previous section.  22 
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 For a submerged canopy, there are two limits of behavior, depending on the relative 1 

importance of the bed shear and the canopy drag.  If canopy drag is small compared to bed drag, 2 

then the velocity follows a turbulent boundary layer profile, with the vegetation contributing to the 3 

bed roughness (Figure 3c, sparse canopy).  If the canopy drag is large compared to the bed stress, the 4 

discontinuity in drag that occurs at the top of the canopy (z = h) generates a region of shear 5 

resembling a free-shear-layer with an inflection point near the top of the canopy (Figure 3de, dense 6 

canopy).  From scaling arguments, Belcher et al (2003) predict that the transition between the sparse 7 

and dense regimes occurs at the roughness density λf = ah = 0.1.  Numerical simulations in Coceal & 8 

Belcher (2004, Figure 4 of that paper) suggest that the transition occurs at Lc/h = 5, which 9 

corresponded to λf = 0.15, for their parameter set (CD = 2, φ = 0.25).  Based on measured velocity 10 

profiles in aquatic systems (Nepf et al 2007, and references therein), the profile exhibits a boundary-11 

layer form with no inflection point if CDah < 0.04.  A pronounced inflection point appears at the top 12 

of the canopy for CDah > 0.1.  Since CD ≈ 1 in most of the studies considered, these limits are 13 

consistent with the scaling and numerical estimates given above. 14 

 In this paper we focus on the dense canopy condition (ah > 0.1).  For these canopies, 15 

Raupach et al (1996) demonstrated a similarity between canopy-shear-layers and free-shear-layers.  16 

In a free-shear-layer the velocity profile contains an inflection point, which triggers a flow instability 17 

that, in turn, leads to the generation of Kelvin-Helmoltz vortices (e.g. Brown & Roshko 1974, 18 

Winant & Browand 1974).  These structures dominate the transfer of momentum between the high-19 

speed and low-speed streams, and their size sets the length-scale of the shear-layer.  For dense 20 

submerged canopies (ah > 0.1), the momentum absorption by the canopy is sufficient to produce an 21 

inflection point in the velocity profile, which, as in free-shear-layers, leads to the generation of K-H 22 

vortices (Figure 3de).  These vortices are called canopy-scale turbulence, to distinguish it from the 23 
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much-larger boundary-layer turbulence, which may form above a deeply submerged or unconfined 1 

canopy, and the much smaller stem-scale turbulence.   2 

Over a deeply submerged (or terrestrial) canopy (H/h > 10), the canopy-scale vortices are 3 

highly three-dimensional due to their interaction with larger boundary-layer turbulence, which 4 

stretches the canopy-scale vortices, enhancing secondary instabilities (Fitzmaurice et al. 2004, 5 

Finningan et al 2009).  However, with shallow submergence (H/h<= 5), which is common in aquatic 6 

systems, larger-scale boundary-layer turbulence is not present, and the canopy-scale vortices 7 

dominate the turbulence field, both within and above the canopy (Ghisalberti & Nepf 2005, 2009).  8 

For shallow submergence the canopy-scale turbulence is also more coherent (less three-dimensional) 9 

than that observed with deeply submerged (or terrestrial) conditions.  However, in both cases the 10 

canopy-scale vortices dominate the vertical transport at the canopy interface (e.g. Gao et al. 1989, 11 

Finnigan 2000, Ghisalberti & Nepf 2002).   12 

In a free-shear-layer, the vortices grow continually downstream, predominantly through 13 

vortex pairing (Winant & Browand 1974).  In canopy-shear-layers, however, the vortices reach a 14 

fixed scale and a fixed penetration into the canopy (δe in Figure 3de) at a short distance from the 15 

canopy’s leading edge (Ghisalberti & Nepf 2004).  Based on measurements with a flexible model of 16 

the seagrass Zostera marina (a = 5.7 m-1), a fixed shear-layer scale is reached at a distance of 10h 17 

from the leading edge of the meadow (Ghisalberti 2000).   The fixed vortex and shear-layer scale is 18 

reached when the shear-production that feeds energy into the canopy-scale vortices is balanced by 19 

dissipation by canopy drag.  This energy balance predicts the following length-scale, which has been 20 

verified with laboratory observations (Nepf et al. 2007). 21 

  22 
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0.23± 0.6

CDa
                           (11) 23 
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 1 

Recall that CDah ≥ 0.1 is required to produce shear-layer vortices, so that (11) applies only to those 2 

canopies.  In the range CDah = 0.1 to 0.23, the shear-layer vortices penetrate to the bed, δe = h, 3 

creating a highly turbulent condition over the entire canopy height (Figure 3d).  At higher values of 4 

CDah the canopy-scale vortices do not penetrate to the bed, δe < h (Figure 3e).    5 

 The scaling δe ~ a-1 has been observed in flows near porous layers over a wide range of 6 

physical scales, spanning from granular beds to terrestrial forests and urban canopies (Ghisalberti, 7 

2009).  However, the scale relation must break down when (CDa)-1 approaches the scale of the 8 

canopy elements, d, because a is only defined as an average over multiple elements.  For rigid 9 

cylinders, when (CDa)-1is less than 2d, the penetration scale transitions to a constant δe ≈ 2d (White 10 

& Nepf 2007).  The depth of submergence, H/h, can also affect the penetration length-scale.  For H/h 11 

< 2, δe is diminished from (11), as interaction with the water surface diminishes the strength and 12 

scale of the vortices (Nepf & Vivoni 2000, Okamoto & Nezu 2009). 13 

 The penetration length, δe, segregates the canopy into an upper layer of strong turbulence and 14 

rapid renewal and a lower layer of weak turbulence and slow renewal (Nepf & Vivoni 2000).  15 

Flushing of the upper canopy is enhanced by the canopy-scale vortices that penetrate this region 16 

(Figure 3e).  In contrast, turbulence in the lower canopy (z <h-δe) is generated in stem wakes and has 17 

significantly smaller scale, set by the stem diameters and spacing.  Canopies for which δe/h < 1 18 

(Figure 3e) shield the bed from strong turbulence and turbulent stress.  Because turbulence near the 19 

bed plays a role in resuspension, these dense canopies are expected to reduce resuspension and trap 20 

sediment.  Consistent with this, Moore (2004) observed that resuspension within a seagrass meadow 21 

was reduced, relative to bare-bed conditions, only when the above ground biomass per unit area was 22 

greater than 100 g/m2 (dry mass).  This biomass corresponds to ah = 0.4 (Luhar et al. 2008).  Using 23 



 19 

CD ≈ 1, this canopy density is consistent with the transition implied by (11).  Note that the transition 1 

in near-bed turbulence and resuspension does not occur abruptly at CDah = 0.23, but gradually with 2 

increasing CDah above this value, as the canopy-scale vortices are progressively pushed further from 3 

the bed.  Because of the reduced near-bed turbulence, dense canopies can promote sediment 4 

retention.  In sandy regions, that tend to be nutrient poor, the preferential retention of fines and 5 

organic material, i.e. muddification, enhances the supply of nutrient to the canopy, so that dense 6 

canopies provide a positive feedback to canopy health in sandy regions.  In contrast, in regions with 7 

muddy substrate, which is more susceptible to anoxia, sparse meadows (CDah ≤ 0.23) may be more 8 

successful, because the enhanced near-bed turbulence removes fines, leading to a sandier substrate 9 

that is less prone to anoxia.  10 

 11 

Flexible Canopies and Monami 12 

Under some conditions, the canopy-scale vortices produce sufficient instantaneous drag to 13 

overcome the buoyancy and rigidity of individual blades.  The passage of the travelling vortices then 14 

causes a local depression in the canopy, which travels along the canopy interface, in synch with the 15 

travelling vortices (Figure 4a).  This progressive waving of canopy blades is called monami 16 

(Ackerman & Okubo 1993).  It has been observed to occur extensively in the field (e.g. Fonseca & 17 

Kenworthy 1987, Ackerman & Okubo 1993, Grizzle et al. 1996).  The frequency of the monami 18 

matches the frequency of vortex passage, which is given by instability theory (Ikeda & Kanazawa 19 

1996, Ghisalberti & Nepf 2002).  However, if the instantaneous drag associated with the canopy-20 

scale vortices is not sufficient to depress individual blades, the monami will not occur, even though 21 

the canopy-scale vortices are present. 22 

To understand the connection between the canopy-shear-layer vortices and the monami, it is 23 



 20 

useful to consider the differences between the free-shear-layer and canopy-shear-layer.  Free-shear-1 

layer vortices are symmetric around the inflection point (zi), and their translation speed, Uv, matches 2 

the velocity at the inflection point, Ui.  Because these vortices rotate faster than they translate, the 3 

lower region of the layer experiences a negative velocity perturbation as a vortex passes (e.g. 4 

Dimotakis et al. 1981, Ho et al. 1991).  In a canopy-shear-layer the inflection point corresponds with 5 

the top of the canopy (zi ≈ h), so that the velocity at the inflection point is Ui = Uh=<

! 

u >h.  6 

However, due to the canopy drag, the vortices are displaced upward, relative to the inflection point.  7 

As a result, the translation speed of the vortex is higher than the velocity at the inflection point, i.e. 8 

Uv > Ui = Uh (Ikeda and Kanazawa 1996).  The velocity ratio Uv/Uh increases with increasing depth 9 

of submergence (H/h), up to Uv/Uh = 1.8 observed at H/h = 4.5 (Ghisalberti & Nepf 2002).  In 10 

terrestrial canopies Uv/Uh is also 1.8 (Finnigan 1979), suggesting that this is the asymptotic value for 11 

unconfined canopies.  Further, the canopy drag causes the vortices to rotate more slowly than 12 

vortices formed in a free-shear-layer of comparable shear-strength.  The translation speed of the 13 

vortex is sufficiently large compared to its rotation that as the front of the vortex passes a strong 14 

sweep (u > 0, w < 0) invades the canopy (Ghisalberti & Nepf 2002).  The monami is generated as the 15 

sweep deflects the canopy forward and downward.  The connection between the velocity field and 16 

the plant motion is described in Ghisalberti & Nepf (2006) and Okamoto & Nezu (2009). 17 

 The flexibility of the canopy and the presence of monami affect the turbulent exchange 18 

between the canopy and the overflow.   This can be seen in the profiles of Reynolds’ stress, 19 

normalized by the square of the velocity difference (∆U) between the canopy and overflow, which is 20 

a measure of momentum exchange efficiency.  The two profiles shown in Figure 4b are measured 21 

with the same flexible canopy (a ≈ 0.052 cm-1, and ah = 1 when erect, described in Ghisalberti & 22 

Nepf 2005).  The vertical axis is dimensional to emphasize the vertical shift associated with the 23 



 21 

greater deflection of the canopy under the higher flow condition.  In the weaker flow case (Uh = 1.7 1 

cms-1, orange symbols) canopy-scale vortices are produced, but are too weak to deflect the blades, 2 

and no monami occurs.  In the stronger flow case (Uh = 7.9 cms-1, green), the canopy deflection is 3 

larger (smaller h), and the canopy-scale vortices are strong enough to trigger monami.  The monami 4 

excursion amplitude is noted in the figure.  The combination of deflection and monami allows the 5 

turbulent flux to penetrate closer to the bed, which leads to greater in-canopy flow speed (see also  6 

Ghisalberti & Nepf 2009).   7 

While monami allows for a deeper penetration of stress, the momentum transfer is less 8 

efficient.  For example, the maximum normalized stress is     

! 

u'w' "U( )
2

= 0.013 for the stationary 9 

canopy (orange, w/o monami) but only 0.008 with monami is present (green, Figure 4b).  A rigid 10 

canopy produces even more efficient exchange, with a peak normalized-stress of 0.017 (Ghisalberti 11 

& Nepf 2005).  The diminished exchange efficiency occurs because the vortices are smaller and 12 

weaker in the presence of monami, and also weaker above a flexible canopy compared to a rigid 13 

canopy of similar geometry (see detailed discussion in Ghisalberti & Nepf 2006).   14 

 15 

Mean Velocity Profile 16 

Sufficiently far above a submerged canopy (z > 2h), the velocity profile is logarithmic (see Kaimal 17 

& Finnigan 1994, and reference therein). 18 
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 22 

with κ = 0.4 (von Karman constant).  The horizontal-average (angled bracket) is not strictly needed 1 

above the canopy, but is retained for consistency with the equations within the canopy.  The friction 2 

velocity, u*, is related to the Reynolds’ stress at the top of the canopy,     

! 

u*
2 =< u'w' >h .  The 3 

parameters zm and zo are the displacement and roughness heights, respectively, both of which depend 4 

on the canopy roughness density, ah.  Based on studies with both model and real vegetation, a 5 

simple estimate for friction velocity is u* =(gS(H - h))0.5, with S =∂H/∂x +sinθ (Murphy et al. 2007).   6 

If the vegetation is flexible, then h is the mean deflected height of the canopy (Jarvela 2005).  7 

However, if the depth of submergence is small, compared to the displacement height, the following 8 

estimator is more accurate, u* =(gS(H – zm))0.5 (Nepf & Vivoni 2000). 9 

 Recall that the penetration length-scale, δe, describes the distance over which turbulent stress 10 

penetrates the canopy from above.  Similarly, the displacement height is the centroid of momentum 11 

penetration into the canopy (Thom 1971).  This similarity suggests the physically intuitive scaling, 12 
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 15 

which has been confirmed for ah ≈ 0.2 to 3 (Luhar et al 2008).  For ah >≈ 1, the displacement 16 

thickness tends towards zm ≈ h, indicating that essentially the entire canopy is cut-off from the 17 

overflow.  In addition, zm goes to zero at ah = 0.1.  When zm = 0, the velocity profile has no inflection 18 

point (Figure 3c), consistent with the observation ah > 0.1 is required to produce an inflection point 19 

in measured velocity profiles (Figure 3de).  20 

 The dependency of the roughness height, zo, on canopy density, ah, differs significantly 21 

above and below the threshold of ah = 0.1 (e.g. Raupach et al. 1980, MacDonald et al. 1998, 22 



 23 

Jimenez 2004, Luhar et al. 2008).  In the sparse canopy range (ah < 0.1), the roughness height 1 

increases with increasing ah.  In sparse canopies the flow penetrates the full canopy, so that zo is 2 

proportional to the drag imparted by the full canopy, CDah, i.e. zo/h ~ CDah.  In contrast, for dense 3 

canopies (ah > 0.1), the roughness height decreases with increasing ah.  The effective height of the 4 

canopy, as seen by the overflow, is the penetration scale, δe.  The roughness height depends on this 5 

effective height, rather than the canopy height, so that zo ~ δe~ a-1.  For example, data summarized in 6 

Luhar et al (2008) suggest that for ah > 0.1, zo=(0.04±0.02) a-1. 7 

  The logarithmic profile form is based on equilibrium turbulence, such that dissipation and 8 

production are locally in balance (e.g. Tennekes & Lumley 1990).  Largely because of the vertical 9 

transport provided by the shear-layer structures, this condition is not met for some distance above the 10 

canopy, called the roughness sub-layer.  For very shallow submergence, H/h ≤ 1.5, the roughness 11 

sub-layer extends to the surface, and a logarithmic structure is not observed above the canopy.  12 

 The flow within a submerged canopy is driven by a combination of the turbulent, dispersive 13 

and viscous (usually negligible) stresses generated by the overflow, as well as the potential gradient 14 

associated with the hydrostatic pressure gradient and the bed slope.  Below the penetration of 15 

turbulent and dispersive stress (z < h-δe), conservation of linear momentum reduces to a balance 16 

between potential gradients and the sum of the canopy and the bed drag.  Assuming that the canopy 17 

drag is much larger than bed drag, this balance yields the following mean velocity. 18 

 19 
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This is the same momentum balance observed for emergent canopies.  So, again, if the canopy 22 



 24 

density, a, or drag coefficient CD are functions of z, the velocity will vary inversely, i.e. velocity will 1 

be highest where CDa is lowest.  2 

In the upper canopy (h-δe < z < h) flow is driven by both potential gradients and turbulent 3 

stress.  The stress-driven component is derived by simplifying the moment equation (2) to a balance 4 

of canopy drag and turbulent stress, and modeling the turbulent stress with a mixing length model, 5 

      

! 

u'w' = !m
2 (" < u > / "z)2  (e.g. Inoue 1963, Cionco 1965). This yields the exponential velocity 6 

profile observed in terrestrial canopies.  In aquatic canopies, the potential-driven component is also 7 

important in the upper canopy.  Combining the stress-driven and potential-driven components, the 8 

upper canopy velocity profile is,   9 

 10 

    

! 

u =U1 + (Uh "U1)exp("Ku(h " z)) ,              (15)  11 

 12 

with Uh =   

! 

u  at the top of the canopy, and constant Ku =     

! 

" !m , with β = u*/Uh.  It is physically-13 

intuitive that the mixing length should be related to the penetration of shear-layer vortices into the 14 

canopy, i.e.     

! 

!m ~ δe ~ (CDa)-1.  Harmon and Finnigan (2007) suggest       

! 

!m = 2"3(CDa)#1, or Ku = 15 

CDa/(2β2).   For rigid canopies in water, β = 0.24±0.02 (S.E., data in Ghisalberti & Nepf 2005), 16 

which predicts Ku = (8.7±1.4) CDa.  This predicted value agrees with the observed decay scale 17 

constant, Ku =(9±2)CDa, extracted from measured velocity profiles in Ghisalberti (2005).   In the 18 

dense canopy limit, β has no dependence on canopy density (Ghisalberti & Nepf 2005), but it 19 

declines as the transition to the sparse canopy limit (ah < 0.1) is approached, i.e. as the canopy-scale 20 

vortices diminish and eventually disappear (Poggi et al 2004a).  Flexible canopies display a lower 21 

value, β = 0.17±0.01 (Ghisalberti & Nepf 2005), consistent with the less efficient momentum 22 

transfer noted in Figure 4.  Belcher et al (2003) propose the alternative Ku = (2lm
2Lc)-1/3, with the 23 
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approximation lm~h.  However, the mixing length within the canopy may be better represented by the 1 

vortex penetration, i.e. lm ~ Lc ~ (CDa)-1, which then also yields Ku ~ Lc
-1~ CDa. 2 

To model the full velocity profile, i.e. both within and above the bed, researchers have 3 

combined the models for above-canopy and in-canopy profiles by matching the velocity at the top of 4 

the canopy (e.g. Abdelrhman 2003, Carollo et al. 2002).  While this ignores the roughness sub-layer, 5 

for practical purposes the resulting profile is reasonably accurate.  First, the velocity profile above 6 

the meadow (z >h) is estimated from the logarithmic profile (12).  The logarithmic profile provides 7 

the velocity at the top of the meadow, Uh, which is used with (14) and (15) to predict the velocity 8 

within the meadows (z < h).  An example is given in Figure 5 using data from Ghisalberti (2005).  9 

The input parameters are the water depth (H = 46.7 cm), the meadow height (h = 13.9 cm), the 10 

surface slope (S = 2.5 x 10-5), the canopy density (a = 0.034 cm-1), and the measured drag 11 

coefficient, CD = 0.77.  The measured and predicted profiles agree within uncertainty, except 12 

approaching the free-surface, where the measured profile tends toward ∂u/∂z = 0 to meet the no-13 

stress condition at the surface that is not represented in the log-profile.  Other models for the 14 

complete velocity profile in regions with submerged aquatic vegetation have utilized different 15 

turbulence closure schemes  (e.g. Shimizu & Tsujimoto 1994, Lopez & Garcia 2001, Poggi et al 16 

2004a, Defina & Bixio 2005), and some reflect the bending response of flexible vegetation (e.g. 17 

Abdelrhman 2007, Dikstra & Uittenbogaard 2010)  18 

 19 

Mass Transport in Vegetated Flow 20 

Conservation of mass is described by the transport equation,  21 
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 1 

with Dm the molecular diffusion.  Applying the double-average method described above, and 2 

assuming there are no sources or sinks, this becomes, 3 
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 6 

with (x, y, z) = (x1, x2, x3).  The first term on the right-hand side represents dispersion associated with 7 

turbulent fluctuations, i.e. turbulent diffusion.  The second term on the right represents dispersion 8 

associated with spatial-heterogeneity in the time-mean velocity field, e.g. the dispersion associated 9 

with flow path turtuosity.  The last term is flux due to molecular diffusion, which in general is 10 

negligible compared to the first two.  Laboratory measurements in rigid canopies indicate that, over 11 

time-scales greater than turbulent time-scales, and spatial-scales much greater ∆S and d, these three 12 

terms produce Fickian transport, i.e. the right hand-side reduces to 
    

! 

Dj "
2 C "x j( ), with dispersion 13 

coefficient Dj (White & Nepf 2003, Tanino & Nepf 2008b). 14 

  15 

Turbulent Diffusion and Mechanical Dispersion in an Emergent Canopy 16 

For solid volume fraction φ < 0.1, turbulent diffusion is the dominant component of D within the 17 

canopy (Tanino & Nepf 2008b).  The velocity scale controlling turbulent diffusion is the mean 18 

velocity, U1, given by (8) and (14).  As discussed above, the turbulence length scale may be set by 19 

the stem scale (if d ≤ Sn), or by the stem spacing Sn, for d >Sn (Figure 2a).  Experimental studies 20 

confirm D ~ U1d for φ <≈ 0.1, and support the simple scaling,  21 

 22 
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D = 0.2 U1d           (18) 1 

  2 

(Lightbody & Nepf 2006, Tanino & Nepf 2008b).  For denser canopies, specifically when Sn < d, the 3 

contribution to D from turbulent diffusion declines rapidly, as the length-scale of turbulence declines 4 

(Figure 2a).  For φ >≈ 0.1, the dispersion due to the spatial-heterogeneity in the velocity field (also 5 

called mechanical dispersion) becomes important, and it dominates for φ > 0.15.  In addition, in the 6 

absence of turbulence, e.g. Red < 100, mechanical dispersion is the main contributor to dispersion 7 

across all stem densities.  The following formulation is consistent with data across all stem densities 8 

for Red < 100, and for φ > 0.15 for all Reynolds number (Nepf et al. 1997, Serra et al. 2004, Nepf 9 

2004, Tanino & Nepf 2008b), 10 

 11 
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       13 

Tanino & Nepf (2008b) describe a more comprehensive model that smoothly spans the two regimes 14 

described by (18) and (19). 15 

 16 

Turbulent Diffusion within and Above a Submerged Canopy 17 

Because the canopy drag restricts the penetration of the canopy-scale vortices, a submerged canopy 18 

is segregated into two zones characterized by distinct turbulence scales.  The canopy-scale vortices 19 

are excluded from the lower canopy (z < h-δe), and as a result the mechanisms of dispersion 20 

resemble those described above for emergent canopies.  In contrast, transport in the upper canopy (z 21 

> h-δe) is dominated by the canopy-scale turbulence, so that the turbulent diffusivity scales on the 22 
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size of the canopy-scale vortices and the velocity difference, ∆U, between the canopy and the 1 

overflow, e.g. shown in Figure 4.  The canopy-scale vortices grow to a size comparable to the shear-2 

layer thickness tml.  These scales also apply above a canopy with shallow submergence (H/h < 5), 3 

because the canopy-shear-layer extends over most of the flow depth (Ghisalberti & Nepf 2005, 4 

Ghisalberti & Nepf 2009).  Based on experiments with rigid canopies,  5 

 6 

D ≈ 0.02 ∆U tml          (20) 7 

 8 

over the entire shear-layer, i.e. both above and within the canopy (Figure 11 in Ghisalberti & Nepf 9 

2005).  Generally, tml ~ h, so (20) can be estimated from the canopy height, h, and the velocity 10 

difference, ∆U.  The turbulent diffusivity has a peak at the top of the canopy, with D (z =h) ≈ 11 

0.032∆U tml.  As in a free-shear layer, the turbulent diffusivity is higher than the turbulent viscosity 12 

(νt).  The turbulent Schmidt number (St = νt/Dt) has a mean of 0.5 within the canopy-shear layer, 13 

similar to other free shear layers, and a minimum of 0.3 at the top of the canopy, so that mass is 14 

mixed across the canopy–water interface three times more rapidly than is momentum (Ghisalberti & 15 

Nepf 2005, and references therein).  For reference, in a neutral boundary layer St ≈ 1 (e.g., Kaimal & 16 

Finnigan 1994, p. 125).  The lower value of St within a canopy shear-layer can be explained by the 17 

numerical results discussed in Fitzmaurice et al (2004).  Ensemble averages of the velocity and 18 

pressure fields show that a region of high dynamic pressure is generated when a sweep encounters 19 

the canopy.  While sweep events carry momentum and scalar downward via identical motions, the 20 

momentum transport is offset by high pressure generated at the canopy boundary, depressing the 21 

turbulent Schmidt number. 22 

 23 
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Summary 1 

Aquatic vegetation significantly alters the mean and turbulent flow field.  Within emergent 2 

canopies, the turbulent length-scales are set by the stem diameter and spacing, and the mean flow is 3 

determined by the distribution of canopy frontal area.  Sparse submerged canopies (ah < 0.1) 4 

enhance bed roughness and near-bed turbulence, but the velocity profile remains logarithmic.  In 5 

contrast, dense submerged canopies (ah > 0.1) transfer the velocity profile to a mixing layer.  These 6 

canopies generate two distinct scales of turbulence: canopy-scale turbulence generated by flow 7 

instability at the top of the canopy, and stem-scale turbulence generated within the canopy.  The 8 

canopy-scale turbulence penetrates into the canopy only over a length-scale dependent on the canopy 9 

drag, δe ~ (CDa)-1.  This length-scale determines both the displacement thickness (zm) for the 10 

logarithmic velocity profile above the canopy, as well as the decay of stress-driven flow within the 11 

canopy.  Further, δe separates a dense canopy into two regions of distinct transport.  The upper 12 

canopy (z > h-δe) experiences energetic vertical transport and high levels of turbulent diffusion, 13 

controlled by canopy-scale vortices.  The lower canopy (z <h-δe) experiences significantly slower 14 

transport, associated with the smaller element-scale turbulence.  15 
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Figure 1. Emergent canopy of marsh grass, with vertical profiles of leaf area index, a, and longitudinal velocity, 

! 

< u > .  1 

The velocity profile varies inversely with a, creating a velocity maximum close to the bed, below the level at which 2 

branching begins. 3 

 4 

 5 

6 
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Figure 2. Changes in flow properties with increasing stem density.  (a) The integral scale of 1 

turbulence, , is set by the smaller of two canopy scales: the stem diameter, d, and the nearest-2 

neighbor stem spacing, Sn.  If d < Sn,  = d.  If d >Sn,  =Sn.  (b) The turbulence intensity, given by 3 

(7), depends on the integral length-scale of the turbulence.  If d <Sn, the turbulence intensity 4 

increases rapidly with increasing stem density, because a ≈ d2/Sn
2.  If d >Sn, the turbulence intensity 5 

increases more slowly, as a ≈ d/Sn.  Changes in (c) velocity and (d) turbulent kinetic energy, with 6 

increasing stem density, shown relative to values for a bare-bed (sub-script b) with the same forcing.  7 

Based on Fig. 10 in Nepf 2012, reproduced with the kind permission of Elsevier Press. 8 
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Figure 3 a) seagrass Cymodocea nodosa at low stem density b) seagrass Posidonia oceanica at high 1 

stem density.  Photos by Eduardo Infantes Oanes.  Vertical profiles of longitudinal velocity and 2 

dominant turbulence scales for (c) sparse canopy (ah < < 0.1), (d) transitional canopy (ah ≈ 0.1) and 3 

(e) dense canopy (ah > 0.1).  h is the submerged canopy height.  For ah ≈ > 0.1, a region of strong 4 

shear at the top of the canopy generates canopy-scale turbulence.  Element-scale (stem-scale) 5 

turbulence is generated within the canopy.   6 
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Figure 4. a) For dense submerged canopies (ah > 0.1), the drag discontinuity at the top of the 1 

canopy generates a region of shear resembling a free-shear-layer, which in turn generates canopy-2 

scale vortices by Kelvin-Helmholtz instability.  The passage these canopy-scale vortices over the 3 

canopy may generate a progressive waving of the canopy that is called monami (green canopy).  If 4 

the shear-layer vortices are too weak, the canopy will bend, but not wave (orange canopy).  b) 5 

Profiles of normalized turbulent stress in and above a flexible canopy for two flow conditions, based 6 

on data from Ghisalberti and Nepf (2006).  With the weaker current, no monami occurs (orange 7 

dots).  With a stronger current, monami is produced (green dots).  The vertical excursion of the 8 

canopy interface associated with the monami is shown with the dashed double-arrow.  Under the 9 

stronger current (green dots), the individual blades are deflected further, reducing the mean canopy 10 

height (h), relative to the condition with the weaker current (orange dots).   11 
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Figure 5. Measured velocity (dots) from Ghisalberti (2005).  Predicted velocity (solid line) with 1 

confidence limits (dashed lines); H = 46.7 cm, h = 13.9 cm, S = 2.5 x 10-5, a = 0.034 cm-1, CD =0.77 2 

(measured).  Above the meadow, the velocity is predicted from the logarithmic profile (12), with u* 3 

= (gS(H-h))1/2, zm = h-(1/2)δe (13), and zo=(0.04±0.02)a-1, as given in text.  Inside the meadow the 4 

velocity is predicted from (14) and (15), with Uh taken from logarithmic fit. 5 
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